• Tidak ada hasil yang ditemukan

Time flow and reversibility in a probabilistic universe : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Philosophy at Massey University

N/A
N/A
Protected

Academic year: 2024

Membagikan "Time flow and reversibility in a probabilistic universe : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Philosophy at Massey University"

Copied!
11
0
0

Teks penuh

(1)

private study only. The thesis may not be reproduced elsewhere without

the permission of the Author.

(2)

T i m e Flow A nd R eversi blli ty i n e Probebilistic U n i verse

A thesi s prese n t ed i n perti el fulfi lm e nt of the require m e nts for the degre e of

Doctor of Phi losophy i n Phi losophy et Messey U n i versi ty.

A ndrew Tho mes Holster

1990

(3)

A B ST R A CT

A f un d e m e n t e l p ro b l e m i n u n d e rs t e n d i n g t h e n a t u re o f t i m e i s t o ex p l a i n i t s ' d i re c t i o n a l i t y ', T h e c o m m o n p l a c e v i e w i s t h a t t h i s d i re ct i o n a l i t y i s pro v i d e d by the 'fl o w o f t i m e', U n f o rt u n a t e l y t h i s c o n c ep t o f ' t i m e f l o w ', w h i ch s e e m s t o m e k e p e rf e c t s e n s e t o u s i n o u r e v e ry d a y 1 i v e s , hes re s i s t e d p h i 1 o s o ph i c a l a n d s c i e n t i f i c a n a l y s i s s o w e l l t h e t t o d e y i t i s w i d e l y reg ard e d a s h a v i n g n o p l a c e i n t h e s c i e n t i f i c a c c o u n t o f t h e w o rl d, I n s t e a d , v a ri o u s a l t e rn e t i v e p h y s i c a l c o n c e p t s o f t h e d i rec t i o n a l i t y o f t i m e h a v e b e e n d e v e l o p e d , p ri nc i p el l y t h e n o t i o n s o f the t i m e rev ersi b i l i t y o f p h y s i c a l l a w s o r t h e o ri e s , e n d o f t h e t i m e a s y m m e t ry o f p h y s i c a l p ro c e s s e s, I t i s f re q u e n t l y a rg u e d b y p h i l o s o p h e rs o f p hy s i cs t h a t t h e s c i e n t i f i c a c c o u n t o f t h e d i re c t i o n a l i ty o f t i m e m u s t b e fra m e d e nt i re l y i n t e rm s o f t h e s e p hy s i c a l n o t i o n s,

T h e t h e s i s o f t h e p re s e n t w o rk i s t h e t t h i s c on c l u s i o n h e s b e en re a c h e d f a r t o o h a s t i l y, I t i s e rg u e d t h et t h e c o n c e p t o f t i m e f l 0 w i s a l e g i t i m e t e p h Y s i c a 1 con c e p t , a n d f u rt h e rm 0 re , t h a t t i m e f l o w p l a y s e reel p e rt i n quan t u m t h e o ry,

A n u m b e r o f c o n c e p t u a l i n v e s t i g a t i o n s a re n e c e s s a ry t o supp ort t h i s a rg u m e n t . F i rstl y, i t i s n e c e s s ery t o g i v e a n a n a l y s i s

(4)

i i i o f w h a t a p hkj s i c a l t h e o rkj o f ti m e f l o w m i gh t be l i k e , a n d h o w i t m i g h t b e e m p i ri c a l l kj e s t a b 1 i s h e d . T h i s i s g i v e n i n C h a p t e r O n e , w h i c h a t t h e s a m e t i m e i s an o v e rv i e w o f t h e re s u l t s o f l a t e r c h a p t e rs. I t i s f o u n d i n C h a p t er O n e t h a t t h e c o n c e p t o f p hkj s i c al t i m e fl o w h a s a n i m p o rt a nt c o n n e c t i o n w i t h t h e c o n c e p t o f t i m e re v e rs i b i l i tkj , w h i c h m a k e s i t n e c e s s a rkj t o g i v e a n a n a lkj s i s o f t h i s n o t i o n. A d e t a i l e d d i s c u s s i o n o f re v e rsi b i l i tkj a n d t i m e skj m m e t rkj i s g i v e n i n C h a p t e r s T w o t o F i v e . H e re i t i s d e m o ns t ra t e d t h a t t h e o rt h o d ox a n alkj s i s o f t h e re v e rs i b i l i tkj o f p ro b a b i l i s t i c t h e o ri e s i s f l a w e d. T h i s c o n c l u s i o n a l l o w s i t t o b e s h ow n , i n C h a p t e r S ix , t h a t , c o n t ra rkj t o c u rrent s c i e nt i f i c b e l i e f, q u a n t u m t h e o rkj i s p ro f o u ndl y i rrev e rs i b l e.

T h i s re s u l t , t o g e t h e r w i th t h e a rg u m e n t o f C h a p t e r O n e , a l l o w s a s t ro n g p ri m a (a e i e c a s e f o r a n i n t e rp ret a t i o n o f q u a n t u m p ro b a b i l i t i e s a s i n v o l v i n g t i m e f l o w t o b e g i v e n. H o w e v e r, b e c a u s e o f t h e t ra d i t i o n a l p robl e m s w i th t h e n o t i o n o f t i m e f l o w , f o r t h i s i n t e rp re t a t i o n t o b e c o m e re s p e c t a b l e i t n e e d s t o b e d e m o n s t ra t e d t h a t i t i s p o s s i b l e t o c o n s tru c t a f o rm a l m o d e l o f a p hkj s i c a l o n t o l o gkj i n w h i c h ti m e f l o w c a n b e rep re s e n t e d. T h i s i s u n d e rt a k e n i n C h a p t e r S e v e n . I n C h a p t e r E i g h t , v a ri o u s p o i n t s a b o u t t h e rol e o f p ro b a b i l i t i e s i n q u a n t u m t h e o rkj a re d i s c u s s e d . F i n al lkj , i n C h a p t er N i n e , t h e i m p l i c a t i o n s o f rel a t i v i tkj t h e o rkj f o r t h e p rop o s ed t h e ory of ti m e fl o w a re c o ns i d e re d . I t i s f o u n d t h at rel a t i vi tkj t h e o rkj p o s e s a s e ri ous p ro b l e m f o r a p hkj s i c al t h e o rkj o f t i m e f l o w , b u t t h e i m p l i c a t i o n s o f re l a t i v i tkj t h e o rkj f o r t h e p ro p o s e d i n t e rp re t a t i o n 0 f q u a n t u m p ro b a b i 1 i t i e s i s n o t c l e a r b e c a u s e o f d e e p e r f o u n d a t i onal p ro b l e m s w i t h q u a n t u m t h e o rkj .

(5)

A CKN O W L E DG E M E NT S

I t i s f i rst o f a l l e g reet pl e a s u re t o th a n k m y s u p e rv i s o r, G rah a m O d d i e , for a l l h i s h e l p o v er th e p e s t th ree y e a rs . H i s m a n y a ct s o f k i n d n e s s, h o u rs o f d i s c u s s i o n o f m y re s e a rch , a n d h i s p at i e n t c ri t i c i s m a n d a d v i c e th ro u gh o u t th e p re p a ret i o n o f th i s th e s i s h ev e b e e n i nv a l u a b l e. Sp e c i a l th a n k s a l s o go t o P a v e l T i ch y , o f th e U n i v e rs i t y o f O t eg o , wh o h e l p e d t o s up erv i s e th i s p ro j e ct i n i t s f i rs t y e a r. I t i s a l s o e p l e e s u re t o th a n k K i rst e n M cK a y , P et er M i l n e , R o y P e rrett , B ru c e S m a1t a n d J a c k S m e rt f o r v a l u a b l e

d i s c u s s i o n s e n d e n co u ra g e m e nt . A c k no w l e dg e m e nt i s a l s o m ad e o f rec e i pt o f a U G C P os t gre d u et e S ch o l arsh i p.

(6)

C O NT E NT S

A b s tra c t

A c k n o w l e d g e m e n t s

Chapter O n e A n Overvi ew.

1 . 1 The c o m m o n p l a c e c o ncepti o n o f t i m e : IT F L O W S . 1 .2 The c o m m o np l a c e c o ncept i o n I I : t i m e f l o w i n t h e

p h y s i c a l w o rl d .

1 .3 P h e no m e n o l o g i cal d i re c t e d n e s s . 1 . 4 Term i n o l o g y .

1 .5 Ag a i ns t t i m e f l o w : I l l u s i o n i s m . 1 . 6 The s c i e n t i fi c c o n c e p t i on o f t i m e . 1 . 7 D o e s s c i e n t i f i c t i m e fl ow?

1 . 8 R e a s o n s f o r [ 1 ]: i n s p e c t i 0 n 0 f t h e t h e 0 ry . 1 . 9 R e a s o n s f o r [ 1 ] : re v e rs i bi l i ty of F.

1 . 1 0 F o u r m a j o r vi e w s o n p hys i c a l t i m e f l o w . 1 . 1 1 Do s c i e n t i f i c t h e o ri es pro h i b i t t i m e f l ow?

1 . 1 2 A t h e o ry o f o b j e c t i v e phys i c a l t i m e fl o w . 1 . 1 3 The i rre v e rsi b i 1 i t y of q u a n t u m t h e o ry . 1 . 1 4 Q u a n t u m p rob a b i l i s m .

1 . 1 5 The i rrev e rsi b l e f e a t u re o f q u a nf u m theory .

v

Page i i i v

2

3 4 6 7 8 1 1 1 3 1 6

1 8 2 1 2 4 2 6 2 7 2 8 1 . 1 6 The c ri t e ri o n f o r the revers i b i l i t y o f pro b a b i l i s t i c l a w s . 3 0 1 . 1 7 The c o rre c t cri t e ri on for re v e rs i b i l i t y: [C P R] . 32 1 . 1 8 The l a c k o f p a s t- d i re c ted g e n eri c p ro b a b i l i ti e s .

1 . 1 9 R e v e rs i b i 1 i ty , t h e rm o d y n a m i c s , a n d p h en o m e n o l o g i c a l di re cte d n e s s .

1 .20 A p ro p o s a l: ti me f l o w i n q u a n t u m t h e ory.

3 3

3 9 42

(7)

1 .2 1 A c o nt i n g e n t i de n t i ty th e o ry o f t i m e fl o w . 44

1 .22 Th e i d e a of a d y n a m i c th e o ry. 47

1 .2 3 D y n a m i c p ro b a b i l i ty. 49

1 .2 4 Th e m o t i v a t i o n f o r re al i s m a b o u t t i m e fl ow. 5 6

1.2 5 Th e c o n c e p t o f ex i st e n c e 1 . 5 9

1 .2 6 Th e c o n c e p t o f ex i s t ence 2. 6 3

1.2 7 A n arg u m e n t f o r th e re a l i ty o f t i m e fl o w . 6 5 1 .2 8 R e a l i s m v s . I l l u si o n i sm a b o u t th e ph ys i c al w orl d. 6 8 1 .2 9 Th e a n a l o g o u s arg u m e nt f o r t i m e fl ow. 75

1 .3 0 Concl u s i o n . 8 6

Chapter Tw o P he n o m e n o logial D i r ectedn ess 87

2.1 Ph e n o m e n a l o g i c a l d i re c t e d n e s s . 8 7

2 .2 T i m e rev e rs i b i l i ty . 9 0

2 . 3 Ex p l a i n i n g ph enom enal o g i ce 1 d i re c t e d ness. 9 1 2 . 4 Ex p l a i n i n g ph e n o m enal o g i ca 1 d i rec t e d n e s s

i n th e c o n tex t o f a rev e rs i bl e f u n d a me n tal th e o ry. 92 2 . 5 Ex p l a i n i n g ph e n o m e nal o g i ca 1 d i re c t e dness

in th e c o n t ex t o f a n i rrev ers i b l e f un d a m e n t a l th e o ry . 9 9 2 . 6 . G e n e ral f o rm of th e ex p l an a t i o n o f

t e m p o ra l d i re c t e d n e s s . 1 01

Chapter Thr e e R eversi bi li ty and T i m e Sym m etry 1 07

3 .1 D i re c t i a n a l sym m e tri es. 1 0 9

3 .2 Th e d i re c t i o n a l s y m m e t ry o f ti m e . 1 1 3 3 . 3 E q u i v a l e n c e of th e t w o d e f i n i t i o n s of rev e rs i b i l i ty . 1 1 5

(8)

v i i

3.4 R e v e rsi b i 1 i ty end t i m e s y m m e t ry. 1 1 8

3 .5 T i m e f l o w e n d N ew t on's schol i u m. 1 2 1

3 . 6 A 1 o g i c e l p u z z l e e b o u t re v e rsi b i l i ty. 1 23

3 . 7 T i m e f l o w e n d ti m e s y m m etry 2 . 1 2 6

3 . 8 Th e di re ct i o n o f ti m e f l o w c e n n o t b e c o n t i n g en t . 1 3 0

3 . 9 S o m e b e s i c th e o re m s . 1 3 5

3 . 1 0 S u m m ery. 1 3 7

3 . 1 1 M . B unge o n rev e rsi b i 1 i t y . 1 3 8

Chapter F our T i m e R ev ersal Operators 1 48

4. 1 Th e ph y s i c i st's d e f i n i t i on and th e

s y nt e c t i c re v ers e l o p erator. 1 49

4.2 T e rm i n o l o g y : t o k e n s e n d t y p e s o f s t a t e s a n d pro c e s s e s . 1 5 4

4.3 Th e m e t ri s e t i on o f t i m e. 1 5 6

4.4 S y m m e t ri e s . 1 60

4. 5 Th e t i m e - re v e rs e l t re n s form e t i o n . 1 62

4. 6 T i me re v e rs e l of s t at e s . 1 63

4.7 R e tu rn to th e syn t e c t i c rev e rs e l o p e ra tor. 1 6 8

4. 8 T i m e re v e rs a l s. 1 7 0

4. 9 Th e s y n t e c t i c t i m e rev e rsel o p e ra t i o n : s o m e e x e m pl e s . 1 7 4

(9)

Chepter F i ve The C rit e ri o n for Pro be b 11i s tic R e v e rsel .

5.1 Th e C P R 5 .2 Th e P P M R

5 . 3 C P R 1: A w e y o f p i c t u r i n g th e t i m e r ever s a l o f pr o b a b i l i t i e s .

5 . 4 C P R 2: M o d e l - th e or e t i c r e pr e s enta t i o n of pr o b a b i l i t i e s . 5 . 5 C P R 3: A s t a t i s t i c e 1 p i c t ur e .

5 . 6 Pr evi o u s r e co g n i t i o n o f th e C P R

5 . 7 F a i 1 ur e of th e P P M R as a cr i t er i on f or r e v er s i b i l i t y.

5 . 8 A fl aw i n th e i n t er pr e t a t i on o f r e v er s i b i 1 i t y for de t erm i n i s t i c 1 a w s .

5 . 9 Fai 1 ur e of th e P P M R .

C hepter S i x The I rr eversi b i l i ty o f Quentum T h e ory

6 . 1 Th e l a c k o f n o m a 1 o g i c a l p a s t - d i r e c t e d pr o b a b i l i t i e s . 6 .2 O b j e c t i o n 1 : a n a c c i d e nt.

6 . 3 O b j e c t i o n 2: A bi a s e d s a m p l e?

6 . 4 I s Ex p er i m e n t 1 o f th e wr o n g t y p e ? 6 . 5 O b j e c t i o n 3 : anthr o p om or ph i c b i a s ? 6 . 6 O b j e c t i o n 4: l on g - t er m e q u i l i br i u m ? 6 . 7 E p i s t em i c p a s t- d ir e c t e d pr o b a b i l i ti e s.

1 7 8

1 7 9 1 8 0

1 82 1 83 1 85 1 8 6 1 9 9

2 0 1 2 0 8

2 14

2 1 5 22 4 22 6 228 2 3 1 2 32 2 3 5

(10)

Chapter S e ve n A Dyn a m i c M odel of T i m e .

7.1 P rel i m i n a ry s k e t ch of th e m o d e l . 7.2 M c C a l l 's d y n a m i c m o d e l .

7. 3 P a s t / f u t u re i n th e t e m p o ral s e q u e n c e v ers u s e a rl i er/ l a t e r i n th e u n i vers e - t re e .

7 . 4 T e m p o ra l s e q u en c e s of uni v e rs e - t re e s . 7 . 5 S e m a n t i c s o f t e n s e d p roposi t i o n s . 7 . 6 Th e pres e n t m o m e n t .

7 . 7 M o d i fi c a ti o n o f M c C a l l 's th e o ry: th e p o s s i b i 1 i s t i c u n i v e rs e - t ree.

7 .8 Th e s e m a n t i c s o f u n t e nsed p ro p o s i t i o n s . 7 . 9 Th e pro b ab i l i s ti c u n i v e rse- tre e .

7 .1 0 Th e n e e d f o r t e m p o ra l l y - ex t e n d e d u n i v ers e - tre e s . 7 .11 S o m e c o n c l u d i n g c o m m ents.

--

Chapter E i ght The R o le of Probab i li ti es i n Qu antum T h e ory.

8 .1 Th e o b j e c t i v i t y o f qu antum p ro b a b i 1 i t i es.

8 .2 Th e n a t u re 0 f q u a n t u m pro b a b i 1 i t i e s .

ix

238

2 3 9 2 47

2 5 5 2 5 8 2 6 3 2 6 6

2 72 2 7 8 2 8 5 2 91 2 9 3

2 96

2 9 7 3 0 5

(11)

Chapter N i n e Pro bl ems w i th R e lati v i ty The ory. 3 1 0

9.1 Th e ' m e t a ph y s i c a l ' p o s t u l a t i on of s i mu l t a n e i t y rel a t i o n s . 3 1 1 9.2 I s th e d e n i a l o f s i m u l tane i ty rel a t i o n s

c o m p a t i b l e w i th q u a n tu m th eory?

9 . 3 Are s i m u l t a n e i t y re l a t i ons n e c e s s a ry f o r a d y n a m i c m o d e l ?

9 . 4 Su m m ary.

A pp e n d i x 1.1

A pp e n d i x 4 . 1

T h e U s e of Spati al Di agrams of T i m e.

The Depe nde nc e of

3 1 3

3 1 6 322

32 4

R eversi b i li ty o n Interpre tati o n . 334

A pp e nd i x 4 . 2

B i bl i o graphy

T i m e R ev ersal for Quantum

S tat es. 343

34 8

Referensi

Dokumen terkait

Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only.. The thesis may not be reproduced elsewhere without the

Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only.. The thesis may not be reproduced elsewhere without the

Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only.. The thesis may not be reproduced elsewhere without the

Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only.. The thesis may not be reproduced elsewhere without the

a copy to be downloaded by an individual for the purpose of research and private study only.. The thesis may not be reproduced elsewhere without the permission of the

Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only.. The thesis may not be reproduced elsewhere without the

Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only.. The thesis may not be reproduced elsewhere without the

Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only.. The thesis may not be reproduced elsewhere without the