• Tidak ada hasil yang ditemukan

Some Refinements of Hilbert-Pachpatte type integral Inequalities

N/A
N/A
Protected

Academic year: 2024

Membagikan "Some Refinements of Hilbert-Pachpatte type integral Inequalities"

Copied!
12
0
0

Teks penuh

(1)

Some Refinements of Hilbert-Pachpatte type integral Inequalities

This is the Published version of the following publication

Dragomir, Sever S and Kim, Young-Ho (2001) Some Refinements of Hilbert- Pachpatte type integral Inequalities. RGMIA research report collection, 4 (4).

The publisher’s official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17667/

(2)

TYPE INTEGRAL INEQUALITIES

Sever S. Dragomir and Young-Ho Kim

Abstract. In this paper, we obtain an extension of a multivariable integral inequal- ity of Hilbert-Pachpatte type. By specializing the upper estimate functions in the hypothesis and the parameters, we obtain many special cases.

1. INTRODUCTION

Hilbert’s double series theorem [3, p.226] was proved first by Hilbert in his lec- tures on integral equations. The determination of the constant, the integral ana- logue, the extension, other proofs of the whole or of parts of the theorems and generalizations in different directions have been given by several authors (cf. [3, Chap. 9]). In particular, in [10-14] the present author has established some new inequalities similar to Hilbert’s double-series inequality and its integral analogue which we believe will serve as a model for further investigation. Recently, G. D.

Handley, J. J. Koliha and J. E. Peˇcari´c [2] established a new class of related integral inequalities from which results of Pachpatte [12-14] are obtained by specializing the parameters and the functions Φi. A representative sample is the following.

Theorem 1.1 (Handley, Koliha and Peˇcari´c [2, Theorem 3.1]). Let ui Cmi([0, xi]) for i∈I. If

|u(ki i)(si)|≤

Z (si) 0

(si−τi)mi−ki1Φi(τi)i, si [0, xi], i ∈I,

1991Mathematics Subject Classification. 26 D 15.

Key words and phrases. Hilbert’s inequality, Hilbert-Pachpatte type Inequality, H¨older’s in- equality, Jensen inequality.

Typeset byAMS-TEX 1

(3)

then

Z x1

0 · · · Z xn

0

Qn

i=1 |u(ki i)(si)| Pn

i=1ωis(αi i+1)/(qiωi)ds1· · ·dsn

≤U Yn

i=1

x1/qi i Yn

i=1

’Z xi

0

(xi−si)βi+1Φi(si)pidsi

“1/pi

,

where

U = 1

Qn

i=1[(αi+ 1)1/qi(βi+ 1)1/pi].

The purpose of the present paper is to derive an extension of the inequality given in Theorem 1.1. In addition, we obtain some new inequalities as Hilbert-Pachpatte type inequalities, these inequalities improve the results obtained by Handley, Koliha and Peˇcari´c [2].

2. MAIN RESULTS

In what follows we denote byRthe set of real numbers; R+ denotes the interval [0,∞). The symbols N, Z have their usual meaning. The following notation and hypotheses will be used throughout the paper:

I ={1, ..., n} n∈N mi, i∈I mi ∈N

ki, i∈I ki ∈ {0,1, ..., mi1} xi, i∈I xi ∈R, xi >0

pi, qi, i ∈I pi, qi ∈R+,1/pi+ 1/qi = 1

p, q 1/p=

Xn

i=1

(1/pi),1/qi = Xn

i=1

(1/qi) ai, bi, i∈I ai, bi ∈R+, ai+bi = 1

ωi, i∈I ωi ∈R, ωi >0, Xn

i=1

ωi = Ωn αi, i∈I αi= (ai+biqi)(mi−ki1) βi, i∈I βi =ai(mi−ki1)

ui, i∈I ui ∈Cm0i([0, xi]) for some m0i ≥mi Φi, i∈I Φi ∈C1([0, xi]),Φi ≥mi

(4)

Here the ui are given functions of sufficient smoothness, and the Φi are subject to choice. The coefficients pi, qi are conjugate H¨older exponents to be used in ap- plications of H¨older’s inequality, and the coefficientsai, bi will be used in exponents to factorize integrands. The coefficientsωi will act as weights in applications of the geometric-arithmetic mean inequality. The coefficients αi and βi arise naturally in the derivation of the inequalities.

Our main results are given in the following theorems.

Theorem 2.1. Let ui∈Cmi([0, xi]) for i∈I. If

(2.1) |u(ki i)(si)|≤

Z (si) 0

(si−τi)mi−ki1Φi(τi)i, si [0, xi], i∈I, then

Z x1

0 · · · Z xn

0

nQn

i=1 |u(ki i)(si)| Pn

i=1ωis(αi i+1)Ωn/(qiωi) ds1· · ·dsn

≤V Yn

i=1

x1/qi i Yn

i=1

’Z xi

0

(xi−si)βi+1Φi(si)pidsi

“1/pi

, (2.2)

where

(2.3) V =

’Yn i=1

[(αi+ 1)1/qi(βi+ 1)1/pi]

“1

.

Proof. Factorize the integration on the right side of (2.1) as

(si−τi)(ai/qi+bi)(mi−ki1)×(si−τi)(ai/pi)(mi−ki1)Φi(τi) and apply H¨older’s inequality [9, p.106]. Then

|u(ki i)(si)| ≤

’Z (si) 0

(si−τi)(ai+biqi)(mi−ki1)i,

“1/qi

×

’Z (si) 0

(si−τi)ai(mi−ki1)Φi(τi)pii,

“1/pi

= s(αi i+1)/qi (αi+ 1)1/qi

’Z (si) 0

(si−τi)βiΦi(τi)pii,

“1/pi

.

(5)

Using the inequality of means [9, p. 15]

’Yn i=1

swii

“1/n

’ 1 Ωn

Xn

i=1

wisri

“1/r

for r >0, we have Yn

i=1

|u(ki i)(si)|

≤W 1 Ωn

Xn

i=1

ωis(αi i+1)Ωn/(qiωi) Yn

i=1

’Z (si)

0

(si−τi)βiΦi(τi)pii,

“1/pi

,

where

W =

’Yn i=1

(αi+ 1)qi

“1

.

In the following estimate we apply H¨older’s inequality and, at the end, change the order of integration:

Z x1

0 · · · Z xn

0

nQn

i=1 |u(ki i)(si)| Pn

i=1ωis(αi i+1)Ωn/(qiωi) ds1· · ·dsn

≤W Yn

i=1

”Z (xi)

0

’Z (si)

0

(si−τi)βiΦi(τi)pii,

“1/pi

dsi

•

≤W Yn

i=1

x1/qi I

”Z (xi)

0

’Z (si)

0

(si−τi)βiΦi(τi)pii,

“ dsi

•1/pi

= W

Qn

i=1(βi+ 1)1/pi Yn

i=1

x1/qi i Yn

i=1

’Z xi

0

(xi−si)βi+1Φi(si)pidsi

“1/pi

.

This proves the theorem.

Remark. In Theorem 2.1, setting Ωn = 1, we have Theorem 1.1.

Corollary 2.2. Under the assumptions of Theorem 2.1, if r >0, we have Z x1

0 · · · Z xn

0

nQn

i=1 |u(ki i)(si)| Pn

i=1ωis(αi i+1)Ωn/(qiωi) ds1· · ·dsn

≤p1/r·pV Yn

i=1

x1/qi i

’Xn i=1

1 pi

’Z xi

0

(xi−si)βi+1Φi(si)pidsi

“r“1/r·p

,

(6)

Proof. By the inequality of means, for any Ai 0 and r >0, we obtain Yn

i=1

A1/pi i

’ p

Xn

i=1

1 piAri

“1/r·p

.

The corollary then follows from the preceding theorem.

Lemma 2.3. Let γ1 > 0 and γ2 < 1. Let 0 ωi,Pn

i=1ωi = Ωn and let si >

0, i= 1, . . . , n be real numbers. Then Yn

i=1

sωiiγ1γ2

’ 1 Ωn

Xn

i=1

ωis−γi 2

“−γ1n

.

Proof. By the inequality of means, for any γ1 >0 and γ2 <−1, Yn

i=1

sωiiγ1γ2

’ 1 Ωn

Xn

i=1

ωisi

“γ1γ2n

.

Using the fact that x12 is concave and using the Jensen inequality and we have that

’ 1 Ωn

Xn

i=1

ωisi

“γ1γ2n

=

’ 1 Ωn

Xn

i=1

ωif(s−γi 2)

“γ1γ2n

’ f

’ 1 Ωn

Xn

i=1

ωis−γi 2

““γ1γ2n

=

’’ 1 Ωn

Xn

i=1

ωis−γi 2

“12“γ1γ2n

=

’ 1 Ωn

Xn

i=1

ωis−γi 2

“−γ1n

The proof of Lemma is complete.

(7)

Theorem 2.4. Under the assumptions of Theorem 2.1, if γ2 <−1, then Z x1

0 · · · Z xn

0

Qn

i=1 |u(ki i)(si)|

 1 n

Pn

i=1ωis−γi 2‘(αi+1)Ωn2qiωi ds1· · ·dsn

≤V Yn

i=1

x1/qi i Yn

i=1

’Z xi

0

(xi−si)βi+1Φi(si)pidsi

“1/pi

,

where V is given by (2.3).

Proof. By the inequality of Lemma 2.3, for any γ1 >0 and γ2 <−1, Yn

i=1

sωiiγ1

’ 1 Ωn

Xn

i=1

ωis−γi 2

“−γ1n2

we get Yn

i=1

|u(ki i)(si)|

≤W

’ 1 Ωn

Xn

i=1

ωis−γi 2

“−W1Yn i=1

’Z (si)

0

(si−τi)βiΦi(τi)pii,

“1/pi

,

where

W =

’Yn i=1

(αi+ 1)qi

“1

, W1 = (αi+ 1)Ωn

γ2qiωi . The Theorem then follows from the preceding Theorem 2.1.

Corollary 2.5. Under the assumptions of Theorem 2.4, if r >0, we have Z x1

0 · · · Z xn

0

Qn

i=1 |u(ki i)(si)|

 1 n

Pn

i=1ωis−γi 2‘(αi+1)Ωn2qiωi ds1· · ·dsn

≤p1/r·pV Yn

i=1

x1/qi i

’Xn i=1

1 pi

’Z xi

0

(xi−si)βi+1Φi(si)pidsi

“r“1/r·p

,

(8)

where V is given by (2.3).

Proof. By the inequality of means, for any Ai 0 and r >0, we obtain Yn

i=1

A1/pi i

’ p

Xn

i=1

1 piAri

“1/r·p

.

The corollary then follows from the preceding Theorem 2.4.

In the following section we discuss some choice of the functions Φi. 3. THE VARIOUS INEQUALITIES

Theorem 3.1. Let ui ∈Cmi([0, xi]) be such that u(j)i (0) = 0 for j ∈ {0, . . . , mi 1}, i∈I. Then

Z x1

0 · · · Z xn

0

nQn

i=1 |u(ki i)(si)| Pn

i=1ωis(αi i+1)Ωn/(qiωi) ds1· · ·dsn

≤V1 Yn

i=1

x1/qi i Yn

i=1

’Z xi

0

(xi−si)βi+1 |u(mi i)(si)|pi dsi

“1/pi

, (3.1)

where

(3.2) V1 =

’Yn i=1

(mi−ki1)!(αi+ 1)1/qi(βi+ 1)1/pi‘“1 .

Proof. By [12, Eq. (7)],

u(ki i)(si) = 1 (mi−ki1)!

Z si

0

(si−τi)mi−ki1umi i(τi)i.

Inequality (3.1) is proved when we set

Φi(si) = |u(mi i)(si)| (mi−ki1)!

in Theorem 2.1.

(9)

Corollary 3.2. Under the assumptions of Theorem 3.1, if r >0, we have Z x1

0 · · · Z xn

0

nQn

i=1 |u(ki i)(si)| Pn

i=1ωis(αi i+1)Ωn/(qiωi) ds1· · ·dsn

≤p1/r·pV1 Yn

i=1

x1/qi i

’Xn i=1

1 pi

’Z xi

0

(xi−si)βi+1 |u(mi i)(si)|pi dsi

“r“1/r·p

,

where V1 is given by (3.2).

Theorem 3.3. Under the assumptions of Theorem 3.1, if γ2 <−1, then Z x1

0 · · · Z xn

0

Qn

i=1 |u(ki i)(si)|

 1 n

Pn

i=1ωis−γi 2‘(αi+1)Ωn2qiωi ds1· · ·dsn

≤V1

Yn

i=1

x1/qi i Yn

i=1

’Z xi

0

(xi−si)βi+1 |u(mi i)(si)|pi dsi

“1/pi

, (3.3)

where V1 is given by (3.2).

Proof. Inequality (3.3) is proved when we set

Φi(si) = |u(mi i)(si)| (mi−ki1)!

in Theorem 2.4.

Corollary 3.4. Under the assumptions of Theorem 3.3, if r >0, we have Z x1

0 · · · Z xn

0

Qn

i=1 |u(ki i)(si)|

 1 n

Pn

i=1ωis−γi 2‘(αi+1)Ωn2qiωi ds1· · ·dsn

≤p1/r·pV1 Yn

i=1

x1/qi i

’Xn i=1

1 pi

’Z xi

0

(xi−si)βi+1 |u(mi i)(si)|pi dsi

“r“1/r·p

.

We discuss a number of special case of Theorem 3.1. Similar examples apply also to Corollary 3.2, Theorem 3.3 and Corollary 3.4.

(10)

Example 3.1. If ai = 0 and bi = 1 for i∈I, then Theorem 3.1 becomes Z x1

0 · · · Z xn

0

nQn

i=1 |u(ki i)(si)| Pn

i=1ωis(qi imi−qiki−qi+1)Ωn/(qiωi) ds1· · ·dsn

≤V2 Yn

i=1

x1/qi i Yn

i=1

’Z xi

0

(xi−si)|u(mi i)(si)|pi dsi

“1/pi

,

where

V2 =

’Yn i=1

(mi−ki1)!(qimi−qiki−qi+ 1)1/qi‘“1 .

Example 3.2. If ai = 0, bi = 1, qi = n, pi = n/(n−1), mi = m and ki = k for i∈I, then

Z x1

0 · · · Z xn

0

nQn

i=1 |u(ki i)(si)| Pn

i=1ωis(nm−nk−n+1)Ωn/(i) i

ds1· · ·dsn

nx1· · ·xn

€(m−k−1)!n

(nm−nk−n+ 1)

× Yn

i=1

’Z xi

0

(xi−si)|u(m)i (si)|n/(n−1) dsi

“(n−1)/n

.

For q=p =n= 2 and ωi = 1/n this is [12, Theorem 1]. Setting q =p= 2, k = 0, n= 1 and ωi = 1/n, we recover the result of [14].

Example 3.3. If ai = 0 and bi = 1 for i∈I, then Theorem 3.1 becomes Z x1

0 · · · Z xn

0

nQn

i=1 |u(ki i)(si)| Pn

i=1ωis(mi i−ki)Ωn/(qiωi)ds1· · ·dsn

≤V3 Yn

i=1

x1/qi i Yn

i=1

’Z xi

0

(xi−si)mi−ki |u(mi i)(si)|pi dsi

“1/pi

,

where

V3 =

’Yn i=1

€(mi−ki)!“1

.

(11)

Example 3.4. If ai = 1, bi = 0, qi = n, pi = n/(n−1), mi = m and ki = k for i∈I. Then (3.1) becomes

Z x1

0 · · · Z xn

0

nQn

i=1 |u(ki i)(si)| Pn

i=1ωis(m−k)Ωi n/(i)ds1· · ·dsn

nx1· · ·xn

€(m−k)!n

Yn

i=1

’Z xi

0

(xi−si)m−k |u(m)i (si)|n/(n−1) dsi

“(n−1)/n

.

Example 3.5. Let p1, p2 R+. If we set n = 2, ω1 = 1/p1, ω2 = 1/p2, mi = 1 and ki = 0 for i = 1,2 in Theorem 3.1, then by our assumptions q1 = (p1 1)/p1, q2 = (p21)/p2, and we obtain

Z x1

0

Z x2

0

2 |u1(s1)||u2(s2)|

p2s12(p11)+p1s22(p21) ds1ds2

x(p1 11)/p1x(p2 21)/p2 p1p2

’Z x1

0

(x1−s1)|u01(s1)|p1 ds1

“1/p1

×

’Z x2

0

(x2−s2)|u02(s2)|p2 ds2

“1/p2

.

If we set ω1+ω2 = 1 in Example 3.5, then we have [13, Theorem 2]. (The values of ai and bi are irrelevant.)

References

[1] Yang Bicheng,On Hilbert’s integral inequality, J. Math. Anal. Appl.220(1988), 778-785.

[2] G. D. Handley, J. J. Koliha and J. E. Peˇcari´c,New Hilbert-Pachpatte type integral inequalities, J. Math. Anal. Appl. 257(2001), 238-250.

[3] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, London, 1952.

[4] Young-Ho Kim, Refinements and Extensions of an inequality, J. Math. Anal. Appl. 245 (2000), 628-632.

[5] V. Levin, On the two-parameter extension and analogue of Hilbert’s inequality, J. London Math. Soc.11(1936), 119-124.

[6] G. Mingze, On Hilbert’s inequality and its applications, J. Math. Anal. Appl. 212 (1997), 316-323.

[7] D. S. Mitrinovi´c,Analytic inequalities, Springer-Verlag, Berlin, New York, 1970.

[8] D. S. Mitrinovi´c and J. E. Peˇcari´c,On inequalities of Hilbert and Widder, Proc. Edinburgh Math. Soc.34(1991), 411-414.

(12)

[9] D. S. Mitrinovi´c, J. E. Peˇcari´c and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.

[10] B. G. Pachpatte,A note on Hilbert type inequality, Tamkang J. Math.29(1998), 293-298.

[11] B. G. Pachpatte, On some new inequalities similar to Hilbert’s inequality, J. Math. Anal.

Appl.226 (1998), 166-179.

[12] B. G. Pachpatte,Inequalities similar to the integral analogue of Hilbert’s Inequality, Tamkang J. Math. 30(1999), 139-146.

[13] B. G. Pachpatte, Inequalities similar to certain extensions of Hilbert’s inequality, J. Math.

Anal. Appl.243 (2000), 217-227.

[14] B. G. Pachpatte,A note on inequality of Hilbert type, Demonstraio Math., in press.

[15] D. V. Widder, An inequality related to one of Hilbert’s, J. London Math. Soc. 4 (1929), 194-198.

School of Communications and Informatics Victoria University of Technology PO Box 14428, MCMC Melbourne, Victoria 8001, Australia

E-mail address: [email protected]

Department of Applied Mathematics Brain Korea 21 Project Corps Changwon National University, Changwon 641-773, Korea

E-mail address: [email protected]

Referensi

Dokumen terkait

Some Integral and Discrete Versions of the Grüss Inequality for Real and Complex Functions and Sequences This is the Published version of the following publication Dragomir, Sever S

Two Discrete Inequalities of Grüss Type Via Pólya- Szegö and Shisha Results for Real Numbers This is the Published version of the following publication Dragomir, Sever S and Khan,

New Inequalities for Logarithmic Map and Their Application for Entropy and Mutual Information This is the Published version of the following publication Dragomir, Sever S, Pearce,

Fejer-type inequalities I This is the Published version of the following publication Tseng, Kuei-Lin, Hwang, Shiow-Ru and Dragomir, Sever S 2010 Fejer-type inequalities I.. Journal of

Hermite-hadamard type inequalities for composite log-convex functions This is the Published version of the following publication Alam, NMFHNB, Akbarally, AB and Dragomir, Sever S

Inequalities of hermite-hadamard type for k-bounded modulus convex complex functions This is the Published version of the following publication Dragomir, Sever S 2020 Inequalities of

https://doi.org/10.31926/but.mif.2020.13.62.2.10 JENSEN’S TYPE INEQUALITIES FOR THE FINITE HILBERT TRANSFORM OF CONVEX FUNCTIONS Silvestru Sever DRAGOMIR∗,1 Abstract In this paper

Interpolations of Jensen's Integral Inequality This is the Published version of the following publication Dragomir, Sever S, Pearce, Charles and Pecaric, Josep 2001 Interpolations of