• Tidak ada hasil yang ditemukan

Analyses for various doping structures of SOI-based optical phasemodulator using free carrier dispersion effectB.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Analyses for various doping structures of SOI-based optical phasemodulator using free carrier dispersion effectB."

Copied!
4
0
0

Teks penuh

(1)

Pleasecitethisarticleinpressas:B.Mardiana,etal.,AnalysesforvariousdopingstructuresofSOI-basedopticalphasemodulatorusingfree carrierdispersioneffect,Optik-Int.J.LightElectronOpt.(2013),http://dx.doi.org/10.1016/j.ijleo.2013.09.050

ARTICLE IN PRESS

GModel

IJLEO-53972; No.ofPages4

Optikxxx (2013) xxx–xxx

ContentslistsavailableatScienceDirect

Optik

j o ur na l h o m e p a g e :w w w . e l s e v i e r . d e / i j l e o

Analyses

for

various

doping

structures

of

SOI-based

optical

phase

modulator

using

free

carrier

dispersion

effect

B.

Mardiana

a,b,∗

,

Sahbudin

Shaari

a

,

P.

Susthitha

Menon

a

,

H.

Hazura

a,b

,

A.R.

Hanim

a,b

,

N.

Arsad

a

,

H.

Abdullah

a

aInstituteofMicroengineeringandNanoelectronics,UniversitiKebangsaanMalaysia,43600UKMBangi,Malaysia

bFacultyofElectronicandComputerEngineering,UniversitiTeknikalMalaysiaMelaka(UTeM),HangTuahJaya,76100DurianTunggal,Melaka,Malaysia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received30April2013 Accepted16September2013

Available online xxx

a

b

s

t

r

a

c

t

Thispaperhighlightsthestudyonvariousstructureofsilicon-on-insulator(SOI)opticalphase

modula-torsbasedonfreecarrierdispersioneffect.TheproposedmodulatorsemploytheforwardbiasedP-I-N

diodestructureintegratedinthewaveguideandwillbeworkingat1.55␮mopticaltelecommunications

wavelength.Threekindsofstructurearecomparedsystematicallywherethep+andn+dopingpositions

arevaried.ThemodelingandcharacterizationoftheSOIphasemodulatorswascarriedoutby3D

numer-icalsimulationpackage.Ourresultsshowthatthepositionofdopingregionshaveagreatinfluencesto

thedeviceperformance.Itwasdiscoveredthatthebeststructureinthisworkdemonstratedmodulation

efficiencyof0.015Vcmwithalengthof155␮m.

© 2013 Published by Elsevier GmbH.

1. Introduction

Recently, silicon-on-insulator (SOI) based optical modulator have earned an evolving interest due to its significant role in theinter-chipsopticalinterconnect.Silicon-on-insulator(SOI) sub-strates are widely usedto fabricate optoelectronic devices due tothehighindexcontrastbetweenthesilicon coreandthe sil-icacladding[1].Furthermore,siliconhasproventobearelatively cheapermaterialcomparedtootherIII–Vsemiconductor materi-alsand suitableforintegratedphotonicsystem.Inaddition,SOI hassignificantadvantagesinwhichithasverylowbendingloss [2].Therefore,morecompactdevicecanbematerializedwiththe utilizationofSOIasthesubstratematerial[3].

Phasemodulatorareusedtochangethedatasignalfrom electri-caldomaintoopticaldomain.Themosteffectivewaytomodulate thesignalinsilicon-basedmodulatorisbyfreecarrierdispersion effect.Thismechanismisusedduetothefactsthatunstrainedpure crystalsilicondoesnothaveelectro-opticeffectsuchusPockels effect,KerreffectandFranz–Keldysheffect[4].Tocreatethefree carrierdispersioneffectinsiliconmodulator,theelectrical struc-turehasbeeneitheraP-I-Ndiodeininjectionmode,aPNdiode indepletionmodeorwiththeuseofMOScapacitor.Thecarrier injectionP-I-Ndiodestructureiswidelyimplementedaselectrical

Correspondingauthorat:InstituteofMicroengineeringandNanoelectronics,

UniversitiKebangsaanMalaysia,43600UKMBangi,Malaysia. E-mailaddress:mardiana@utem.edu.my(B.Mardiana).

structureofmodulatorduetoitshighefficiencyandsmallestsize [5].

Inthispaper,theP-I-NSOIphasemodulatorsaredesignedin threestructureswithdifferentkindofdopingpositions.The three-dimensional(3D)semiconductorsimulationpackageSILVACOwas usedforthis purpose.In thispaper,the3Ddesignsareutilized becauseofthedesignsconsiderthedopingpositionsvariationsin theinz-axis.Therefore,thedispersioneffectoffreecarrierelectrons andholescanbeexaminedalongz-axis.

2. Theory

Themodelingof theopticalmodulator wasperformedusing acommercialnumericalsimulator3D-SILVACOwhichemploya drift-diffusionapproach[6].ThePoisson,carriercontinuityand cur-rentdensityequationsaresolvednumericallyinthreedimensions subjecttothedevice’sgeometryandboundaryconditionsimposed bythedevice’scontactsandbiasingconditions.Thebasicequation tobesolvedateachnodeduringasimulationtoolisgivenbythe Poissonequation:

(∈

)=−q[n−p+˙(N− A−N

+ D+N

− AA−N

+

DD)] (1) where istheelectrostaticpotential,εisepsilon,qisthe elec-troniccharge,nandpisthedensityofmovablecarriers,NA−andND+ arerespectivelytheconcentrationofionizeddonorsandrecipients respectivelywhiletheNAA− andNDD+ istheconcentrationoftraps carrierthatservesastherecipientanddonorionized.

Themodulatorsoperationismodeledbytakingintoaccountthe carriergenerationinopticalandthermal,recombinationprocess 0030-4026/$–seefrontmatter© 2013 Published by Elsevier GmbH.

(2)

Pleasecitethisarticleinpressas:B.Mardiana,etal.,AnalysesforvariousdopingstructuresofSOI-basedopticalphasemodulatorusingfree carrierdispersioneffect,Optik-Int.J.LightElectronOpt.(2013),http://dx.doi.org/10.1016/j.ijleo.2013.09.050

ARTICLE IN PRESS

GModel

IJLEO-53972; No.ofPages4

2 B.Mardianaetal./Optikxxx (2013) xxx–xxx

and theprocess of carrier driftand diffusion. Continuity equa-tionfortheelectronandholecarriers describestherelationship betweentheseprocessesandisgivenby;

∂n

∂t =Gn−Rn+ 1

q

· Jn (2)

∂p

∂t =Gp−Rp+ 1

q

· Jp (3)

whereGnandGpwhichistherateofproductionofelectronsand

holesresulting fromexternal effects suchasopticalexcitations inhigh-energyphotons,whileJnandJparetheelectronandhole

currentdensity.RnandRpisthecarrierrecombinationrate.

Generally,currentflowoccursinthecombinedprocessof diffu-sionanddriftinthepresenceofanelectricfield.Currentdensityfor electronsandholes,JnandJpisgivenbythedrift-diffusionmodel

as;

Jn=qnnE+qDn

n (4)

J

p=qppE+qDp

p (5) whereDnandDpisthediffusionconstantofelectronsandholes,

nandparetheelectronandholemobilityandEistheelectric

field.

Next,abriefexplanationofthephasemodulationmechanism oftheproposedmodulatorisgivenheretoexpresstheideaofthe proposeddeviceoperation.Phasemodulatorfabricationisdoneby incorporatingcomplementarymetal-oxidesemiconductor(CMOS) technology.Theelectronsandholeswillmovethroughthechannel asvoltageissupplied.Thecarrierconcentrationatinthewaveguide ismeasurebasedonthevalueofcarrierconcentration.The follow-ingequationexpressesthecalculationofrefractiveindexchange andfreecarrierabsorptionlossat1.55␮mwavelengthduetofree

carrierinjectionofthedevice[11]:thechangeofrefractiveindex, ncanbecalculated[7]:

n=−(8×10−22Ne+8.5×10−18(Nh)0.8) (6)

˛=8.5×10−18

Ne+6×10−18Nh (7)

whereNe isthechangeofthefreeelectronsconcentrationand

Nhisthechangeofthefreeholeconcentration.Then,the

propa-gatingopticalmode,niscalculatedfromtheequation[8]:

ϕ=2nL/0 (8)

whereL␲islengthoftheactiveregionofthemodulatorand0is opticalwavelength.

L=0/2n (9)

3. Methodology

Inthispaper,thestructureisbasedonaP-I-Nlateraloptical phasemodulatorfabricatedonsilicon-on-insulator(SOI)substrate [9].ThemodelsweredevelopedusingtheAthenaandDevedit mod-uleinSilvaco.Thefabricationprocessesbeginwiththeformation oftheSOI layer.Then, thesilicon layeris lightlydopedwith a backgroundconcentrationof1×1014cm−3.Theribwaveguideis formedusingtheetchingprocesswhereanoxidelayerisusedasa mask.Theribheightandwidthforthewaveguidestructure spec-ifiedtoobtainsinglemodebehavior.Theribstructureisdesigned tohave0.46␮minslabheight(h)and0.4␮minribwidth(W).

Theactiveareaofp-i-ndiodestructurewasfabricatedthroughthe ionimplantationprocesswhereboththep+ andn+ regionwere implantedwithboronandphosphorusrespectively.Thep+ type regionwasdopedwithboronconcentrationof5×1019cm−3ation

Fig.1. Thefirststructurewithonepairofwellsnexttothewaveguiderib.

Fig.2. Thesecondstructurewithtwopairsofwellsnexttothewaveguiderib.

implantationenergyof10keVandannealingtemperatureof600◦C.

Whilethen+ typeregionwasdopedwithphosphorous concen-trationof5×1019cm−3ationimplantationenergyof30keVand annealingtemperatureof600◦C.Finally,themetallizationprocess

wasdonetoformtheelectrodesofanodeandcathode.

ThreedifferentstructuresofSOIphasemodulatorweredesigned andstudiedinthiswork.Inthefirststructure,onlyonepairofp+ andn+wellsexistedadjacenttothewaveguideribasshownin Fig.1.Fig.2showsthesecondstructurewhere2pairsofwellswere placedattheregionnexttotheribwaveguide.Finallyinthethird structureasshowninFig.3,inadditiontothetwopairsofwells,an additionaltwopairsofdopedwellswereplacedonthewaveguide rib.

4. Resultsanddiscussion

Priortoelectricalcharacterization,theopticalanalysiswas car-ried out by using FDTD simulation to ensure the single mode behavioroftheproposeddevice.Fig.1showstheTE fundamen-talmodeprofileoftheproposeddeviceatwavelength1.55␮m.It

isproventhatthesinglemodebehaviorwasobtainedascalculated (Fig.4).

Theperformanceof thesiliconphase modulatorswere eval-uatedbyvaryingthepositionsofthen+ andp+dopingregions. Theeffectofdopingregionspositionwillbeinvestigatedbased ontotalfreecarrierconcentration,refractiveindexchange,free carrierabsorptionloss,sizeandthemodulationefficiencyofthe modulators.

Fig.5 shows the carrier concentrationof free electrons and holesofthethreedifferentstructuresofmodulatorswhenspecific

(3)

Pleasecitethisarticleinpressas:B.Mardiana,etal.,AnalysesforvariousdopingstructuresofSOI-basedopticalphasemodulatorusingfree carrierdispersioneffect,Optik-Int.J.LightElectronOpt.(2013),http://dx.doi.org/10.1016/j.ijleo.2013.09.050

ARTICLE IN PRESS

GModel

IJLEO-53972; No.ofPages4

B.Mardianaetal./Optikxxx (2013) xxx–xxx 3

Fig.4. Totalfreecarrierconcentrationagainstappliedvoltage.

Fig.5. Totalfreecarrierconcentrationalongx-axis.

voltageisapplied.Themeasurement offreeelectronsandholes wastakenalongxaxisfromx=1.75tox=2.15whichistheareaof opticalmodepropagateinthedevice.Itisclearlyseenthat struc-ture1andstructure3gavehigherdensityoffreecarriercompareto structure2.Thishappenedduetointerdigitateddopingpositionof p+dann+regioninstructure2andstructure3causefreeelectrons andholestomoveinmanydirectionsinsteadofonedirectionas instructure1.Therefore,theexistingoffreeelectronsandholesin theopticalmodeguidingregionarereducing.Theresultsproofthat theconcentrationofexistingfreecarrierintheactiveregioncanbe manipulatedbythepositionofdopingregionn+andp+.Thus,the determinationofdopingpositionsareveryimportantindesigning theP-I-NSOIphasemodulatorbecauseitwillinfluencetheway howthefreeelectronsandholesmoveintheactiveregionofthe device.

Fig.6shows therelationshipbetweendrivevoltageandthe refractiveindexchange(n)at1.55␮mwavelength.Ingeneral,

thetotalrefractiveindexchange(n)increasesastheapplied volt-ageishigher.Forinstanceinstructure1,byvaryingtheapplied voltagefrom0.7Vto1Vcausedalmost0.005changesinrefractive indexofthewaveguide.Thishappenedduetomoreinjectedfree holesandelectronsmovedfromthedopingregiontotheoptical guidanceareawhenmoreappliedvoltagewassupplied.Thus,this scenariocausestheincreaseinthefreecarrierdensityand result-ingimprovementofrefractiveindexchange(n)intheguidance regionofthedevice.Itisfoundthat,thestructure1hasthelargest effectontherefractiveindexchange(n),followedbythestructure 3andthestructure2.

Fig.6.Refractiveindexchangeforphasemodulatorswithvariouswaveguide struc-tures.

Fig.7. Freecarrierabsorptionlossforphasemodulatorswithvariouswaveguide structures.

Table1

Modulationefficiencyandlengthofmodulator.

Structure 1 2 3

Length(cm) 0.0155 0.0261 0.0205

ModulationEfficiency(Vcm) 0.013 0.023 0.018

Fig. 7 shows the comparison of the absorption lossesvalue withvariousstructureofSOIP-I-Nphasemodulators.Theresults indicated that, upon increasing the drive applied voltage, the absorptionlossincreasedgradually.Structure1producedhighest freeabsorptionlosscomparedtostructure2andstructure3.Even thoughstructure1isproventohavethehighestrefractiveindex change(n)intheprevioussectionbutthisstructureissuffering frombiggestabsorptionloss(˛).Therefore,inseekingabalanced responsebetweenthehighrefractiveindexchangeandlowfree carrierabsorptionloss,adesigntradeoffbetweenthetwoisneeded inordertoproduceagoodSOIphasemodulator.

Table1showsthecomparisonofestimatedlengthandthe mod-ulationefficiency.Themodulationefficiencyisaveryimportant parameterforcharacterizingthemodulatorperformanceandits valuecanbedeterminedbyoverlapping themodulationregion withtheopticalfield.Theoptimizedinteractivelengthofvarious structuresofphasemodulatorsinvestigatedinthisworkisobtain fromthevalueofrefractiveindexchange(n)inFig.6and calcu-latedfromEq.(9).Themodulationefficiencycanbepredictedby FigureofMerit(FoM)VL␲,whereV␲isthevoltagetoachievea␲

phaseshift.ThelowerthevalueofthisFoM,themoreefficientthe modulatoris.Resultshowsthatasmallestdevicecanberealized withstructure 1andresultingthebestmodulationefficiencyof 0.00018Vcm.Asacomparison,themodulationefficiencyof struc-ture1is50%betterthanstructure3%and82%betterthanstructure 2.

5. Conclusion

TheSOIphasemodulatorsbasedonP-I-Ndiodestructurehas beenmodeledusinga3DSILVACOsimulationpackage.Wehave analyzedtheperformanceofmodulatorswithvariousstructureof dopingpositions.Wehaveshownthatdopingpositionsofn+andp+ canbeusedtomanipulatethedensityoffreeelectronsandholesin adevice.Inseekingabalancedresponsebetweenthehighrefractive indexchangeandcarrierabsorptionloss,adesigntradeoffbetween thetwoisneededtobetakenintoconsiderationdependingonthe applicationofthemodulator.

Acknowledgments

(4)

Pleasecitethisarticleinpressas:B.Mardiana,etal.,AnalysesforvariousdopingstructuresofSOI-basedopticalphasemodulatorusingfree carrierdispersioneffect,Optik-Int.J.LightElectronOpt.(2013),http://dx.doi.org/10.1016/j.ijleo.2013.09.050

ARTICLE IN PRESS

GModel

IJLEO-53972; No.ofPages4

4 B.Mardianaetal./Optikxxx (2013) xxx–xxx

References

[1]A.S.Liu,L.LiO,D.Rubin,H.Nguyen,B.Ciftcioglu,Y.Cherit,N.Izhaky,M.Panicia, High-speedopticalmodulationbasedoncarrierdepletioninasilicon wave-guide,Opt.Express15(2007)660–668.

[2]C.A.Barrios,M.Lipson,Electricallydrivensiliconresonantlightemittingdevice basedonslot-waveguide,J.Appl.Phys.96(2005)6008–6015.

[3]C.E.Png,S.P.Chan,S.T.Lim,G.T.Reed,OpticalphasemodulatorsforMHzand GHzmodulationinsilicon-on-insulator(SOI),J.LightwaveTechnol.22(2004) 1573–1582.

[4]C.Li,L.Zhou,A.W.Poon,Siliconmicroringcarrier-injection-based modula-tors/switcheswithtunableextinctionratiosandOR-logicswitchingbyusing waveguidecross-coupling,Opt.Express15(2007)5069–5076.

[5]G.T.Reed,A.P.Knights,SiliconPhotonics–AnIntroduction,JohnWiley&Sons, UK,2004.

[6]F.Y.Gardes,D.J.Thomson,N.G.Emerson,G.T.Reed,40Gb/ssiliconoptical mod-ulators,Opt.Express12(2011)11804–11813.

[7]H.Xu,X.Xiao,X.Li,Y.Hu,Z.Li,T.Chu,Y.Yu,J.Yu,Highspeedsilicon Mach-ZehndermodulatorbasedoninterleavedPNjunctions,Opt.Express20(2012) 15093–15099.

[8]B.Mardiana,A.R.Hanim,H.Hazura,S.Shaari,P.S.Menon,H.danAbdullah, ActiveSOIopticalring basedonfreecarrierinjection,J.Adv.Mater.Res. 403–408(2012)758–761.

[9]M.Ziebell,D.M.Morini,G.Rasigade,J.M.Fédéli,P.Crozat,E.Cassan,D. Bou-ville,L.Vivien,High-speedringresonatorsiliconopticalmodulatorbasedon interleavedPNjunctions,Opt.Express20(2012)10591–10596.

Gambar

Fig.holes 5 shows the carrier concentration of free electrons and of the three different structures of modulators when specific
Fig. 4. Total free carrier concentration against applied voltage.

Referensi

Dokumen terkait

Hasil Penelitian menunjukan bahwa Bank BNI melakukan kredit sebagai bank Green Banking terdiri dari tiga jenis kredit yaitu yang pertama memberikan kredit yang memang

[r]

Kata gabung yang tepat untuk melengkapi kalimat tersebut adalah... 5

(C) Diberituhakan bahwa semua siswa SD Pelita pada Sabtu, 25 Oktober 2008 akan mengikuti lomba lari. (D) Diberitahukan kepada siswa SD Pelita, bahwa kegiatan lomba

Judul Penelitian : ANALISIS BEBERAPA ASPEK REPRODUKSI KEPITING BAKAU (Scylla serrata) Dl PERAIRAN SEGARA ANAKAN, KABUPATEN CILACAP, JAWA TENGAH.. Nama Mahasiswa :

Sikap, norma subjektif, persepsi kendali perilaku, berat badan per umur, kasih sayang, dan waktu tidur berhubungan tidak secara langsung dengan pijat bayi tetapi

Dalam penulisan ini penulis menggunakan metode-metode sebagai berikut: 1) Metode pendekatan yang dilakukan dalam penelitian ini adalah pendekatan doktrinal, karena

Garis berat pada segitiga adalah garis yang berawal dari salah satu titik sudut dan membagi 2 bagian yang sama panjang sisi dihadapannya. Garis tinggi pada segitiga