• Tidak ada hasil yang ditemukan

Recommendation

Dalam dokumen Chapter One (Halaman 94-124)

 In this experimental study the heat loss through the pipe & pump were not being considered. So in further studies these heat losses can be calculated for getting a better result.

 In this thesis work air mass flow rate was assumed as constant throughout. For further study air mass flow rate at each cell of cooling tower can be calculated.

 In our experimental studies, we could not make arrangement for varying the value of air mass flow. So in further approach, induced fan (ID fan) with varying speed capacity can be used. Thus cooling tower performance for varying air mass flow can be analyzed.

 The cooling water used in our experiment was natural supplied water which contains large fraction of iron. This iron was deposited on flow meter and flow meter accuracy was hampered. So, water treatment plant can be established.

 In our experimental studies we have used a mixture of water and toner. And toner has detrimental effect on environment. So further studies on how to reduce the environmental and health hazard can be done.

 Cost effectiveness of using toner can be studied further.

 A water temperature control system can be developed in further study.

 Heat source we used was combined of 2kw. So time taken to achieve the desire temperature was quite long. So by increasing heat source capability time taken can be reduced.

95 | P a g e References:

[1] Treatise on Heat Engineering by Dr. V. P. Vasandani & Dr. D. S. Kumar, fourth edition, page 2.1-3.17

[2] Themal Engineering by Er. R. K. Rajput, Ninth Edition, page from 874 to 875

[3] Kamel Hooman, Hal Gurgenci, Zhiqiang Guan, Yuanshen Lu, Manuel Lucas, Cooling Tower and Heat Exchanger 2015, Proceedings of the 17 th IAHR International Conference.

[4] https://www.brooksinstrument.com/en/products/variable [5] http://www.thermometricscorp.com/thermocouple.html [6] https://www.thermocoupleinfo.com/

[7] https://www.electronicshub.org/humidity-sensor-types-working- principle/#Humidity_Sensors_Classification_and_Working_Principles [8] https://learn.sparkfun.com/tutorials/what-is-an-arduino

[9] Creating a New Model to Predict Cooling Tower Performance and Determining Energy Saving Opportunities through Economizer Operation by Pranav Yedatore Venkatesh University of Massachusets - Amherst, [email protected]

[10] http://www.power-eng.com/articles/print/volume-121/issue-7/features/cooling-tower-heat- transfer-fundamentals.html

[11]https://classes.engineering.wustl.edu/che473/handouts/cooling%20tower%20performance.pd f

[12] GopinathD, Gurumurthy, Akilan, Azhager, Manimaran , Prabhakaran “Analysis on Performance of Natural Draught Cooling Tower” Journal of Chemical and Pharmaceutical Sciences ISSN: 0974-2115

[13] https://en.wikipedia.org/wiki/Toner

[14] Baker and H.A shyock, “Acomprehensive approach to analysis of cooling tower”

96 | P a g e

Appendix: A

Data Collection

97 | P a g e A1: Data Table for Induced Draft:

Observation No

Inlet Air Outlet Air Water

Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity

Inlet Temp.

Outlet Temp.

Water Flow

Rate

1

⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C kg/s 26 20.4 60 58.41 0.0126 26.5 21.3 63 61.59 0.0137 45 36 0.45 2 25.8 19.8 57 56.34 0.0119 26.3 20.6 60 59.09 0.0128 45 39 0.417 3 26.3 19.6 53.5 55.63 0.0114 25.8 19.8 57 56.34 0.0119 40 35 0.383 4 25.8 19.6 56 55.66 0.0116 25.9 20.3 60 58.06 0.0125 38 33 0.35 5 26 20.2 59 57.71 0.0123 26.3 21 62 60.51 0.0133 37 33 0.317

98 | P a g e A2: Data Table for Natural Draft: (Collected from other group)

Observation No

Inlet Air Outlet Air Water

Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity

Inlet Tem perat ure

Outlet Temp.

Water Flow

Rate

⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C kg/s 1 26.2 19.8 55 56.32 0.0117 26.4 20.3 57 58.03 0.0123 43 38 0.43 2 26.1 19.6 54.5 55.64 0.0115 26.6 21 60.5 60.50 0.0132 42 37 0.40 3 26.2 20.0 56.5 57.00 0.0120 26.8 20.8 58 59.77 0.0128 38 36 0.36 4 25.3 19.8 60 56.37 0.0121 25.6 20.4 62 58.43 0.0128 36 34 0.33 5 25.8 20.8 64 59.83 0.0133 25.8 21.2 70 61.31 0.0141 35 34 0.30

99 | P a g e A3:

Ambient Relative Humidity(%) Month

55 April

72 May

79 June

79 July

79 August

78 September

78 October

78 November

77 December

A4:

Approach (OC)

Efficiency (%)

Natural Induced

25 31.76 55.55

22 29.45 54.75

18 18.94 49.03

18 16.69 48.15

15 9.26 46.87

100 | P a g e A5:

Entering WBT of Air (OC)

Water Outlet Temperature (OC)

Natural Induced

18 36 33

19 35.5 32

20.5 35 31.8

22 34.5 30

21.5 34 29

A6:

Flow Rate (kg/s)

Efficiency (%)

Natural Induced

.317 32 43

.35 29 39.75

.383 25 35

.417 20 33

.45 15 32

101 | P a g e A7:

Water Inlet Temperature (OC)

Cooling Range

Natural Induced

47 8 9

43 5 7

42 3.5 6

38 2 5

36 2 5

35 2 5

A8:

Water Inlet Temperature (OC)

Evaporation Loss

Natural Induced

45 0.543 1.93

43 0.495 1.72

38 0.432 1.53

37 0.410 1.50

35 0.39 1.48

102 | P a g e A9:

𝐋⁄𝐆 Efficiency (%)

0.49 26.32

0.45 28.54

0.42 29.19

0.35 39.02

0.32 55.55

A10:

Log (𝑳

⁄ ) 𝑮 Log(NTU)

-0.309 -0.844

-0.347 -0.895

-0.409 -0.801

-0.444 -0.725

-0.495 -0.672

A11:

NTU Efficiency (%)

0.08589 29.19

0.15814 49.18

0.18844 54.54

0.21299 55.55

103 | P a g e A12:

Flow Rate (Kg/s) Efficiency (%)

0.467 28.5

0.43 28

0.367 30

0.34 33

0.33 39.15

A13:

Flow Rate (Kg/s)

Efficiency (%) Water Inlet

Temp. 48 °C

Water Inlet Temp.

43 °C

Water Inlet Temp.

38 °C

0.467 38.5 37.5 36

0.43 38 37 36.5

0.367 40 38 37

0.34 43 40 38

0.35 49.16 48 47.9

104 | P a g e A14:

Dry Bulb Temperature (OC) Month

26 April

28 May

29 June

29 July

28 August

25.5 September

24 October

18 November

14 December

A15:

RH (%) Efficiency (%)

77 31.45

78 31

78 31

79 30.5

72 33.5

55 42.3

45 48

105 | P a g e A16:

Flow Rate (kg/s) Efficiency (%)

With Ink Without Ink

0.45 28.5 42.55

0.417 28 45.11

0.383 30 51.43

0.35 33 55.17

0.317 39.15 55.82

A17:

Flow Rate (kg/s) Evaporation Loss (kJ/kg) Induced

With Ink Without Ink

0.45 1.83 2.18

0.417 1.75 1.90

0.383 1.59 1.786

0.35 1.50 1.60

0.317 1.40 1.52

106 | P a g e A18:

Water Inlet Temperature (OC)

Evaporation Loss (kJ/Kg)

With Ink Without Ink

47 1.98 2.178

43 1.72 1.90

40 1.53 1.786

37 1.50 1.592

33 1.40 1.52

A 19:

Flow Rate (Kg/s) Range (OC)

Without Ink With Ink

0.317 9 14

0.35 6 11

0.383 5 9

0.417 5 8

0.45 5 8

107 | P a g e A 20:

Flow Rate (kg/s) Range Without Ink (OC)

0.317 9

0.35 6

0.383 5

0.417 5

0.45 5

A 21:

Flow Rate (kg/s) Efficiency (%) natural

Without Ink With Ink

0.45 15 39.72

0.417 20 41

0.383 25 46

0.35 29 47.62

0.317 32 48.54

108 | P a g e A 22:

Flow Rate (kg/s) Efficiency (%) Induced

Without Ink With Ink

0.45 28.5 42.55

0.417 28 45.11

0.383 30 51.43

0.35 33 55.17

0.317 39.15 55.82

A 23:

Ratio Efficiency (%)

For 0.34 kg/s For 0.367 kg/s For 0.4 kg/s For 0.43 kg/s

0.00134 49.5 39.55 30.93 25.32

0.00174 59.17 43.71 40.46 29.13

0.00224 66.67 56.45 49.63 43.95

0.002633 64.51 60 56.45 48.78

109 | P a g e A 24:

Ratio Range

For 0.34 kg/s For 0.43 kg/s

0.00134 8 6

0.001788 8 6

0.00224 8 6

0.00238 8 7

A 25: Data Table for Induced Draft with Ink (300ml/110L)

Observation No

Inlet Air Outlet Air Water

Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity

Inlet Tem

p.

Outle t Temp

.

Water Flow

Rate

1

⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C kg/s 27.7 21.5 58 62.42 0.0135 28.2 21.9 57.94 63.87 0.0139 49 40 0.467 2 27.6 21.2 56.85 61.34 0.0131 28 21.7 57.78 63.13 0.0137 44 36 0.433 3 27.6 21.5 58.64 62.41 0.0135 28.1 21.9 58.45 63.86 0.0139 40 33 0.400 4 28.1 22.7 67.30 66.90 0.0151 28.4 22.9 62.90 67.63 0.0153 38 32 0.367 5 27.7 21.8 60 63.51 0.0139 28.3 22.2 59 64.98 0.0943 37 31 0.330

110 | P a g e A26: Data Table for Natural Draft with Ink (300ml/110L) (Collected from other group)

Observation No

Inlet Air Outlet Air Water

Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity

Inlet Temp eratur e

Outle t Temp

.

Water Flow

Rate

⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C kg/s 1 27.6 21.7 60 60.15 0.0138 27.9 21.8 59 63.50 0.0138 49 44 0.467 2 28 21.6 57 62.77 0.0136 28.3 21.8 56.8

5

63.50 0.0137 44 39 0.433

3 27.9 21.5 57 62.4 0.0135 28.1 21.7 57.2 7

63.13 0.0137 40 36 0.400

4 27.6 20.5 65 66.13 0.0151 27.3 20.7 67.7 5

66.9 0.0155 38 34 0.367

5 27.5 21.7 60.4 63.16 0.0139 27.8 22 60.6 64.24 0.0143 37 34 0.333

111 | P a g e A27: Data Table for Induced Draft with Ink (250ml/110L)

Observation No

Inlet Air Outlet Air Water

Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity

Inlet Tem

p.

Outle t Temp

.

Water Flow

Rate

1

⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C kg/s 28.2 22 59 64.24 0.0141 28.7 23 62 68 0.0153 50 40 0.466 2 27.8 22.1 61 64.63 0.0144 28.2 22.7 63 66.8 0.0151 46 38 0.433 3 26.9 22.8 71 67.32 0.0158 27.4 23.9 75 71.63 0.0173 43 35 0.4 4 27.6 23.6 70 70.42 0.0167 28.1 24.8 77 75.3 0.0184 40 33 0.367 5 26 22.5 65 70.45 0.017 26.5 23.8 71 71.21 0.0180 38 30 0.333

112 | P a g e A 28: Data Table for Natural Draft with Ink (250ml/110L) (Collected from other group)

Observation No

Inlet Air Outlet Air Water

Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity

Inlet Temp eratur e

Outle t Temp

.

Water Flow

Rate

⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C kg/s 1 28.4 22.3 59 65.36 0.0144 28.2 22.7 63 66.8 0.0151 50 45 0.466 2 27.9 21.9 59 63.89 0.014 28.3 22.3 61 65.37 .0146 46 41 0.433 3 28.1 22.4 61 65.55 0.0146 28.5 23.4 65 69.5 0.0159 43 38 0.40 4 27.8 24 73 72 0.0172 27.6 24.3 76 73.25 0.0178 40 35 .367 5 27.5 22.7 67 66.91 0.0154 27.8 24 73 72.02 0.0173 38 33 0.333

113 | P a g e A 29: Data Table for Induced Draft with Ink (200ml/110L)

Observation No

Inlet Air Outlet Air Water

Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity

Inlet Tem

p.

Outle t Temp

.

Water Flow

Rate

1

⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C kg/s 25.6 23.5 84 70.11 0.0174 25.9 24.3 88 73.32 0.0186 54 48 0.467 2 25.3 23.4 85 69.73 0.0179 26 24.5 89 79.17 0.0188 49 43 0.433 3 25.7 23.6 84 70.5 0.0175 26 23.8 83 71.29 0.0177 43 36 0.4 4 25.7 23.4 83 69.71 0.0172 26 24.1 86 72.5 0.0182 44 36 0.366 5 25.3 23.3 84.65 69.31

8

0.0172 25.7 24 87 72.09 5

0.0181 6

43 35 0.333

114 | P a g e A 30: Data Table for Natural Draft with Ink (200ml/110L) (Collected from other group)

Observation No

Inlet Air Outlet Air Water

Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity

Inlet Temp eratur e

Outle t Temp

.

Water Flow

Rate

⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C kg/s 1 25.4 23.3 84 69.33 0.0172 26.3 24.5 86 74.13 0.0187 54 50 0.467 2 26.5 24.4 84 73.71 0.0185 26.8 25.1 87 76.63 0.0195 49 45 0.433 3 26 23.5 81 70.09 0.0172 26.1 23.7 82 70.88 0.0175 46 42 0.40 4 25.8 23.6 83 70.5 0.0175 26.7 25.2 89 77.06 0.0197 44 41 0.366

5 25 23 8405 6801

5

0.0168 9

25.8 23.9 85.5 4

71.68 0.0179 43 38 0.333

115 | P a g e A 31: Data Table for Induced Draft with Ink (150ml/110L)

Observation No

Inlet Air Outlet Air Water

Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity

Inlet Tem

p.

Outle t Temp

.

Water Flow

Rate

1

⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C kg/s 25.6 23.2 82 68.93 0.0169 26.1 24.2 86 72.91 0.0183 50 43 0.467 2 25.4 24 89 72.12 0.0182 25.9 24.8 92 75.4 0.0194 46 40 0.43 3 25.6 23.5 85 70.51 0.0176 25.9 24.4 89 73.74 0.0187 45 39 0.40 4 25.3 23.6 87 70.52 0.0177 25.8 24.7 92 74.98 0.0192 43 36 0.367 5 25.5 23.6 85 70.51 0.0176 26.1 24.8 90 75.39 0.0193 40 32 0.34

116 | P a g e A32: Data Table for Natural Draft with Ink (150ml/110L) (Collected from other group)

Observation No

Inlet Air Outlet Air Water

Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity Dry Bulb Temp. Wet Bulb Temp. Relative Humidity Enthalpy Specific Humidity

Inlet Temp eratur e

Outle t Temp

.

Water Flow

Rate

⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C % kJ/kg kg/kg ⁰ C ⁰ C kg/s 1 25.6 23.7 85 70.91 0.0177 25.9 24 86 72.10 0.0181 50 47 .467 2 24.9 23.6 90 70.54 0.0179 25.2 24 91 72.13 0.0184 46 41 0.43 3 25.4 23.4 85 69.72 0.0173 25.6 23.9 87 71.71 0.0180 45 41 0.4 4 25.3 23.4 85 69.73 0.0174 25.6 23.6 86 71.31 0.0179 43 38 0.367 5 25.4 23.7 87 70.91 0.0178 25.7 23.9 89 73.33 0.0186 40 35 0.34

A33:

Flow Rate (kg/s) Efficiency (%) (150 ml) Efficiency (%) (250 ml)

0.467 28.69 45.87

0.43 29.13 43.95

0.4 30.93 49.63

0.367 39.55 56.45

0.34 55.17 66.67

117 | P a g e A34:

A35:

L/G Efficiency(150ml) Efficiency(200

0.4937 28.69 45.87

0.45 29.13 43.95

0.423 30.93 49.63

0.388 39.55 56.45

0.359 55.17 66.67

Appendix B:

B1: Calibration:

Flow Meter:

Diameter of Drum, 𝑑𝑎𝑣𝑔 = 57+55.5

2

=56.25 cm For Time, t = 305 sec

Height, h = 5.6 cm Volume, V =

4 𝑑2h

NTU Efficiency (%)

0.107 45.87

0.11735 43.95

0.16201 49.63

0.21889 56.45

0.34276 66.67

118 | P a g e =

4× (56.25)2 × 5.6 = 13916.30 c𝑚3 = 13.91630× 10−3 𝑚3 = 13.916 L

Flow Rate theoretical, 𝑉̇𝑤 𝑡ℎ = 13.916 × 2 = 27.832 L/min ≈ 28 L/min

& Flow Rate Shown by Gauge = 29 L/min Second Time:

Initial Reading, ℎ1 = 9.8 cm Final Reading, ℎ2 = 21 cm Height, h = ℎ1−ℎ2

=21 – 9.8 cm = 11.2 cm Volume, V =

4 𝑑2h =

4 × (56.25)2 × 11.2 = 27.8326 L

For Time, t = 60 sec

Volume Flow Rate, 𝑉𝑤̇ = 27.8326 L

& Flow Rate Shown by Gauge = 29 L/min

119 | P a g e B2: Calibration:

Item Psychrometer Reading (⁰

C)

Digital Reading ((⁰ C)

Air inlet wet bulb temperature 23 23

Air inlet dry bulb temperature 26 26

Air outlet wet bulb temperature 41 41

Air outlet dry bulb temperature 42 42

B3:

// Example testing sketch for various DHT humidity/temperature sensors // Written by ladyada, public domain

// DHT_dual_test

// Demonstrates multiple sensors // Modified sketch by DIY-SciB.org

120 | P a g e

#include "DHT.h"

#define DHT1PIN 2 // what pin we're connected to

#define DHT2PIN 3

// Uncomment whatever type you're using!

#define DHT1TYPE DHT11 // DHT 11

#define DHT2TYPE DHT22 // DHT 22 (AM2302) //#define DHTTYPE DHT21 // DHT 21 (AM2301)

// Connect pin 1 (on the left) of the sensor to +5V

// Connect pin 2 of the sensor to whatever your DHTPIN is // Connect pin 4 (on the right) of the sensor to GROUND

// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the sensor int val;

int tempPin = 1;

DHT dht1(DHT1PIN, DHT1TYPE);

DHT dht2(DHT2PIN, DHT2TYPE);

void setup() {

Serial.begin(9600);

Serial.println("DHTxx test!");

121 | P a g e

dht1.begin();

dht2.begin();

}

void loop() {

// Reading temperature or humidity takes about 250 milliseconds!

// Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor) float h1 = dht1.readHumidity();

float t1 = dht1.readTemperature();

float h2 = dht2.readHumidity();

float t2 = dht2.readTemperature();

val = analogRead(tempPin);

float mv = ( val/1024.0)*5000;

float cel = mv/10;

float farh = (cel*9)/5 + 32;

// check if returns are valid, if they are NaN (not a number) then something went wrong!

if (isnan(t1) || isnan(h1)) {

Serial.println("Failed to read from DHT #1");

delay(2000);

} else {

Serial.print("Humidity 1: ");

122 | P a g e Serial.print(h1);

Serial.print(" %\t");

Serial.print("TEMPRATURE of LM35= ");

Serial.print(cel);

Serial.print("*C");

Serial.println();

delay(2000);

Serial.print("Temperature 1: ");

Serial.print(t1);

Serial.println(" *C");

delay(2000);

}

if (isnan(t2) || isnan(h2)) {

Serial.println("Failed to read from DHT #2");

delay(2000);

} else {

Serial.print("Humidity 2: ");

Serial.print(h2);

Serial.print(" %\t");

Serial.print("TEMPRATURE of LM35= ");

Serial.print(cel);

Serial.print("*C");

Serial.println();

123 | P a g e delay(2000);

Serial.print("Temperature 2: ");

Serial.print(t2);

Serial.println(" *C");

delay(2000);

}

Serial.println();

}

Appendix C:

C1:

Dalam dokumen Chapter One (Halaman 94-124)

Dokumen terkait