• Tidak ada hasil yang ditemukan

Pengenalan iris mata dengan Backpropagation Neural Network menggunakan praproses transformasi wavelet

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pengenalan iris mata dengan Backpropagation Neural Network menggunakan praproses transformasi wavelet"

Copied!
73
0
0

Teks penuh

(1)
(2)

0

2 0BB53

','")

&

(3)

0

2 0BB53

','")

&

(4)

4

& &

(5)

/

2 0BB53

& & * *

&

) ( ( ! ( & 0

&

(6)

5

"&"

' & ( &

&

(7)

5

"&"

' & ( &

&

(8)

; &

(9)

-&

) "$ "

& &

( ( ! ( &

&

(10)

-&

) "$ "

& &

( ( ! ( &

&

(11)
(12)

C

"&" , 5-6

+$ ") "$"%")

/" &' 5 6

(13)

B

"&" ', 576

+$ ") "$"%")

/" &' 5 6

(14)

0.

-"&" $"& % -"&" ',

? &* B ? % < ( ($

& &

(15)

00

&'

$

"

&

% &

? % * ( <

&

4 & & &

00/A<005/

: 4../ " . B )

(16)

00

&'

$

"

&

% &

? % * ( <

&

4 & & &

00/A<005/

: 4../ " . B )

(17)
(18)

00

&'

$

"

&

% &

? % * ( <

&

4 & & &

00/A<005/

: 4../ " . B )

(19)
(20)

!"#"

"$"% "&' (" "& ')&' * * +$ % # $"

" ,")"

+* '&

"-"

(21)
(22)
(23)
(24)
(25)

#

"$"*")

(26)

#

"$"*")

0 ' & * ;

4 ( & # ( & A

/ ! * ( & <& # ( & C

5 ! ( ! ( & <& # ( & B

"$"*")

0 : & & ( ( 0

"$"*")

0 & 0/

4 & ) ) ( ( * 0;

/ * ! = ) % 4.

(27)

0

2 0BB53

','")

&

(28)

4

& &

(29)

/

2 0BB53

& & * *

&

) ( ( ! ( & 0

&

(30)

5

"&"

' & ( &

&

(31)

; &

(32)

-&

) "$ "

& &

( ( ! ( &

&

(33)
(34)

C

"&" , 5-6

+$ ") "$"%")

/" &' 5 6

(35)

B

"&" ', 576

+$ ") "$"%")

/" &' 5 6

(36)

0.

-"&" $"& % -"&" ',

? &* B ? % < ( ($

& &

(37)

00

&'

$

"

&

% &

? % * ( <

&

4 & & &

00/A<005/

: 4../ " . B )

(38)
(39)
(40)
(41)

0;

& 4 & ) ) ( ( *

, ! ( =

: 0

+ "&" "&" ")")

0 0..0 .0 = 0..0 .0 =

+ "&" "&" ")")

0 0..4 .0 = 0..4 .0 =

+ "&" "&" ")")

0 0..A .0 = 0..A .0 =

+ "&" "&" ")")

0 0.0B .0 = 0.0B .0 =

+ "&" "&" ")")

0 0.4C .0 = 0.4C .0 =

+ "&" "&" ")")

(42)

0-& 4 =

: A

+ "&" "&" ")")

0 0./. .0 = 0./. .0 =

+ "&" "&" ")")

0 0./- .0 = 0./- .0 =

+ "&" "&" ")")

0 0.54 .0 = 0.54 .0 =

+ "&" "&" ")")

0 0.5; .0 = 0.5; .0 =

+ "&" "&" ")")

0 0.;/ .0 = 0.;/ .0 =

+ "&" "&" ")")

(43)

0A

& 4 =

: 0/

+ "&" "&" ")")

0 0.C0 .0 = 0.C0 .0 =

+ "&" "&" ")")

0 0.B4 .0 = 0.B4 .0 =

+ "&" "&" ")")

0 00.5 .0 = 00.5 .0 =

+ "&" "&" ")")

0 000; .0 = 000; .0 =

+ "&" "&" ")")

0 004; .0 = 004; .0 =

+ "&" "&" ")")

(44)

0C

& 4 =

: 0B

+ "&" "&" ")")

0 00-0 .0 = 00-0 .0 =

+ "&" "&" ")")

0 00-4 .0 = 00-4 .0 =

+ "&" "&" ")")

0 00-A .0 = 00-A .0 =

+ "&" "&" ")")

0 00-C .0 = 00-C .0 =

+ "&" "&" ")")

0 00-B .0 = 00-B .0 =

+ "&" "&" ")")

(45)

0B

& 4 =

: 4;

+ "&" "&" ")")

0 00CC .0 = 00CC .0 =

+ "&" "&" ")")

0 00B0 .0 = 00B0 .0 =

+ "&" "&" ")")

0 00BB .0 = 00BB .0 =

+ "&" "&" ")")

0 04.B .0 = 04.B .0 =

+ "&" "&" ")")

0 0445 .0 = 0445 .0 =

+ "&" "&" ")")

(46)

4.

2R3

"

2R3

"

2R3

(47)

40

2R3

"

2R3

"

2R3

(48)

44

2R3

"

2R3

"

2R3

(49)

4/

2R3

"

2R3

"

2R3

(50)

45

2R3

"

2R3

"

2R3

(51)

4;

2R3

"

2R3

"

2R3

(52)

4-2R3

"

2R3

"

2R3

(53)

4A

2R3

"

2R3

"

(54)

4C

2R3

(55)
(56)
(57)
(58)
(59)

0;

& 4 & ) ) ( ( *

, ! ( =

: 0

+ "&" "&" ")")

0 0..0 .0 = 0..0 .0 =

+ "&" "&" ")")

0 0..4 .0 = 0..4 .0 =

+ "&" "&" ")")

0 0..A .0 = 0..A .0 =

+ "&" "&" ")")

0 0.0B .0 = 0.0B .0 =

+ "&" "&" ")")

0 0.4C .0 = 0.4C .0 =

+ "&" "&" ")")

(60)

0-& 4 =

: A

+ "&" "&" ")")

0 0./. .0 = 0./. .0 =

+ "&" "&" ")")

0 0./- .0 = 0./- .0 =

+ "&" "&" ")")

0 0.54 .0 = 0.54 .0 =

+ "&" "&" ")")

0 0.5; .0 = 0.5; .0 =

+ "&" "&" ")")

0 0.;/ .0 = 0.;/ .0 =

+ "&" "&" ")")

(61)

0A

& 4 =

: 0/

+ "&" "&" ")")

0 0.C0 .0 = 0.C0 .0 =

+ "&" "&" ")")

0 0.B4 .0 = 0.B4 .0 =

+ "&" "&" ")")

0 00.5 .0 = 00.5 .0 =

+ "&" "&" ")")

0 000; .0 = 000; .0 =

+ "&" "&" ")")

0 004; .0 = 004; .0 =

+ "&" "&" ")")

(62)

0C

& 4 =

: 0B

+ "&" "&" ")")

0 00-0 .0 = 00-0 .0 =

+ "&" "&" ")")

0 00-4 .0 = 00-4 .0 =

+ "&" "&" ")")

0 00-A .0 = 00-A .0 =

+ "&" "&" ")")

0 00-C .0 = 00-C .0 =

+ "&" "&" ")")

0 00-B .0 = 00-B .0 =

+ "&" "&" ")")

(63)

0B

& 4 =

: 4;

+ "&" "&" ")")

0 00CC .0 = 00CC .0 =

+ "&" "&" ")")

0 00B0 .0 = 00B0 .0 =

+ "&" "&" ")")

0 00BB .0 = 00BB .0 =

+ "&" "&" ")")

0 04.B .0 = 04.B .0 =

+ "&" "&" ")")

0 0445 .0 = 0445 .0 =

+ "&" "&" ")")

(64)

4.

2R3

"

2R3

"

2R3

(65)

40

2R3

"

2R3

"

2R3

(66)

44

2R3

"

2R3

"

2R3

(67)

4/

2R3

"

2R3

"

2R3

(68)

45

2R3

"

2R3

"

2R3

(69)

4;

2R3

"

2R3

"

2R3

(70)

4-2R3

"

2R3

"

2R3

(71)

4A

2R3

"

2R3

"

(72)

4C

2R3

(73)

Referensi

Dokumen terkait

Pada percobaan variasi jumlah unit hidden layer, diperoleh jumlah hidden layer 2 sebagai jumlah hidden layer yang memiliki Recognition Rate yang terbaik, yaitu

Keterangan : Database Citra Mata CASIA 1.0 Program Libor Masek Dekomposisi Transformasi Wavelet Levenshtein Distance Tahap 1 Akuisisi Citra Tahap 2 Pemrosesan Awal Citra Tahap

Pada percobaan variasi jumlah unit hidden layer, diperoleh jumlah hidden layer 2 sebagai jumlah hidden layer yang memiliki Recognition Rate yang terbaik, yaitu

Perbandingan akurasi rata-rata dari setiap iterasi untuk masing-masing tanda tangan berdasarkan perbedaan jenis data dengan menggunakan 4-fold cross validation

Hasil ekstraksi nilai Hue data latih kemudian diproses dalam neural network backpropagation yang telah dibuat dan di uji menggunakan beberapa pasang data uji dengan ukuran

Data citra diperoleh dari hasil ekstraksi dengan menggunakan 1D log-Gabor filter dengan nilai panjang gelombang yang digunakan adalah 18 dengan sebesar 0.5 sesuai

Berdasarkan pengujian yang telah dilakukan pada tahap pelatihan, dapat disimpulkan bahwa tahap ini telah mampu menghasilkan nilai match threshold berdasarkan

Seperti yang terlihat pada Gambar diatas, jika suatu citra dilakukan proses transformasi wavelet diskrit dua dimensi dengan level dekomposisi satu, maka akan menghasilkan