• Tidak ada hasil yang ditemukan

I. In this study, the lengths of nanowires have been kept constant at the value of reference solar cell height for a fair comparison. Nanowire length can significantly impact their light concentration and scattering properties.

Hence, the effect of the length of nanowires also needs to be analyzed in further study.

II. The recombination parameters of bulk solar cells are used for different layers of studied nanowire solar cells. It has been shown that nanowire structures can have significantly different recombination properties. Due to the unavailability of recombination data, particularly for nanostructures, the simulation has been carried out using bulk solar cell parameters. Further study regarding the theoretical and experimental evaluation of nanowires’

recombination parameters is required to benchmark the used model more effectively.

III. The benchmarking of the simulation model has been done using planar cells since experimental nanowire cells of the same materials were not available in the literature. Upon the availability of experimental axial junction NW SCs based on studied materials, further model verification is necessary.

IV. The nanowires used throughout this study have circular cross-sections. The influence of elliptical or parabolic cross-sections requires further analysis.

Moreover, cylinders with varying cross-section or conical shapes have been shown to offer different degrees of light trapping due to the presence of various diameter-dependent resonance modes. This leads to improved absorption over a range of wavelengths depending on the diameter. Such shapes need to be investigated as solar cell absorbers in upcoming work.

V. The nanopillars are arranged in a square array for this work. Hexagonal or random arrangements can be the matter of subsequent study. Moreover,

71

inclined nanowires in place of vertical nanowires or a mixture of both need to be analyzed as they can significantly impact omnidirectionality.

72

Bibliography

[1] “Global energy demand to grow 47% by 2050, with oil still top source:

US EIA | S&P Global Platts.” Available:

https://www.spglobal.com/platts/en/market-insights/latest-news/oil (accessed Nov 11, 2021).

[2] “Primary energy | Energy economics | Home.” Available:

https://www.bp.com/en/global/corporate/energy-

economics/statistical-review-of-world-energy (accessed Nov. 11, 2021).

[3] A. Fahrenbruch and R. Bube, Fundamentals of solar cells: photovoltaic solar energy conversion. New York: Academic Press, 1983

[4] M. A. Green, Solar cells: Operating principles, technology, and system applications. Englewood Cliffs, 1982.

[5] “Solar Industry Research Data | SEIA.” Available:

https://www.seia.org/solar-industry-research-data (accessed Dec. 01, 2021).

[6] S. P. Singh and P. Nagarjuna, “Organometal halide perovskites as useful materials in sensitized solar cells,” Dalton Transactions, vol. 43, no. 14, pp. 5247–5251, Apr. 2014.

[7] S. Albrecht and B. Rech, “Perovskite solar cells: On top of commercial photovoltaics,” Nature Energy, vol. 2, no. 1, Jan. 11, 2017.

73

[8] K. Sun et al., “Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1–xCdxS Buffer Layer,” Advanced Energy Materials, vol. 6, no. 12, Jun. 2016.

[9] L. Zeng et al., “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Applied Physics Letters, vol. 93, no. 22, 2008.

[10] K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Letters, vol. 12, no. 3, pp. 1616–1619, Mar. 2012.

[11] A. Mellor, I. Tobias, A. Marti, M. J. Mendes, A. Luque, and C. A.

Mellor, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Progress in Photovoltaics, vol. 19, pp. 676- 687, 2011

[12] A. Sudbø, E. S. Marstein, and J. Gjessing, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Optics Express, vol. 18, no. 6, pp. 5481-5495, Mar. 2010.

[13] K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Applied Physics Letters, vol. 93, no. 12, 121904-1—121904-3, 2008.

[14] S. Royanian, A. Abdolahzadeh Ziabari, and R. Yousefi, “Efficiency Enhancement of Ultra-thin CIGS Solar Cells Using Bandgap Grading and Embedding Au Plasmonic Nanoparticles,” Plasmonics, vol. 15, pp.

1173–1182, 2020.

[15] K.R. Catchpole and A. Polman, “Plasmonic solar cells,” Optics Express, vol. 16, pp. 21793-21800, 2008.

74

[16] S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8: 30% Er3+ upconverter,” Solar Energy Materials and Solar Cells, vol. 136, pp. 127–134, May 2015.

[17] J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R.

E. I. Schropp, “Upconverter solar cells: materials and applications,”

Energy & Environmental Science, vol. 4, no. 12, pp. 4835–4848, Nov.

2011.

[18] J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine, “A 27.3% efficient Ga0.5In0.5P/GaAs tandem solar cell,” Applied Physics Letters, vol. 56, no. 7, p. 623, Jun. 1998.

[19] A. Al-Ashouri et al., “Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction”, Science, vol. 370, no. 6522, pp. 1300-1309, 2020.

[20] D. van Dam et al., “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium- Tin-Oxide Mie Scatterers,” ACS Nano, vol. 10, no. 12, pp. 11414–11419, Dec. 2016.

[21] N. I. Goktas, P. Wilson, A. Ghukasyan, D. Wagner, S. McNamee, and R. R. LaPierre, “Nanowires for energy: A review,” Applied Physics Reviews, vol. 5, no. 4, pp. 041305-1—041305-21, 2018.

[22] V. Raj, H. H. Tan, and C. Jagadish, “Axial vs. Radial Junction Nanowire Solar Cell.” AJP Reports, vol. 28, pp. 719-746, 2019.

[23] T. J. Kempa, B. Tian, D. R. Kim, H. Jinsong, Z. Xiaolin, and C. M.

Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,”

Nano Letters, vol. 8, no. 10, pp. 3456–3460, Oct. 2008.

75

[24] M. Yao et al., “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Letters, vol. 14, no. 6, pp. 3293–3303, Jun. 2014.

[25] D. J. Hill, T. S. Teitsworth, E. T. Ritchie, J. M. Atkin, and J. F.

Cahoon, “Interplay of Surface Recombination and Diode Geometry for the Performance of Axial p-i-n Nanowire Solar Cells,” ACS Nano, vol.

12, pp. 10554–10563, 2018.

[26] A. Goetzberger, J. Luther, and G. Willeke, “Solar cells: past, present, future,” Solar Energy Materials and Solar Cells, vol. 74, no. 1–4, pp. 1–

11, Oct. 2002.

[27] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, vol. 25, no. 5, pp. 676–677, May 1954.

[28] D. Ginley, M. A. Green, and R. Collins, “Solar Energy Conversion Toward 1 Terawatt,” MRS Bulletin, vol. 33, no. 4, pp. 355–364, 2008.

[29] “Polycrystalline Solar Cells vs Monocrystalline Solar Cells.”

Available: https://geothermhvac.com/mono-vs-poly-better

[30] M. W. Bouabdelli, F. Rogti, M. Maache, and A. Rabehi, “Performance enhancement of CIGS thin-film solar cell,” Optik, vol. 216, pp. 164948- 1—164948-10 Aug. 2020.

[31] J. K. Sim, D. Y. Um, J. W. Kim, J. S. Kim, K. U. Jeong, and C. R.

Lee, “Improvement in the performance of CIGS solar cells by introducing GaN nanowires on the absorber layer,” Journal of Alloys and Compounds, vol. 779, pp. 643–647, Mar. 2019.

[32] A. Kumar, A. Kumar Goyal, U. Gupta, Tanya, N. Gupta, and R.

Chaujar, “Increased efficiency of 23% for CIGS solar cell by using ITO

76

as front contact,” Materials Today: Proceedings, vol. 28, pp. 361–365, 2020.

[33] T. J. Hsueh, J. M. Shieh, and Y. M. Yeh, “Hybrid Cd-free CIGS solar cell/TEG device with ZnO nanowires,” Progress in Photovoltaics:

Research and Applications, vol. 23, no. 4, pp. 507–512, Apr. 2015.

[34] M. Burgelman, P. Nollet, and S. Degrave, “Electronic behaviour of thin- film CdTe solar cells,” Applied Physics, vol. 69, no. 2, pp. 149–153, Aug.

1999.

[35] R. M. Geisthardt, M. Topič, and J. R. Sites, “Status and Potential of CdTe Solar-Cell Efficiency,” IEEE Journal of Photovoltaics, vol. 5, no.

4, pp. 1217–1221, Jul. 2015.

[36] M. Gloeckler, I. Sankin, and Z. Zhao, “CdTe solar cells at the threshold to 20% efficiency,” IEEE Journal of Photovoltaics, vol. 3, no. 4, pp.

1389–1393, 2013.

[37] T. D. Lee and A. U. Ebong, “A review of thin film solar cell technologies and challenges,” Renewable and Sustainable Energy Reviews, vol. 70.

Elsevier Ltd, pp. 1286–1297, 2017.

[38] J. Ramanujam et al., “Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review,” Progress in Materials Science, vol. 110. Elsevier Ltd, vol. 110, pp. 100619-1—100619-20, May 01, 2020.

[39] S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Applied Physics Letters, vol. 93, no. 7, 2008.

[40] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,”

Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–

6051, May 2009.

77

[41] P. v. Kamat, “Hybrid Perovskites for Multijunction Tandem Solar Cells and Solar Fuels. A Virtual Issue,” ACS Energy Letters, vol. 3, no. 1, pp.

28–29, Jan. 12, 2018.

[42] J. Jean et al., “Radiative Efficiency Limit with Band Tailing Exceeds 30% for Quantum Dot Solar Cells,” ACS Energy Letters, vol. 2, no. 11, pp. 2616–2624, Nov. 2017.

[43] M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Progress in Photovoltaics: Research and Applications, vol. 9, no. 2, Mar. 2001.

[44] K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Applied Physics Letters, vol. 93, no. 19, pp.

191113-1–191113-3, Nov. 2008.

[45] K. Nakayama, K. Tanabe, and H. A. Atwater, “Surface plasmon enhanced photocurrent in thin GaAs solar cells,”, Proc. SPIE 7047, Nanoscale Photonic and Cell Technologies for Photovoltaics, 704708, 2008

[46] D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Applied Physics Letters, vol. 86, no. 6, pp. 1–3, Feb.

2005.

[47] S. A. Maier, Plasmonics: Fundamentals and Applications. New York, NY: Springer US, 2007.

[48] F. Afshinmanesh et al., “Plasmonics and Mie Scattering for Solar Energy Harvesting.”

Available:https://gcep.stanford.edu/pdfs/symposium2012/MarkBronge rsma_Symp2012_web.pdf

78

[49] P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nature Communications 2012 3:1, vol. 3, no. 1, pp. 1–

5, Feb. 2012.

[50] B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,”

Journal of Applied Physics, vol. 97, no. 11, 2005.

[51] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Applied Physics Letters, vol. 91, no. 23, pp. 233117-1–233117-3, 2007.

[52] E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,”

Nano Letters, vol. 10, no. 3, pp. 1082–1087, Mar. 2010.

[53] G. Otnes and M. T. Borgström, “Towards high efficiency nanowire solar cells,” Nano Today, vol. 12, pp. 31-45, 2007.

[54] E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,”

Nano Letters, vol. 10, no. 3, pp. 1082–1087, Mar. 2010.

[55] P. Krogstrup et al., “Single-nanowire solar cells beyond the Shockley- Queisser limit,” Nature Photonics, vol. 7, no. 4, pp. 306–310, Apr. 2013.

[56] H. Lu and C. Gang, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Letters, vol. 7, no. 11, pp.

3249–3252, 2007.

[57] J. M. Spurgeon, H. A. Atwater, and N. S. Lewis, “A Comparison Between the Behavior of Nanorod Array and Planar Cd(Se,Te) Photoelectrodes,” The Journal of Physical Chemistry C, vol. 112, no.

15, Apr. 2008.

79

[58] L. Tsakalakos, “Strong broadband optical absorption in silicon nanowire films,” Journal of Nanophotonics, vol. 1, no. 1, p. 013552, Jul. 2007.

[59] J. Zhu et al., “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Letters, vol. 9, no. 1, pp. 279–

282, Jan. 2009.

[60] N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Optics Express, vol. 21, no. S3, p.

A558, May 2013.

[61] V. T. Pham, M. Dutta, H. T. Bui, and N. Fukata, “Effect of nanowire length on the performance of silicon nanowires based solar cell,”

Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 5, no. 4, Dec. 2014.

[62] Z. Fan et al., “Three-dimensional nanopillar-array photovoltaics on low- cost and flexible substrates,” Nature Materials, vol. 8, no. 8, pp. 648–

653, 2009.

[63] G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Letters, vol. 13, no. 4, pp.

1632–1637, Apr. 2013.

[64] K. Seo et al., “Multicolored vertical silicon nanowires,” Nano Letters, vol. 11, no. 4, pp. 1851–1856, Apr. 2011.

[65] G. Brönstrup et al., “A precise optical determination of nanoscale diameters of semiconductor nanowires,” Nanotechnology, vol. 22, no. 38, Sep. 2011.

[66] L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M.

L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nature Materials, vol. 8, no. 8, pp. 643–647, 2009.

80

[67] O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A.

Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Letters, vol. 8, no. 9, pp. 2638–2642, Sep. 2008.

[68] L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang- Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Applied Physics Letters, vol.

90, no. 4, pp. 043115-1–043115-3, Jan. 2007.

[69] T. Mårtensson et al., “Epitaxial III−V Nanowires on Silicon,” Nano Letters, vol. 4, no. 10, Oct. 2004.

[70] S. N. Mohammad, “Analysis of the Vapor–Liquid–Solid Mechanism for Nanowire Growth and a Model for this Mechanism,” Nano Letters, vol.

8, no. 5, pp. 1532–1538, May 2008.

[71] B. A. Wacaser, K. A. Dick, J. Johansson, M. T. Borgström, K. Deppert, and L. Samuelson, “Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires,” Advanced Materials, vol.

21, no. 2, pp. 153–165, Jan. 2009.

[72] F. J. Wendisch et al., “Morphology-Graded Silicon Nanowire Arrays via Chemical Etching: Engineering Optical Properties at the Nanoscale and Macroscale,” ACS Applied Materials and Interfaces, vol. 12, no. 11, pp.

13140–13147, Mar. 2020.

[73] E. Barrigón, L. Hrachowina, and M. T. Borgström, “Light current- voltage measurements of single, as-grown, nanowire solar cells standing vertically on a substrate,” Nano Energy, vol. 78, Dec. 2020.

[74] M. Heurlin et al., “Continuous gas-phase synthesis of nanowires with tunable properties,” Nature, vol. 492, no. 7427, Dec. 2012.

81

[75] W. Metaferia et al., “GaAsP Nanowires Grown by Aerotaxy,” Nano Letters, vol. 16, no. 9, pp 5701-5707. Sep. 2016.

[76] F. Patolsky, G. Zheng, and C. M. Lieber, “Nanowire-based biosensors,”

Analytical chemistry, vol. 78, no. 13, pp. 4260–4269, Jul. 2006.

[77] R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nature Photonics 2009 3:10, vol. 3, no. 10, pp. 569–576, 2009.

[78] X. Dai et al., “GaAs/AlGaAs nanowire photodetector,” Nano Letters, vol. 14, no. 5, pp. 2688–2693, May 2014.

[79] O. Hayden, A. B. Greytak, and D. C. Bell, “Core-shell nanowire light- emitting diodes,” Advanced Materials, vol. 17, no. 6, pp. 701–701, Mar.

2005.

[80] E. D. Minot et al., “Single quantum dot nanowire LEDs,” Nano Letters, vol. 7, no. 2, pp. 367–371, Feb. 2007.

[81] J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. Yang, “Single Nanowire Lasers,” Journal of Physical Chemistry B, vol. 105, no. 46, pp. 11387–11390, Nov. 2001.

[82] O. Hayden, R. Agarwal, and W. Lu, “Semiconductor nanowire devices,”

Nano Today, vol. 3, no. 5–6, pp. 12–22, Oct. 2008.

[83] E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee,

“Nanowire solar cells,” Annual Review of Materials Research, vol. 41, pp. 269–295, Aug. 2011.

[84] P. Espinet-Gonzalez et al., “Nanowire Solar Cells: A New Radiation Hard PV Technology for Space Applications,” IEEE Journal of Photovoltaics, vol. 10, no. 2, pp. 502–507, Mar. 2020.

[85] Sun, Y. and Rogers, J. A., Semiconductor Nanomaterials for Flexible Technologies (1st ed.), Chapter 6 -Flexible Solar Cells Made of

82

Nanowires/ Microwires., Elsevier, Oxford, United Kingdom, pp. 159–

196, 2010.

[86] E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” Journal of the American Chemical Society, vol. 130, no. 29, pp.

9224–9225, Jul. 2008.

[87] V. Raj, K. Vora, L. Fu, H. H. Tan, and C. Jagadish, “High-efficiency solar cells from extremely low minority carrier lifetime substrates using radial junction nanowire architecture,” ACS Nano, vol. 13, no. 10, pp.

12015–12023, Oct. 2019.

[88] E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,”

Nano Letters, vol. 10, no. 3, pp. 1082–1087, Mar. 2010.

[89] G. Ma et al., “Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides,” Solar Energy Materials and Solar Cells, vol. 193, pp. 163–168, May 2019.

[90] Nicklas Anttu and H. Q. Xu, "Efficient light management in vertical nanowire arrays for photovoltaics," Optic Express 21, A558-A575 (2013) [91] J. Wallentin et al., “InP nanowire array solar cells achieving 13.8%

efficiency by exceeding the ray optics limit,” Science, vol. 339, no. 6123, pp. 1057–1060, Mar. 2013.

[92] I. Aberg et al., “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 185–190, Jan. 2016.

[93] S. Rühle, “Tabulated values of the Shockley–Queisser limit for single junction solar cells,” Solar Energy, vol. 130, Jun. 2016.

83

[94] Z. Kordrostami and A. Yadollahi, “High absorption enhancement of invert funnel and conical nanowire solar cells with forward scattering,”

Optics Communications, vol. 459, Mar. 2020.

[95] J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” 2010.

[96] M. Powalla, S. Paetel, E. Ahlswede, R. Wuerz, C. D. Wessendorf, and T. Magorian Friedlmeier, “Thin-film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se2 -, and perovskite-based materials,” Applied Physics Reviews, vol. 5, no. 4, Dec. 2018.

[97] M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, “Solar cell efficiency tables (version 57),” Progress in Photovoltaics: Research and Applications, vol. 29, no. 1, pp. 3–15, Jan.

2021.

[98] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H.

Sugimoto, “Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%,” IEEE Journal of Photovoltaics, vol. 9, no. 6, pp.

1863–1867, Nov. 2019.

[99] C. Yan et al., “Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment,” Nature Energy 2018 3:9, vol. 3, no. 9, pp. 764–772, Jul. 2018.

[100] Y. Kang, N. G. Park, and D. Kim, “Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer,” Applied Physics Letters, vol. 86, no. 11, pp. 1–3, Mar. 2005.

[101] R. Salazar, A. Delamoreanu, C. L. Clément, and V. Ivanova,

“ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells,” in Energy Procedia, vol. 10, pp. 122–127,2011.

84

[102] M. Zhang et al., “Core-shell CdTe-TiO2 nanostructured solar cell,”

Journal of Materials Chemistry, vol. 22, no. 21, pp. 10441–10443, Jun.

2012.

[103] A. Melliti, “Optimization of Si (core)/CZTS/ CZTSe (shell) nanowire array for solar cell,” Mar. 2021.

[104] A. Melliti, “Optical simulation of solar cell based on ZnO/ZTO core–

shell nanowire array embedded in CZTS layer,” Optical and Quantum Electronics, vol. 53, no. 2, Feb. 2021.

[105] R. Won, “Into the ‘Mie-tronic’ era,” Nature Photonics 2019 13:9, vol.

13, no. 9, pp. 585–587, Aug. 2019.

[106] M. Kerker, N. Y. San, and F. London, “The Scattering of Light and Other Electromagnetic Radiation,” Academic, New York, 1969.

[107] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. Wiley, 1983.

[108] D. W. Hahn, “Light Scattering Theory,” 2009.

[109] J. Li, J. Gayles, N. Kioussis, Z. Zhang, C. Grein, and F. Aqariden,

“Ab Initio Studies of the Unreconstructed Polar CdTe (111) Surface,”

Journal of Electronic Materials, vol. 41, no. 10, pp. 2745–2753, Feb.

2012.

[110] T. Tinoco, C. Rincón, M. Quintero, and G. S. Pérez, “Phase Diagram and Optical Energy Gaps for CuInyGa1−ySe2 Alloys,” Physica Status Solidi (a), vol. 124, no. 2, pp. 427–434, Apr. 1991.

[111] N. Suss, A. Ritscher, M. Lerch, and I. Efthimiopoulos, “Anharmonic Effects in Ordered Kesterite-Type Cu2ZnSnS4,” Solids, vol. 2, no. 4, pp.

385–394, Nov. 2021.

[112] “A Solar Grand Plan - Scientific American.”

85

Available: https://www.scientificamerican.com/article/a-solar-grand- plan/ (accessed Dec. 02, 2021).

[113] J. Peng, L. Lu, and H. Yang, “Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems,”

Renewable and Sustainable Energy Reviews, vol. 19, pp. 255–274, Mar.

2013.

[114] V. Fthenakis and H. C. Kim, “Life-cycle uses of water in U.S. electricity generation,” Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 2039–2048, Sep. 2010.

[115] M. J. de Wild-Scholten, “Energy payback time and carbon footprint of commercial photovoltaic systems,” Solar Energy Materials and Solar Cells, vol. 119, pp. 296–305, Dec. 2013.

[116] B. J. Stanbery, “Copper Indium Selenides and Related Materials for Photovoltaic Devices,” Critical Reviews in Solid State and Materials Sciences, vol. 27, no. 2, pp. 73-117, 2010.

[117] I. Repins et al., “Kesterites and Chalcopyrites: A Comparison of Close Cousins; Preprint,” Materials Research Society Symposium Proceedings, vol. 1324, pp. 97–108, May 2011.

[118] S. K. Wallace, D. B. Mitzi, and A. Walsh, “The Steady Rise of Kesterite Solar Cells,” ACS Energy Letters, vol. 2, no. 4, pp. 776–779, Apr. 2017.

[119] Swartz, C. H. et al., Radiative and interfacial recombination in CdTe heterostructures. Applied Physics Letters 105, 2014.

[120] W. Chen and P. R. I. Cabarrocas, “Rational design of nanowire solar cells: from single nanowire to nanowire arrays,” Nanotechnology, vol. 30, no. 19, pp. 194002, Feb. 2019.

86

[121] L. Tsakalakos, “Strong broadband optical absorption in silicon nanowire films,” Journal of Nanophotonics, vol. 1, no. 1, p. 013552, Jul. 2007.

[122] Z. Fan et al., “Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption,” Nano Letters, vol. 10, no. 10, pp. 3823–

3827, Oct. 2010.

[123] O. L. Muskens et al., “Large Photonic Strength of Highly Tunable Resonant Nanowire Materials,” Nano Letters, vol. 9, no. 3, pp. 930–934, Mar. 2009.

[124] L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma,

“Tuning the color of silicon nanostructures,” Nano Letters, vol. 10, no.

7, pp. 2649–2654, Jul. 2010.

[125] C. H. Peters, A. R. Guichard, A. C. Hryciw, M. L. Brongersma, and M.

D. McGehee, “Energy transfer in nanowire solar cells with photon- harvesting shells,” Journal of Applied Physics, vol. 105, no. 12, pp.

124509, Jun. 2009.

[126] T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nature Materials, vol. 6, no. 12, pp. 951–956, Dec. 2007.

[127] Z. Wu, J. B. Neaton, and J. C. Grossman, “Quantum confinement and electronic properties of tapered silicon nanowires,” Physical Review Letters, vol. 100, no. 24, pp. 246804, Jun. 2008.

[128] Z. Wu, J. B. Neaton, and J. C. Grossman, “Charge Separation via Strain in Silicon Nanowires,” Nano Letters, vol. 9, no. 6, pp. 2418–2422, Jun.

2009.

[129] K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto,

“Efficient charge collection with ZnO nanorod array in hybrid

87

photovoltaic devices,” Journal of Physical Chemistry C, vol. 111, no. 19, pp. 7218–7223, May 2007.

[130] B. M. Kayes, “Radial pn Junction, Wire Array Solar Cells,” 33rd IEEE Photovoltaic Specialists Conference, 2009.

[131] A. Acevedo-Luna, R. Bernal-Correa, J. Montes-Monsalve, and A.

Morales-Acevedo, “Design of thin film solar cells based on a unified simple analytical model,” Journal of Applied Research and Technology, vol. 15, no. 6, pp. 599–608, Dec. 2017.

[132] E. Akbarnejad, Z. Ghorannevis, E. Mohammadi, and L. Fekriaval,

“Correlation between different CdTe nanostructures and the performances of solar cells based on CdTe/CdS heterojunction,” Journal of Electroanalytical Chemistry, vol. 849, p.113358, Sep. 2019.

[133] T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, and T. Mise, “Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts,” Solar Energy, vol. 77, no. 6, pp. 739–747, Dec. 2004.

[134] Roberto Bernal-Correa, Arturo Morales-Acevedo, and Jorge Montes- Monsalve, “Optimal Design of Thin Cu2ZnSn(S1-xSex)4 Solar Cells,” In 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1-7. IEEE, 2018.

[135] G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned Radial GaAs Nanopillar Solar Cells,”

Nano Letters, vol. 11, no. 6, Jun. 2011.

[136] Kane Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302–307, May 1966.

Dokumen terkait