• Tidak ada hasil yang ditemukan

PHIL2642 Lecture Notes - Week 1

N/A
N/A
Protected

Academic year: 2025

Membagikan "PHIL2642 Lecture Notes - Week 1"

Copied!
4
0
0

Teks penuh

(1)

PHIL2642     Lecture  Notes  

Week  1:  Introduction  to  Critical  Thinking  +  Course  Outline    

• Week  2;  

o Premises  

• Week  3;  

o Deduction  Continued  

• Week  4;  

o Definitions  and  Philosophical  Analysis  

• Week  5;  

o Induction  

• Week  6;  

o Induction,  Analogy  &  Testimony  

• Week  7;  

o Abduction  

• Week  8;  

o Causal  Arguments  

• Week  9;  

o Science,  Pseudo-­‐Science  &  Non-­‐science  +  ‘Intelligent  Design’  Case  Study  

• Week  10;  

o Probabilistic  Reasoning  

• Week  11;  

o Fallacies  

• Week  12;  

o More  Fallacies    

• Week  13;  

o Practice  Exam  

 

Week  2  (First  week  of  Content):  Conditionals  and  Deduction    

• Arguments;  

o Premises   o Conclusion  

• Claims  

• Explanations  

o Explanandum  (that  which  needs  to  be  explained)   o Explanans  (that  which  contains  the  explanation)  

• Conditionals;  

o Statements  that  do  not  suggest  one  thing  causes  another  à  If  P  then  Q  claims;  

§ If  you  are  bigger  than  Arnie  then  you  are  bigger  than  me.  

§ If  the  dam  levels  are  higher  then  it  rained.  

• Sufficient  condition  [P]  

(2)

PHIL2642     Lecture  Notes  

o For  the  standard  form  of  conditional  “If  P  then  Q”,  the  sufficient  condition  is  P.  

o Sometimes  called  the  “antecedent”.  

§ E.g.  If  you  are  a  father  then  you  are  a  parent.  

§ If  you  are  a  police  officer  then  you  are  allowed  to  break  the  law.  

• The  sufficient  condition  comes  after  the  ‘if’  and  before  the  ‘then’,  so   it  is  “you  are  a  police  officer.”  

§ If  an  asteroid  hits  earth  tomorrow,  everyone  will  die  tomorrow.  

• It  is  “an  asteroid  hits  earth  tomorrow”.  

• Necessary  condition  [Q]  

o For  the  standard  form  of  conditional  “If  P  then  Q”,  the  necessary  condition  is  Q.  

§ If  you’re  a  police  officer  then  you  are  allowed  to  break  the  law.  

• It  is  “you  being  allowed  to  break  the  law.”  

§ If  an  asteroid  hits  earth  tomorrow,  everyone  will  die  tomorrow.  

• It  is  “everyone  will  die  tomorrow”.  

• Equivalent  forms  of  conditionals   o If  P  then  Q:    

§ If  you  are  a  father,  then  you  are  a  parent  

§ If  it  is  more  expensive  than  Point  Piper  then  it  is  more  expensive  than   Marrickville.  

§ These  also  mean;  

• P  is  sufficient  for  Q  

• Q  is  necessary  for  P  

• Q  if  P  

• P  only  if  Q  

• Only  if  Q,  then  P  

• How  to  figure  out  which  is  conditional/necessary?  This  must  be  learnt.  

• “All”,  “Every”  and  “Only”  Generalisations  

o ‘A’  and  ‘B’  stand  for  objects  or  events  and  ‘F’  and  ‘G’  stand  for  properties.  

• Generalisations  

o All  members  of  the  board  are  bald.  

o All  numbers  greater  than  7  are  greater  than  2.  

• Common  Mistakes  

o ‘All’  and  ‘only’  claims  are  not  equivalent.  

§ All  fathers  are  parents.  

§ Only  fathers  are  parents.  ß  Wrong.  

• Counterexamples  to  conditional  claims  and  generalisations  

o A  thing,  event  or  state  of  affairs  in  which  the  sufficient  condition  is  true  but  the   necessary  condition  is  false.  

§ If  it  is  an  ant,  it  is  smaller  than  an  elephant,  

• Counterexample  must  demonstrate  an  ant  bigger  than  an  elephant.  

§ If  it  is  a  triangle,  then  its  angle  sum  is  180  degrees.  

• No  counterexample  (True  conditional  claim).  

(3)

PHIL2642     Lecture  Notes  

• Practice  questions  on  conditionals  

o You  would  be  a  troublemaker  only  if  you  did  annoying  things.  

§ If  you  are  a  troublemaker,  then  you  do  annoying  things.    

o Mark  goes  to  the  movies  only  if  Star  Wars  is  showing.  

§ If  Mark  goes  to  the  movies  then  Star  Wars  is  showing.  

• Sufficient  cond;  Mark  goes  the  movies.  

• Necessary  cond;  Star  Wars  is  showing.  

o Being  coloured  is  necessary  for  being  red.  

§ If  it  is  red,  then  it  is  coloured.  

• Sufficient  con;  Being  red  

• Necessary  cond;  being  coloured.  

o All  children  are  whining  brats.  

§ If  it  is  a  child  then  it  is  a  whining  brat.  

Sufficient  cond;  It  is  a  child  

Necessary  cond;  whining  brat.  

• Deduction  

o Not  all  arguments  are  deductive.  

§ The  price  of  gold  has  risen  steadily  over  the  past  year.  

o Deductive  arguments  are  those  in  which  the  truth  of  the  premises  is  intended  to   guarantee  the  truth  of  the  conclusion.  

• Soundness  

o It  must  possess  2  features  in  order  to  be  a  faultless  deductive  argument.  

1. It  must  have  only  true  premises.  

2. The  truth  of  those  premises  must  guarantee  the  truth  of  the  conclusion.  

o We  can  see  these  2  demands  more  generally  as;  

• It  must  have  good  (True)  content  in  its  premises.  

• It  must  have  good  (Truth  –preserving)  form.  

• Validity  &  Invalidity  

o An  argument  is  valid  if  the  truth  of  the  premises  guarantees  the  truth  of  the   conclusion.  

• If  I  drink  Fanta  I  have  the  strength  of  10  men.  

• I’m  drinking  Fanta,  therefore  I  have  the  strength  of  10  men.  

• Whilst  this  argument  is  false,  it  is  valid  as  the  premise  guarantees   the  conclusion.  

• Valid  if  it  Affirms  the  Sufficient  or  Denies  the  Necessary:  

• Aff  Suff  

• Den  Nec.  

• Otherwise  invalid.  

o An  argument  is  invalid  if,  assuming  the  premises  are  true,  the  conclusion  might  not   be  true.  So  it  is  possible  for  the  premises  to  be  true  and  the  conclusion  to  be  false.  

• Everyone  that  drinks  beer  is  an  adult.  

• à  If  you  drink  beer  then  you  are  an  adult.  

(4)

PHIL2642     Lecture  Notes  

• Tom  is  an  adult,  therefore  he  drinks  beer.  

• This  is  invalid.  

• Conditional  deductive  arguments;  

o Forms;  

• Affirming  the  sufficient  condition  (valid):  

If  there  is  a  baboon  in  your  tent,  you  shouldn’t  go  into  your  tent.  

There  is  a  baboon  in  your  tent.  

Therefore,  don’t  go  in  there.  

• Denying  the  sufficient  condition.  

• Affirming  the  necessary  condition.  

• Denying  the  necessary  condition  (valid).  

If  P  then  Q.  

It’s  not  the  case  that  Q.  

Therefore  it’s  not  the  case  that  P.  

E.g.  If  I  was  a  teenager  in  the  80’s,  then  I  own  a  copy  of  Michael  

Jackson’s  “Thriller”.  

o I  do  not  own  a  copy  of  “Thriller”.  

o Therefore,  I  was  not  a  teenager  in  the  80’s.  

 

Week  3:  Deduction  Continued    

• Denying  the  sufficient  condition.  

o If  there  is  a  tiger  at  the  zoo,  then  I’ll  go  to  the  zoo.  

o Next  premise;  

§ There  is  no  tiger  at  the  zoo.  

o Conclusion;  

§ Therefore,  I  won’t  go  to  the  zoo  à  Invalid  as  the  premises  don’t  guarantee   the  conclusion.  

• Conditional  arguments  of  many  forms;  

o Only  snobs  do  not  watch  reality  TV.  

§ If  you  do  not  watch  reality  TV,  then  you  are  a  snob.  

§ You  do  watch  reality  TV.  

§ Therefore,  you  are  not  a  snob.  

• Denying  the  sufficient.  

o Only  idiots  think  that  Morocco  is  in  Europe.  

§ If  you  think  that  Morocco  is  in  Europe,  then  you’re  an  idiot.  

§ Dave  thinks  that  Morocco  is  in  Europe.  

§ Therefore,  Dave  is  an  idiot.  

• Affirming  the  sufficient  condition.  Valid.  

o You  will  be  punished  if  you  stole  from  the  shops.  

§ If  you  stole  from  the  shops,  then  you  will  be  punished.  

§ You  did  not  steal  from  the  shops.  

Referensi

Dokumen terkait

Under the sufficient condition called the T condition, Artzy [2] result that isotopic cross inverse property loops(CIPLs) are isomorphic is proved for WIP

Ascomycota (子囊菌门) - Sexual reproduction in a sack called an ascus with the production of ascopspores.. Basidiomycota (担子菌门) -Sexual reproduction in a sack called

Seleskovitch notes that spoken language interpreters working at international conferences may sometimes interpret entire speeches consecutively; the consecutive mode

• Prices will not fall back to initial level • Long-run market supply will be upward sloping • New firms may have higher costs because o Some resources used in production may be

[FIT2004 Sample Notes- Algorithms] Highlighted yellow means its recommended you know these areas in depth- they are likely to show on the mid-sem and final exam Week 1: Lecture and

PSYC2011 Exam Notes Instrumental conditioning  Also called “operant conditioning”  “Response” learning - Stimulus -> Response -> Outcome - Learning about the consequences of

It broadly defines mental disorder as: o “clinically significant disturbance in an individual’s cognition, emotion regulation or behaviour…usually associated with significant distress

The Kutta condition has been applied originally in the steady two-dimensional flow case for uniqueness of solution mathematically and for regular flow in the vicinity of the trailing