• Tidak ada hasil yang ditemukan

a. The experimental results may be verified by experimental and finite element analysis.

b. The study may be conducted on more number of full scale models with strain gauge and actuators.

c. Joints strengthened by CFRP Plate and Fabrics together may be investigated.

d. Parametric study of all the strengthened joints may be conducted for design rationale.

REFERENCES:

American Concrete Institute (ACI)-ASCE Committee 352. (2002). “Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures.” ACI 352R-02, Farmington Hills, MI.

American Concrete Institute (ACI) Committee 318. (2002). “Building code requirements for structural concrete and commentary.” ACI 318-02 and ACI 318R-02, Farmington Hills, MI.

American Concrete Institute (ACI) Committee 440. (2002). “Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures.” ACI 440.2r-02, Farmington Hills, MI.

Almusallam, Tarik H., and Al Salloum., Yousef . (2007). “Seismic Response of Interior RC Beam-Column Joints Upgraded with FRP Sheets. I: Experimental Study.”

ASCE Journal of Composites For Construction., Vol 11, No 06, Nov-Dec, pp 575-589.

Al-Salloum, Y.A., Alsayed, S. H., Almusallam, T. H., and N. A. Siddiqui.

(2007)."Seismic Response of Interior RC Beam-Column Joints Upgraded with FRP Sheets. II: Analysis and Parametric Study." ASCE, Journal of Composites for Construction., vol. 11, No 6, pp 301-311.

Al-Salloum, Y.A., Alsayed, S. H., Almusallam, T. H., and N. A. Siddiqui. (2007).

"Seismic Rehabilitation of Shear Deficient Interior Beam-Column Joints Using FRP Sheets." Accepted for Presentation in the 7th Saudi Engineering Conference (SEC7), 26-28 November, Riyadh, Saudi Arabia.

Akguzel,U., and Pampanin, S. (2007). “Seismic Response of RC Beam-Column Joints Upgraded with FRP Sheets. II: Analysis and Parametric Study.” ASCE, Journal of Composites for Construction, Vol. 11, No 6, pp. 590-600.

Akguzel,U., and Pampanin, S. (2008). “Effects of Variation of Axial Load and Bi- Directional Loading on the FRP Retrofit of Existing B-C Joints.” presented at 14th World Conference on Earthquake Engineering, Beijing, China, October 12- 17.

Akguzel, U., and Pampanin, S. (2012). “Assessment and Design Procedure for the Seismic Retrofit of Reinforced Concrete Beam-Column Joints using FRP Composite Materials.” ASCE, Journal of Composites for Construction, Vol. 16, No 1, pp. 21-34.

Bai, Jong Wha., (2003). “Seismic Retrofit for Reinforced Concrete Building Structures.”

Consequence Based Engineering (CBE) Institute Final Report., Mid-America Earthquake Center.

Cheung, P.C., Paulay, T., and Park, R. (1991). “Mechanisms of Slab Contributions in Beam Column Sub assemblages, Design of Beam-Column Joints for Seismic Resistance.” SP-123, American Concrete Institute, Farmington Hills, Mich., pp.259-289.

Cosgun, Cumhur., Comert, Mustafa., Demeir, Cem., and Ilki, Alper. (2012). “ FRP Retrofit of a Full Scale 3D RC Frame,” Istanbul Technical University.

Deifallah, A., and Ghobarah, A. (2010). “Strengthening RC T-Beams Subjected to Combined Torsion and Shear using FRP Fabrics: Experimental Study.” Journal of Composites for Construction, ASCE, vol. 14, No 3 , pp 301-311.

Dhakal, R.P., Pan, T.C. and Tsai, K.C. (2003). “Enhancement of Beam-Column Joint by RC Jacketing,” online citation http://hdl.handle.net/10092/4198.

Eligehausen, R., Popov, E.P., and Bertero, V.V. (1983) “Local Bond Stress-slip Relationships of Deformed Bars under Generalised Excitations.” Report UCB/EERC-83/19, Earthquake Engineering Research Center, University of California, Berkeley, 178p.

Ehsani, M. R. (1993). “Glass-Fiber Reinforcing Bars, Alternative Materials for the Reinforcement and Prestressing of Concrete,” J.L. Clarke, Blackie Academic &

Professional, London, England, pp. 35-54.

Engindniz , Murat., Lawrence, F Kahn., and Zureick, Abdul Hamid. (2005). “ Repair Strengthening of Reinforced Concrete Beam Column Joints: State of Art.”

Structural Journal, ACI , vol 102, No 02, pp 1015.

Federal Emergency Management Agency (FEMA). (1997). “NEHRP Guidelines for Seismic Rehabilitation of Buildings October.” FEMA 273.

Hakuto, S., Park, R., and Tanaka, H. (2000). “Seismic Load Tests on Interior and Exterior Beam-Column Joints with Substandard Reinforcing Details.” Structural journal, ACI, 97(1), pp11-25.

Ichinose, T. (1991). “Interaction between Bond at Beam Bars and Shear Reinforcement in RC Interior Joints, Design of Beam-Column Joints for Seismic Resistance.”

SP-123, American Concrete Institute, Farmington Hills, Mich., pp. 379-400.

ILki, Alper., Bedirhangolu, Idris., and Kumbasa, Nadir., (2011). “Behavior of FRP- Retrofitted Joints Built with Plain Bars and Low Strength Concrete.” Journal of Composite Construction, ASCE, vol.15, No 3, pp 312-326.

Joh, Osamu., Goto Yasuaki. (2000). “Beam Column Joint Behavior after Beam Yielding in R/C Ductile Frames.” paper presented on 12 WCEE Conference, Auckland, New Zealand., 30January-04 February.

Khalifa, A., Alkhrdaji, T., Nanni, A., and Lansburg, S. (1999). “Anchorage of Surface Mounted FRP Reinforcement.” Concrete International: Design and Construction,

V. 21, No. 10, Oct., pp. 49-54.

Ludovico, Marco DI., Balsamo, Alberto., Prota, Andrea., Mario, Gerardo., Dolce, Verderame and ManfrediI, Mauro Gaetano., “Preliminary Results of an Experimental Investigation on RC Beam-Column Joints.” retrieved from http://www.iifchq.org/proceedings/CICE_2012/02_FRP%20in%20Seismic%20 Retrofitting/02_511_Di%20Ludovico,%20Balsamo_PRELIMINARY%20RES ULTS%20OF%20AN%20EXPERIMENTAL%20INVESTIGATION%20ON%

20RC%20BEAM-COLUM.pdf on June 06, 2013 at 10:30pm.

Li, Bing., and Qi, Qiang. (2011). “Seismic Behavior of the Reinforced Concrete Interior Beam-Wide Column Joints Repaired using FRP.” Journals of Composites for Construction, ASCE, May-June, vol 15, No 3, , pp 327-338.

Li, Bing., Kai, Qian., and Thanh, Cao Ngoc Tran. (2013). “Retrofitting Earthquake Damaged RC Structural Walls with Openings by Externally Bonded FRP Strips and Sheets.” Journal of Composites for Construction, ASCE, Vol. 17, No 2, pp.

259-270.

Lakshmanan, N. (2006). “Seismic Evaluation and Retrofitting of Buildings and Structures” Journal of Earthquake Technology, ISET, Vol. 43, No 1-2, pp 31- 48.

Leon, R.T. (1990). “Shear Strength and Hysteretic Behaviour of Beam-Column Joints,”

ACI Structural Journal, Jan-Feb, vol.87, No.1, pp. 3-11.

Mahini, SS., and Ronagh, H.R. (2007). “A New Method For Improving Ductility in Existing RC Ordinary Moment Resisting Frames using FRPs.” Asian Journal of Civil Engineering (Building and Housing), vol.8, No.6, pp 581-595.

Mayfield, B., Kong, K.F. and Bennison, A. (1971). “Corner joint details in structural light weight concrete”., ACI journal, May, Vol. 65, No.5, pp. 366-372.

Mutsuyoshi, H., Uehara, K., and Machida, A. (1990) “Mechanical Properties and Design Method of Concrete Beams Reinforced with Carbon Fiber Reinforced Plastics.” Transaction of the Japan Concrete Institute, vol. 12, Japan Concrete Institute, Tokyo, Japan, pp. 231-238.

Mukharjee, Abhijeet., and Joshi., Mangesh., (2005). “FRPC Reinforced Concrete Beam-Column Joints under Cyclic Excitation.” Journal of Composite Structure, 70 (02) pp 185-199.

Murshed, Arefin., and Ahmed, Ishtiaque., (2011). “ Seismic Performance of Soft Storey Structures Retrofitted with FRP Wraps.” MSc Thesis Paper., Bangladesh University of Engineering and Technology.

Nilson., H Arthur. (1997). “Design of Concrete Structures.” 12 Edition, chap 10, pp 332-358, The McGraw-Hill Companies, Inc, New York.

Neville, A.M. (1995). “Properties of Concrete,” chap 3, pp 108-120, 4th Edition, Pearson Education, Inc, Nodia, India.

Paulay, T. and Priestley, M.J.N. (1992). “Seismic Design of Reinforced Concrete and Masonry Buildings.” John Wiley Publications, New York.

Prota, Andreas., Nanni , Anotnia., Gaetano, Manfredi., and Cosenza, Edoward. (2004).

“Selective upgrade of under Designed Reinforced Concrete Beam-Column Joints Using Carbon Fiber Reinforced Polymers.” ACI Structural Journal, Sep- Oct vol 101, No 5, pp 699-707.

Pantelides, P Chris., Chandra, Clyde., and Dreaveley, Lawrence. (2000).

“Rehabilitation of R/C Building Joints with FRP Composites.” paper presented on 12 WCEE Conference, Auckland, New Zealand., 30January- 04 February.

Pampanin, S., Calvi, G M., and Moratti, M.. (2002). “Seismic Behaviour of R.C. Beam- Column Joints Designed for Gravity Loads.” paper presented on 12th European Conference on Earthquake Engineering., 9-13 September , London.

Paulay, T., and Priestley, M.J.N. (1992). “Seismic Design of Reinforced Concrete and Masonry Buildings,” John Wiley publications New York.

Shiohara, Hitoshi., and Kusiara, Fumio. (2010). “An Overlooked Failure Mechanism of Reinforced Concrete Beam-Column Joints,” proceedings of the 9th U.S.

National and 10th Canadian Conference on Earthquake Engineering, July 25-29, Toronto, Ontario, Canada.

Sezen, Halil. (2012). “Repair and Strengthening of Reinforced Concrete Beam-Column Joints with Fiber Reinforced Polymer Composites.” Journal of Composites for Construction, ASCE, vol. 16, No 5 pp 499-506.

Shannag, M.J., Barakat, S. and Abdul-Kareem, M. (2002). “Cyclic Behavior of HPFRC-Repaired Reinforced Concrete Interior Beam-Column Joints.”

Materials and Structures, vol. 35, 348-356.

Sharma, Akanshu., Gension, G., Reddy, GR., Eligehousen , R., Pampanin, S., and Vaze., KK. (2010). “Experimental Investigations on Seismic Retrofitting of Reinforced Concrete Beam-column Joints.” paper ref A007, presented on 14th Symposium on Earthquake Engineering, Indian Institute of Technology, Roorkee, December 17-19.

Standrards New Zealand (NZS). (1995). NZS 3101:1995. New Zealand Concrete Stanadard.”

Takiguchi, Katsuki., Abdullah., (2000). “Experimental Study on Reinforced Concrete Beam Strengthened with Ferocement Jacket.” paper presented on 12 WCEE Conference, Auckland, New Zealand., 30January-04 February.

Thermou, G. and Elnashai, A.S. (2002). “Performance Parameters and Criteria for Assessment and Rehabilitation.” Seismic Performance Evaluation and Retrofit of Structures (SPEAR), European Earthquake Engineering Research Network Report, Imperial College, UK.

Tsonos, A.G. (2000). “Lateral load response of strengthened reinforced concrete Beam- to-column joints,” paper presented on 12 WCEE Conference, Auckland, New Zealand, 30January-04 February.

Uma, S.R., and Prasad, A.Meher., (2005). “Seismic Behavior of Beam Column Joints in Reinforced Concrete Moment Resisting Frames.” document no IITK- GSDMA-EQ-31-V1-0, IITK-GSDMA Project on Building Code.

Vasani, P.C., Mehta, B Bhumika., “Ductility Requirements for Buildings,” retrieved from http://www.sefindia.org/?q=system/files/Ductility-1.pdf at 11 pm, 11 November 2013

Wang, Yung-Ching., and Gin Ming., (2004). “Rehabilitation of Non-ductile Beam- Column Joint using Concrete Jacketing,” presented at 13th World Conference on Earthquake Engineering, Vacouver, Canada August 1-6.

Wu, W., (1990). “Thermomechanical Properties of Fiber Reinforced Plastics (FRP) Bars.” PhD dissertation, West Virginia University, Morgantown, W.Va., 292 pp.

Xiaobing, Song., Xianglin, Go., Li Yupeng., Tao., Chang., and Zhang Weiping. (2013).

“Mechanical Behavior of FRP-Strengthened Concrete Columns Subjected to Concentric and Eccentric Compression Loading.” Journal of Composite Construction, ASCE, May-June, pp 336-346.

Zureick, A., and Kahn, L., (2001). “Rehabilitation of Reinforced Concrete Structures Using Fiber-Reinforced Polymer Composites.” ASM Handbook, ASM International, V. 21, pp. 906-913.

APPENDIX A

Table A.1.1: Sieve Analysis Report of Sand (Sample 1)

Sample-1 Sieve

No Sieve Size Weight

retained (gm) %

Retained Cumulative

Retained % passing

4 4.75 4 0.8 0.8 99.2

8 2.36 26.3 5.26 6.06 93.94

16 1.19 91.8 18.36 24.42 75.58

30 0.59 154.7 30.94 55.36 44.64

50 0.3 127 25.4 80.76 19.24

100 0.15 79.1 15.82 96.58 3.42

Pan 0 17.1 3.42 0 100

Total 500 263.98

FM 2.6398

Table A.1.2: Sieve Analysis Report of Sand (Sample 2)

Sample-2 Sieve

No Sieve Size Weight retained (gm)

% Retained Cumulative

Retained % passing

4 4.75 4.2 0.841 0.84 99.16

8 2.36 29.5 5.907 6.75 93.25

16 1.19 98.6 19.744 26.49 73.50

30 0.59 156.2 31.278 57.769 42.23

50 0.3 123.3 24.690 82.459 17.54

100 0.15 73.5 14.718 97.177 2.82

Pan 0 14.1 2.823 0.000 100

Total 499.4 271.4858

FM 2.714858

Table A.1.3: Specific Gravity and Absorption Capacity of Coarse Aggregates

Ser Weight of the

SSD Sample

Weight Sample of in Water

Weight of Oven

Dry Sample

Bulk Specific Gravity a/(b-c)

Apparent Specific

Gravity a/(a-c)

Specific Gravity of

Surface Dry Sample

b/(b-c)

Absorption

Capacity Average Specific Gravity

Average Absorption

Capacity

1 1500 722 1271.4 1.63 2.31 1.93 17.98

1.93 17.98

2 1500 725 1274.3 1.64 2.32 1.94 17.71

3 1500 719 1268.6 1.62 2.31 1.92 18.24

Table A.1.4: Compressive Strength of Coarse Aggregate

Sample Length

(cm) Width

(cm) Height

(cm) Observed Load

(kN)

Actual Load

(kN)

Strength

(kN) Strength

(psi) Average Strength (psi)

Average Strength (MPa) 1 13.2 12 7.15 320 305.76 19.30 2799.67

3813.43 26.29 2 12.15 11.4 6.9 426 413.67 29.87 4331.63

3 12 11.3 6.95 460 448.28 33.059 4794.80 4 12.85 11.2 7.1 280 265.04 18.42 2670.98

5 13 11.9 6.9 488 476.78 30.82 4470.05

Table A.1.5: Ultimate Strength of Steel Reinforcement

Dia meter (mm)

Frog

Mark Weight Length

in cm Yield/

Proof load (kN)

Ultimate load (kN)

Elongation

(%) X-Sec

of Bar (mm2)

Yield Capacity

(MPa)

Average Yield Capacity

(MPa)

Ultimate Capacity

(MPa)

Average Ultimate Capacity (MPa)

12 Gr 60/

400

452 51 50.26 85.41 15 113.1 444.43

444.43

755.14

748.55

538 60.9 50.71 84.96 17 114.1 444.43 744.62

540 60.8 51.15 85.85 15 115.1 444.44 745.88

8 Gr 60/

400

233 60.8 21.80 33.36 18 50.3 433.33

429.11

663.25

656.79

235 61 21.80 33.36 18 51.3 424.88 650.32

APPENDIX B

Table B.1.1: Load vs. Displacement of Beam (Group A)

Forward Cycle Reverse Cycle

Sample No Cycle Applied Load

(kN)

Maximum Displacement

(mm)

Applied Load (kN)

Maximum Displacement

(mm)

Con 1

Cycle-I -14.08 -6.60 14.08 6.30

Cycle-II -17.60 -7.50 14.08 7.20

Cycle-III -24.63 -36.70 21.11 16.10

Cycle-IV -31.67 -47.60

Plate 1

Cycle-I -10.56 -5.50 10.56 4.90

Cycle-II -14.08 -7.00 17.60 11.10

Cycle-III -31.67 -18.00 21.11 25.00

Cycle-IV -24.63 -28.80 21.11 33.20

Cycle-V -28.15 -33.20

MCS1

Cycle-I -10.56 -7.35 14.06 5.60

Cycle-II -24.63 -23.90 14.06 7.25

Cycle-III -24.63 -35.66 17.60 19.90

Fabrics 1

Cycle-I -10.56 -4.65 10.56 6.70

Cycle-II -15.84 -6.60 17.60 9.80

Cycle-III -21.12 -25.50 21.11 31.50

Cycle-IV -38.70 -37.80 21.11 42.00

Table B.1.2: Load vs. Displacement of Beam (Group B)

Forward Cycle Reverse Cycle

Sample No Cycle Load

(kN) Displacement

(mm) Load

(kN) Displacement (mm)

Con 2

Cycle-I -7.04 -3.5 10.56 6.5

Cycle-II -10.57 -6.98 10.56 8.9

Cycle-III -21.11 -21 17.6 24.8

Cycle-IV -24.53 -30 17.6 42

Plate 2

Cycle-I -10.57 -5.00 14.08 8.20

Cycle-II -17.70 -12.20 31.67 42.90

Cycle-III -21.11 -22.00 24.63 41.00

Fabrics 2

Cycle-I -8.79 -5.40 14.08 8.10

Cycle-II -17.60 -10.00 19.35 15.00

Cycle-III -26.60 -16.50 28.15 25.30

Cycle-IV -31.67 -29.00 24.63 42.70

Fabrics 3

Cycle-I -8.79 -3.00 7.04 2.80

Cycle-II -10.58 -4.80 14.08 7.50

Cycle-III -24.63 -16.00 17.60 20.30

Cycle-IV -31.67 -38.30 17.60 41.10

Table B.1.3: Load vs. Displacement of Column (Group A)

Forward Loading Reverse Loading

Sample No

Cycle Corresponding Column Shear

(kN)

Maximum Displacement

(mm)

Corresponding Column Shea

(kN)

Maximum Displacement

(mm)

Con 1

Cycle-I -15.41 -2.13 18.22 1.96

Cycle-II -17.53 -2.47 17.55 2.29

Cycle-III -28.18 -5.89 25.13 6.21

Cycle-IV -29.34 -6.99

Plate 1

Cycle-I -14.11 -2.82 12.77 1.46

Cycle-II -16.22 -3.22 17.80 3.77

Cycle-III -32.16 -4.76 25.88 9.20

Cycle-IV -31.94 -6.82 27.15 12.03

Cycle-V -34.00 -6.03

MCS1

Cycle-I -15.44 -3.58 17.55 2.74

Cycle-II -32.60 -4.80 18.89 3.46

Cycle-III -34.59 -9.21 25.01 6.62

Fabrics 1

Cycle-I -14.10 -2.16 14.10 2.15

Cycle-II -17.28 -2.46 18.89 3.45

Cycle-III -33.89 -5.53 38.05 5.19

Cycle-IV -41.73 -6.94 36.71 7.21

Table B.1.4: Load vs. Displacement of Column (Group B)

Forward Loading Reverse Loading

Sample No Cycle Corresponding Column Shear

(kN)

Maximum Displacement

(mm)

Corresponding Column Shear

(kN)

Maximum Displacement

(mm)

Con 2

Cycle-I -10.65 -1.98 13.43 1.76

Cycle-II -16.10 -2.98 15.44 2.59

Cycle-III -28.47 -5.92 24.35 5.76

Cycle-IV -35.43 -8.98 25.02 8.06

Plate 2

Cycle-I -12.77 -2.89 20.23 2.49

Cycle-II -23.68 -5.11 27.80 3.42

Cycle-III -29.80 -7.80 29.80 3.51

Fabrics 2

Cycle-I -19.50 -1.45 15.55 2.00

Cycle-II -23.95 -2.54 19.67 3.85

Cycle-III -30.31 -3.90 38.16 5.70

Cycle-IV -28.14 -3.83 30.70 7.03

Fabrics 3

Cycle-I -12.37 -1.55 10.65 1.41

Cycle-II -15.44 -2.39 18.22 3.08

Cycle-III -31.93 -5.71 25.01 5.84

Cycle-IV -40.17 -9.64 29.80 8.52

Dokumen terkait