• Tidak ada hasil yang ditemukan

Analisis struktur 2

N/A
N/A
Protected

Academic year: 2017

Membagikan "Analisis struktur 2"

Copied!
884
0
0

Teks penuh

(1)

1 !

Deflected Shape of Structures

!

Method of Consistent Deformations

!

Maxwell’s Theorem of Reciprocal

Displacement

(2)

2 -M

P

+M

-M Deflection Diagrams and the Elastic Curve

∆ = 0

θ = 0

fixed support

∆ = 0

roller or rocker

support

P

θ

(3)

3 -M

P

∆ = 0

pined support
(4)

4 Moment diagram

P

inflection point

inflection point • Fixed-connected joint

(5)

5 P

• Pined-connected joint

pined-connected joint

(6)

6 P

inflection point

(7)

7 -M

+M

x M

P2

P1

A B C D

(8)

8 x

-M

+M P1

P2

(9)

9

+

A C B

A C B

P

=

A C B

P

∆´B

fBB x R B

1 ∆´B + fBB RB = ∆B = 0

Method of Consistent Deformations

Beam 1 DOF

RB Ay

(10)

10 w

w

=

+

+

= ∆1 ∆2 ∆´1

∆´2

R1 R2

×R2

Compatibility Equations. ∆´1 + f11R1 + f12R2 = ∆1 = 0

×R1

f12

f22

0 0 Beam 2 DOF

∆´2 + f21R1 + f22R2 = ∆2 = 0

1

1 1

4 3

5 2

∆´1 ∆´2

f11 f21

+

(11)

11 w

P1 P2

=

w

P1 P2

+

+

+

1

1 f32 f22

1

Compatibility Equations.

θ

´1 + f11M1 + f12R2 + f13R3 = θ1 = 0

×R2

×R3

=

θ

1

23 f31

f33 f23

f13

2 4

6 1

5 3

∆´2

θ

´

1 ∆´3 Beam 3 DOF

∆´2 + f21M1 + f22R2 + f23R3 = ∆2 = 0 ∆´3 + f31M1 + f32R2 + f33R3 = ∆3 = 0

×M1

θ

´1 ∆´2 ∆´3

+

f11 f12 f13 f21 f22 f23 f31 f32 f33

M1 R2

R3

0 0 0

(12)

12 If ∆1 = ∆2=……= ∆n = 0 ;

or

[∆´] + [f][R] = 0

[R] = - [f]-1[´] Compatibility Equation for n span.

∆´1 + f11R1 + f12R2 + f13R3 = ∆ 1 ∆´2 + f21R1 + f22R2 + f23R3 = ∆2 ∆´n + fn1R1 + fn2R2 + fnnRn = ∆n

∆ ´1 ∆´2

+

f11 f12 R1 R2

=

0 0 ∆´ n

f13 f21 f22 f23

f n 1 f n 2 fn n R

n 0

[fij] = Flexibility matrix dependent on

Equilibrium Equations

[Q] = [K][D] + [Qf]

Stiffness matrix

Fixed-end force matrix

Solve for displacement [D];

[D] = [K]-1[Q] - [Qf]

GJ EA

EI

1 , 1 , 1

ij ij

(13)

13

A B

A B

EI

1=i 2=j

Mj = mj f12 = fij

f11 = fii

f22 = fjj Mi = mi

Maxwell’s Theorem of reciprocal displacements

1

1 f21 = fji

=

EI dx M m fij i j

=

EI dx m mi j

=

EI dx M m fji j i

=

EI dx m mj i

(14)

14 Example 1

Determine the reaction at all supports and the displacement at C.

A

B C

50 kN

(15)

15 50 kN

=

∆´B +

fBB

1 kN

x RB A

B C

50 kN

6 m 6 m

SOLUTION

RB MA

RA

0

' + =

B fBBRB ---(1) Compatibility equation :

• Principle of superposition

∆´B

(16)

16 Conjugate beam Conjugate beam 50 kN

∆´B

Real beam

50 kN 300 kN•m

6 m 6 m

/EI

300 900/EI

6 + (2/3)6 = 10 m

9000/EI • Use conjugate beam in obtaining ∆∆∆∆´B and fBB

900/EI

12 /EI

72/EI

(2/3)12 = 8 m

576/EI fBB

1 kN

Real beam 1 kN

12 kN•m

72/EI

∆´B = M´B = -9000/EI ,

fBB = M´´B = 576/EI,

(17)

17 RB = +15.63 kN, (same direction as 1 kN)

0 )

576 ( 9000

:− + =

+ RB

EI EI

50 kN

∆´B 50 kN

300 kN•m

x RB = 15.63 kN

=

A

B C

50 kN

15.63 kN 34.37 kN

34.37 kN•m

fBB

1 kN 1 kN

12 kN•m

(18)

18 93.6/EI

-113/EI

6 m 6 m

A B

C

50 kN

Use conjugate beam in obtaining the displacement

113 kN•m

34.4 kN 15.6 kN

EI EI

EI

M'C = 281(2)− 223(6) = −776

↓ −

= =

∆ ' 776, EI M C

C

Real Beam

Conjugate Beam M

(kN•m) x (m)

3.28 m 6 m 12 m

93.6

-113

223/(EI)

4 m 2 m

C

C 223/(EI)

(19)

19 10 kN

A

C

B

4 m

3EI 2EI

2 m 2 m

Example 2

(20)

20

+

10 kN

=

1 kN

Compatibility equation:

∆´B + fBBRB = ∆B = 0

x RB ∆´B

fBB 10 kN

A

C

B

4 m

3EI 2EI

(21)

21 Conjugate Beam 10 kN

A

C

B

4 m

3EI 2EI

2 m 2 m

Real Beam

10 kN 40 kN•m

• Use conjugate beam in obtaining ∆´B

26.66/EI

177.7/EI x (m)

V (kN) 10 10

+

x (m) M

(kN•m) 40

-40/3EI = 13.33/EI

(22)

22 Conjugate Beam A

C

B

4 m

3EI 2EI

2 m 2 m

Real Beam 1 kN

4/(2EI)=2EI • Use conjugate beam for fBB

1 kN 8 kN•m

x (m) V (kN)

--1 -1

x (m) M

(kN•m)

8

4 +

8 3EI =

2.67 EI

4/(3EI)=1.33EI

60.44/EI 12/EI

(23)

23

+

10 kN

=

1 kN x RB ∆´B

fBB 10 kN

A

C

B

4 m

3EI 2EI

2 m 2 m

Compatibility. equation:

∆´B + fBBRB = ∆B = 0

RB = +2.941 kN, (same direction as 1 kN) 0

) 44 . 60 ( 7 . 177

:− − + =

+ RB

(24)

24 10 kN

A

C

B

4 m

3EI 2EI

2 m 2 m 2.94 kN

7.06 kN 16.48 kN•m

7.06

-2.94 -2.94

+

- x (m)

V (kN)

C

-16.48

11.76

-+ x (m)

M (kN•m)

2.33 m

1.67 m

(25)

25 10 kN

A

C

B

4 m

3EI 2EI

2 m 2 m

↓ −

= −

= 3.263(0.555) 6.413(3.222) 18.85,

EI EI

EI

2.941 kN

7.059 kN 16.48 kN•m

C • Use the conjugate beam for find ∆∆∆∆C

Real beam

↓ −

= × − = =

∆ 18.85 ,

) 5 200 (

85 . 18

' mm

M C

C 16.48

3EI

11.76 3EI

11.76 2EI 2.335 m

1.665 m

Conjugate beam

6.413 EI

3.263 EI

(1.665)/3=0.555 m

(26)

26 Example 3

Draw the quantitative Shear and moment diagram and the qualitative deflected curve for the beam shown below.EI is constant. Neglect the effects of axial load.

A B

4 m 4 m

(27)

27

α

BB

α

AB

α

BA

α

AA

θ

´B

θ

´A

θ

´A

1 kN•m 5 kN/m

1 kN•m

A B

4 m 4 m

5 kN/m SOLUTION

• Principle of superposition

θ

´B

=

+

α

AA

α

BA A

M ×

α

BB

B M ×

α

AB

+

Compatibility equations:

θ

A

θ

B

A M ×

B M × A

M ×

B M ×

) 1 ( '

0 = + + −−−

= A AA A AB B

A θ f M f M

θ

) 2 ( '

0 = + + −−−

= B BA A BB B

B θ f M f M

(28)

28 • Use formula provided in obtaining

θ

´A,

θ

´B,

α

AA,

α

BA,

α

BB,

α

AB

Note: Maxwell’s theorem of reciprocal displacement, αAB = αBA 1 kN•m

α

AA

α

BA

8 m 1 kN•m

α

BB

α

AB 8 m EI EI EI L Mo AA 667 . 2 3 ) 8 ( 1

3 = =

=

α

EI EI EI L Mo BA 333 . 1 6 ) 8 ( 1

6 = =

=

α

EI EI EI L Mo BB 667 . 2 3 ) 8 ( 1

3 = =

=

α

EI EI EI wL B 67 . 46 384 ) 8 )( 5 ( 7 384 7 ' 3 3 = = =

θ

EI EI EI wL A 60 128 ) 8 )( 5 ( 3 128 3 ' 3 3 = = =

θ

4 m 4 m

θ

´B

θ

´A

θ

´A

5 kN/m

θ

´B

EI EI EI L Mo AB 333 . 1 6 ) 8 ( 1

6 = =

=

(29)

29

α

BB

α

AB

Real Beam 1 kN•m

α

BB

α

AB

8 m

α

BA

Real Beam 1 kN•m

α

AA

α

BA

α

AA

8 m

Conjugate Beam 4/EI

1/EI

(1/8) (1/8)

2.67/EI 1.33/EI

(1/8) (1/8)

Conjugate Beam

1/EI

4/EI

1.33/EI 2.67/EI

EI V A

AA

667 . 2 ' = − =

α

EI V B

BB

667 . 2 ' = =

α

EI V A

AB

333 . 1 ' = − =

α

EI V B

BA

333 . 1 ' = =

α

(30)

30 1 kN•m 5 kN/m 1 kN•m A B 4 m 4 m 5 kN/m

=

+

+

θA θB

B M × EI AA 667 . 2 =

α

A M × EI V B BA 333 . 1 ' = =

α

EI B 67 . 46 ' =

θ

EI A 60 ' =

θ

EI AB 333 . 1 =

α

EI BB 667 . 2 =

α

Solve simultaneous equations, MA = -18.33 kN•m, + MB = -8.335 kN•m, + Compatibility equation

+ 60 +(2.667) A +(1.333)MB =0

EI M

EI EI

+ ) 0

667 . 2 ( ) 333 . 1 ( 67 . 46 = +

+ A MB

EI M

(31)

31 MA = -18.33 kN•m,

MB = -8.335 kN•m,

A B

4 m 4 m

5 kN/m

18.33 kN•m 8.335 kN•m

RB RA

RB = 3.753 kN, Ra = 16.25 kN, + ΣMA = 0: 18.33−20(2)+ RB(8)−8.355= 0

ΣFy = 0: +

3.753

0 20 = −

(32)

32

A B

4 m 4 m

5 kN/m

18.33 kN•m 8.36 kN•m

3.75 kN 16.25 kN

V diagram

M diagram

Deflected Curve

-3.75 16.25

3.25 m

-18.33

6.67

-8.36 8.08

(33)

33 Example 4

Determine the reactions at the supports for the beam shown and draw the quantitative shear and moment diagram and the qualitative deflected curve. EI is constant.

A

C

4 m 4 m

2 kN/m

(34)

34 1 kN ) 2 ( 0 ' ' ' ) 1 ( 0 ' ' ' − − − = + + ∆ − − − = + + ∆ C CC B BC C C CB B BB B R f R f R f R f Compatibility equations: • Principle of superposition

A C 4 m 4 m 2 kN/m B 4 m

4 m B

A C 2 kN/m B ' ∆ C ' ∆ A C 4 m

4 m B

BB

f ' f 'CB

1 kN

A 4 m B 4 m C

B R × C R × BC

(35)

35 A C A C B A C 2 kN/m 1 kN • Solve equation

A C 4 m 4 m 2 kN/m B 1 kN EI B 64 ' = − ∆ EI C 33 . 149 ' = − ∆ EI

f 'BB = 21.33 f CB EI 33 . 53 ' =

EI f 'BC = 53.33

EI f 'CC =170.67

) 1 ( 0 33 . 53 33 . 21 64 − − = + +

B RC

EI R EI EI Compatibility equations: ) 2 ( 0 67 . 170 33 . 53 33 . 149 − − = + +

B RC

(36)

36 • Diagram

A

C

4 m 4 m

2 kN/m

B

3.71 kN 0.29 kN kN

Ay =8+0.29−3.71= 4.58 m

kN MA

• =

− +

= 48 . 3

) 4 ( 71 . 3 ) 8 ( 29 . 0 ) 2 ( 8

x (m) V (kN)

4.58

0.29

-3.42

2.29 m

x (m) M (kN•m)

-3.48

1.76

-1.16

x (m) Deflected shape

(37)

37 Example 5

Draw the quantitative Shear and moment diagram and the qualitative deflected curve for the beam shown below.

(a) The support at B does not settle (b) The support at B settles 5 mm. Take E = 200 GPa, I = 60(106) mm4.

16 kN

2 m 2 m 4 m

(38)

38 16 kN

2 m 2 m 4 m

A B C

16 kN SOLUTION

• Principle of superposition

∆´B

1 kN fBB

B R × ∆´B

fBB

B R ×

=

+

B = 5 mm

Compatibility equation : + ∆B =0 = ∆'B+ fBBRB ---(1) : no settlement B

BB B

B =− m = ∆ + f R

(39)

39 16 kN

∆´B Real

beam

A B

C

• Use conjugate beam method in obtaining ∆´B

2 m 2 m 4 m

12 kN

diagram

16

Conjugate beam

EI 24 EI

24

EI 72

3 4

3 2

2 m 4 m

24

EI 40 EI

56

4 kN

0 ) 4 ( 40 )

3 4 ( 32

'' + − =

EI EI

M B EI 16

EI 32

EI 40 V´´B

M´´B

3 4

4 3 2

+ ΣMB = 0:

↓ −

= =

∆' '' 117.33, EI M B

B

∆´B Real

(40)

40 Real

beam

1 kN

4 m 4 m

A

B

C fBB

• Use conjugate beam method in obtaining fBB

0.5 kN 0.5 kN

diagram

-2 Conjugate

beam

EI 2 − EI

4 −

EI 4 −

EI 4 EI

4

v´´B m´´B

EI 4 −

EI 4 3

4

4 3 2

0 ) 4 ( 4 ) 3 4 ( 4

'' − + =

EI EI

m B + ΣMB = 0:

↑ =

= '' 10.67, EI m

(41)

41 • Substitute ∆´B and fBB in Eq. (1)

, 67 . 10 33

. 117 0

; RB

EI EI + −

= ↑

+ R

B = 11.0 kN,

xRB = 11.0 kN

=

16 kN

A B C

11.0 kN

= 6.5 kN RC = 1.5 kN

RA

no settlement

↓ −

=

∆' 117.33, EI B

↑ =10.67,

EI fBB

16 kN

12 kN ∆´B 4 kN 1 kN

+

0.5 kN 0.5 kN

(42)

42 • Substitute ∆´B and fBB in Eq. (2)

B R EI EI

m 117.33 10.67 005

. 0

; − = − +

↑ +

B R EI

m) 117.33 10.67 005

. 0

(− =− +

RB = 5.37 kN,

B R 67 . 10 33 . 117 )

60 200 )( 005 . 0

(− × = − +

xRB = 5.37

=

16 kN

A B C

5.37 kN

= 9.31 kN RC = 1.32 kN

RA

with 5 mm settlement

↓ −

=

∆' 117.33, EI B

↑ =10.67,

EI fBB

16 kN

12 kN ∆´B 4 kN 1 kN

+

0.5 kN 0.5 kN

(43)

43 • Quantitative shear and bending diagram and qualitative deflected curve

16 kN

A B C

2 m 2 m 4 m

11 kN

6.5 kN 1.5 kN

V diagram

6.5

-9.5

1.5

M diagram

13

-6

+

-Deflected Curve

16 kN

B = 5 mm

A B C

2 m 2 m 4 m

5.37 kN

9.31 kN 1.32 kN

V diagram

9.31

-6.69

-1.32

M diagram

18.62

5.24

+

Deflected

Curve

(44)

44 Example 6

Calculate supports reactions and draw the bending moment diagrams for (a) D2 = 0 and (b) D2 = 2 mm.

4 m 6 m

w 2 kN/m

(45)

45

+

2 kN/m

=

Compatibility equation: ∆´2 + f22R2 = ∆2

∆´2

1 f22

×R2

4 m 6 m

w 2 kN/m

1 2 3

(46)

46

4 m 6 m

w 2 kN/m

1 2 3

12.92 kN

4.83 kN 2.25 kN

Compatibility.equation: -6.2+ 0.48R2 = -2

R2 = 8.75 kN

4 m 6 m

w 2 kN/m

1 2 3

For 2 = 2 mm For 2 = 0

Compatibility equation: -6.2+ 0.48R2 = 0

R2 = 12.92 kN

x (m) V

(kN)

2.25

-5.75 7.17

-4.83 +

-1.125 m

2.415 m

x (m) V

(kN)

2.375 m

3.25 m -+

+

-4.75 5.5

-3.25

-6.5

x (m) M

(kN•m)

1.27

-7

5.85 +

-+

x (m) M

(kN•m)

5.64

3

10.56

+ +

6.5 kN

(47)

47 L

w Basic Beams: Single span

wL/2

- wL/2 V

wL2/8 M

APPENDIX

wL/2 L/3 L/3 wL/2

1

EI wL 384

(48)

48 • Find ∆∆∆∆1 by Castigliano’s

w

L

L/2 L/2

x1 x2

1

2 3

P 2 2 P wL + 2 2 P wL + 2 2 P wL + x2 w V2 M2 2 2 P wL

+ x1 V

1 M1 w

+ ΣΜ = 0;

(49)

49 0

+ ∂ ∂ ∂ = ∆ = ∆ 2 / 0 2 2 2 2 / 0 1 1 1 max

1 ( ) ( )

L L EI dx M P M EI dx M P M

= 2 / 0 1 1 1) ( 2 L EI dx M P M 2 1 2 1 1 ) 2 2 (

2 x M

P wL wx

M = − + + =

1 1 2 1 2 / 0

1 ) )

(50)

50 L

L /2 L /2

P 1

P/2 P/2

V

P/2

- P/2 +

-PL/4 M

EI L f

P f EI PL

48 48

3

11 11

3

11 = = → =

δ

(51)

51 L = 2l

l = L/2 l = L/2 1

w

1.25 wl

0.375 wl 0.375 wl

0.375 wl

-0.375 wl -0.625 wl

0.625 wl +

-+

-0.070 wl2 0.070 wl2

-0.125 wl2

+ +

-EI

wl 185 4

max = ∆

EI wl 185 4

max = ∆

(52)

52 l = L/3 l = L/3 l = L/3

1

w 2

1.1wl 1.1wl

0.4wl 0.4wl

max = wl4 145 EI

V 0.4wl

- 0.4wl - 0.6wl

0.5wl

-0.5wl 0.6wl

+

-+

-+

-0.08 wl2 0.08 wl2

0.025 wl2

-0.1 wl2 -0.1 wl2 +

-

-+ +

(53)

1

!

Trusses

!

Vertical Loads on Building Frames

!

Lateral Loads on Building Frames: Portal

Method

!

Lateral Loads on Building Frames: Cantilever

Method Problems

(54)

2

P1 P2

(a) Trusses

R1 R2

a

a

(b)

R1

a

a

V = R

1 F

1

F

2

F

b

F

a

Method 1 : If the diagonals are intentionally designed to be long and slender, it is reasonable to assume that the panel shear is resisted entirely by the tension diagonal, whereas the compressive diagonal is assumed to be a zero-force member.

(55)

3

Example 1

[image:55.842.263.520.257.420.2]

Determine (approximately) the forces in the members of the truss shown in

Figure. The diagonals are to be designed to support both tensile and compressive forces, and therefore each is assumed to carry half the panel shear. The support reactions have been computed.

10 kN 20 kN

4 m 4 m

3 m

A B C

D E

(56)

4

+ ΣMA = 0: FFE(3) - 8.33cos36.87o(3) = 0 FFE = 6.67 kN (C)

ΣFy = 0:

+ 20 - 10 - 2Fsin(36.87o) = 0 F = 8.33 kN

FFB = 8.33 kN (T)

FAE = 8.33 kN (C)

+ ΣMF = 0: FAB(3) - 8.33cos36.87o(3) = 0 FAB = 6.67 kN (T)

ΣFy = 0:

+ FAF - 10 - 8.33sin(36.87o) = 0 FAF = 15 kN (T)

10 kN 20 kN

4 m 4 m

3 m

A B C

D E

F

10 kN 20 kN

V = 10 kN F

FE

F AB F

AE= F

F

FB= F

θ

= 36.87o

10 kN 3 m

A F

20 kN

θ

θ

6.67 kN 8.33

F AF

10 kN

θ

(57)

5

C D

10 kN

3 m

θ

θ

ΣFy = 0:

+ 10 - 2Fsin(36.87o) = 0

F = 8.33 kN

FDB = 8.33 kN (T)

FEC = 8.33 kN (C)

+ ΣMC = 0: FED(3) - 8.33cos36.87o(3) = 0

FED = 6.67 kN (C)

+ ΣMD = 0: FBC(3) - 8.33cos36.87o(3) = 0 FBC = 6.67 kN (T)

θ

= 36.87o

V = 10 kN

θ

= 36.87o

D

θ

6.67 kN

8.33 kN

F DC

ΣFy = 0:

+ FDC - 8.33sin(36.87o) = 0

FDC = 5 kN (C)

ΣFy = 0:

+

FEB = 2(8.33sin36.87o) = 10 kN (T)

E

θ θ 6.67 kN

6.67 kN

8.33 kN 8.33 kN

θ

= 36.87o

F EB

FED

FBC

F = F EC F = F

(58)

6

Example 2

[image:58.842.237.597.213.420.2]

Determine (approximately) the forces in the members of the truss shown in Figure. The diagonals are slender and therefore will not support a compressive force. The support reactions have been computed.

40 kN 40 kN

4 m

A B C

G H

J

D E

F I

10 kN 20 kN 20 kN 20 kN 10 kN

(59)

7

F

BH = 0

FIH

FBC FIC

40 kN 4 m

A J

10 kN

45o

V = 10 kN

F

BH = 0

ΣFy = 0:

+ 40 - 10 - 20 - FICcos 45o = 0 FIC = 14.14 kN (T) + ΣMA = 0: FJI(4) - 42.43sin 45o(4) = 0

FJI = 30 kN (C)

+ ΣMJ = 0: FAB(4) = 0

FAB = 0

0 0

FJA

40 kN

θ

A

ΣFy = 0:

+ FJA = 40 kN (C)

F

AI = 0

FJI

FAB FJB

V = 30 kN

ΣFy = 0:

+ 40 - 10 - FJBcos 45o = 0 FJB = 42.43 kN (T)

F

AI = 0

40 kN 4 m

A B

J I

10 kN 20 kN

4 m

(60)

8

+ ΣMB = 0:

FIH(4) - 14.14sin 45o(4) + 10(4) - 40(4) = 0

FJH = 40 kN (C)

FBC = 30 kN (T)

+ ΣMI = 0: FBC(4) - 40(4) + 10(4) = 0

FBH = 0

FIH

FBC FIC

V = 10 kN

40 kN 4 m

A B

J I

10 kN 20 kN

4 m

45o

B 30 kN

0

0 42.3 kN FBI

45o

45o 45o

ΣFy = 0:

+ FBI = 42.3 sin 45o = 30 kN (T)

ΣFy = 0:

+

FBI = 2(14.1442.3 sin 45o)= 20 kN (C)

C 30 kN

30 kN

14.14 kN 14.14 kN FCH

45o

(61)

9

Vertical Loads on Building Frames

(62)

10

w

A B

L (b)

0.21L 0.21L

point of zero moment

approximate case w

L

(d) assumed points of zero moment

0.1L 0.1L

model w

(e) • Assumptions for Approximate Analysis

0.1L 0.8L 0.1L w

A B

L

Simply supported

(c)

column column

girder w

A B

L (a)

Point of zero moment

(63)

11

Example 3

Determine (approximately) the moment at the joints E and C caused by members EF and CD of the building bent in the figure.

B D

F

A C

E

(64)

12

1 kN/m

1 kN/m

4.8 m 4.8 kN

0.6 m

0.6 kN 2.4 kN

3 kN 0.6(0.3) + 2.4(0.6) = 1.62 kN•m

0.6 m 0.6 kN

2.4 kN

3 kN

1.62 kN•m

0.1L=0.6 m 0.6 m 4.8 m

(65)

13

P

h

l (a)

P

h

l (b) Portal Frames and Trusses

• Frames: Pin-Supported

∆ ∆

assumed hinge

h L/2

(c) P

h

L/2

Ph/l

P/2

Ph/l

P/2

P/2 P/2

Ph/l

Ph/2 Ph/2

Ph/2 Ph/2

(d)

(66)

14

h/2 • Frames : Fixed-Supported

P

h

l (a)

P/2

Ph/2l P/2

Ph/2l

P

h

l (b)

∆ ∆

assumed hinges

(c)

h/2 L/2

P

h/2

L/2

P/2 P/2

Ph/2l

P/2

Ph/2l

P/2

Ph/2l

Ph/2l

Ph/2l

P/2 P/2

Ph/2l

Ph/4 Ph/4

Ph/4 Ph/4

Ph/4 Ph/4

(d)

(67)

15

• Frames : Partial Fixity

P

(b) P

h

l (a)

h/3 h/3

assumed hinges

θ

θ

• Trusses

P

h

l (a)

P

l (b)

P/2 P/2

h/2

assumed hinges

(68)

16

Example 4

Determine by approximate methods the forces acting in the members of the Warren portal shown in the figure.

40 kN

7 m

8 m 2 m

4 m

A B C

4 m 2 m

2 m

D E F

H G

(69)

17

40/2 = 20 kN = V

N N

20 kN = V

I 3.5 m

A

V = 20 kN

N N

V = 20 kN

V = 20 kN

N N

20 kN = V

M M

40 kN

3.5 m 2 m

B C

4 m 2 m

2 m

D E F

H G

J K

+ ΣMJ = 0:

N(8) - 40(5.5) = 0

N = 27.5 kN

+ ΣMA = 0:

M - 20(3.5) = 0

(70)

18

20 kN

27.5 kN 40 kN

3.5 m 2 m

B C

2 m

D

J

FCD

FBD FBH 45o

+ ΣMB = 0: FCD(2) - 40(2) - 20(3.5) = 0

FCD = 75 kN (C)

+ ΣMD = 0:FBH(2) + 27.5(2) - 20(5.5) = 0

FBH = 27.5 kN (T)

ΣFy = 0:

+ -27.5 + FBDcos 45o = 0 FBD = 38.9 kN (T)

+ ΣMG = 0: FEF(2) - 20(3.5) = 0

FEF = 35 kN (T)

+ ΣME = 0:FGH(2) + 27.5(2) - 20(5.5) = 0

FGH = 27.5 kN (C)

ΣFy = 0:

+ 27.5 - FEGcos 45o = 0 FEG = 38.9 kN (C)

3.5 m 2 m

27.5 kN 20 kN = V

2 m

E F

G

K

FGH FEG

FEF

(71)

19

ΣFy = 0:

+ FDHsin 45o - 38.9sin 45o = 0

FDH = 38.9 kN (C) D

75 kN

38.9 kN

FDE

FDH

x y

45o 45o

75 - 2(38.9 cos 45o) - F

DE = 0

FDE = 20 kN (C)

ΣFx = 0:

+

H 27.5 kN 27.5 kN

38.9 kN FHE

x y

45o 45o

ΣFy = 0:

+ FHEsin 45o - 38.9sin 45o = 0

(72)

20

= inflection point P

(a)

Lateral Loads on Building Frames: Portal Method

(b)

(73)

21

Example 5

Determine by approximate methods the forces acting in the members of the Warren portal shown in the figure.

4 m 4 m 4 m

5 kN

3 m

A B

C D

E

F G

(74)

22

5 kN

1.5 m

B D F G

I J K L

M N O

4 m 4 m 4 m

5 kN

3 m

A B

C D

E

F G

H

I J K L

M N O

V 2V 2V V

Iy Jy Ky Ly

ΣFx = 0: 5 - 6V = 0

(75)

23

L y

0.625 kN = 0.625kN

K

y = 0

4.167 kN

0.625 kN

I

y = 0.625kN

2.501kN

0.625kN

J

y = 0

1.5 m A I 0.625 kN 0.833kN 0.625 kN 0.833 kN H L 1.5 m 0.833 kN

0.625 kN 1.25 kN•m

C J 1.5 m 1.666 kN 1.666kN 2.50 kN•m 0.835 kN E K 1.5 m 1.666 kN 1.666kN 2.5 kN•m 0.833 kN

0.625 kN 1.25 kN•m

5 kN

1.5 m

B 2 m

0.833 kN M I 2.501 kN 0.625kN F 1.666 kN 1.5 m 2 m 2 m N O K G 0.833 kN 1.5 m 2 m O L 0.625 kN 0.835 kN 0.625 kN D 1.666 kN

2 m 2 m

1.5 m N

J

(76)

24

Example 6

Determine (approximately) the reactions at the base of the columns of the frame shown in Fig. 7-14a. Use the portal method of analysis.

20 kN

30 kN

8 m 8 m

5 m

6 m

G H I

A B C

(77)

25

20 kN

30 kN

8 m 8 m

5 m

6 m

G H I

A B C

D E F

S

N

J K L

O P Q

R

(78)

26

Py V

Oy V

Py 2V

ΣF

x = 0: 20 - 4V = 0 V = 5 kN +

Ly

Jy

Ky 2V´

ΣFx = 0: 20 + 30 - 4V´ = 0 V´ = 12.5 kN

+ 20 kN

2.5 m

G I

20 kN

30 kN 5 m

3 m

G H I

(79)

27

O

y = 3.125 20 kN

2.5 m

G 4 m R

5 kN

R

x = 15 kN R

y = 3.125 kN

S

x = 5 kN

S

y = 3.125 kN

P

y = 0 kN

M

x = 22.5 kN M

y = 12.5 kN

J

y = 15.625 kN

N

x = 7.5 kN

N

y = 12.5 kN

K

y = 0 kN

B K

3 m 25 kN

A J

3 m

15.625kN

12.5 kN

Bx = 25 kN

Bx = 0 MB = 75 kN•m

Ax = 12.5 kN

Ax = 15.625 kN MA = 37.5 kN•m

25 kN

2.5 m

N

K P

M

3 m 4 m 4 m

10 kN

22.5 kN

12.5 kN 10 kN

H S

R

15 kN

3.125 kN

2.5 m 4 m

4 m

5 kN 3.125 kN

12.5 kN 30 kN

J O

M 2.5 m

(80)

28

Lateral Loads on Building Frames: Cantilever Method

P

beam (a)

building frame (b)

In summary, using the cantilever method, the following assumptions apply to a fixed-supported frame.

1. A hinge is place at the center of each girder, since this is assumed to be point of zero moment.

2. A hinge is placed at the center of each column, since this is assumed to be a point of zero moment.

3. The axial stress in a column is proportional to its distance from the centroid of the cross-sectional areas of the columns at a given floor level. Since stress equals force per area, then in the special case of the columns having equal cross-sectional areas,

(81)

29

Example 7

Determine (approximately) the reactions at the base of the columns of the frame shown. The columns are assumed to have equal crossectional areas. Use the cantilever method of analysis.

30 kN

15 kN

6 m C

D

B

E

A F

(82)

30

30 kN

15 kN

6 m C

D

B

E

A F

4 m 4 m

x

6 m

3 ) ( 6 ) ( 0 ~

= +

+ =

=

A A

A A

A A x x

G H

I

J

K

(83)

31

I

3 m 3 m

Hy Hx

Ky Kx

30 kN C D

2 m

M

+ ΣMM = 0: -30(2) + 3Hy + 3Ky = 0

The unknowns can be related by proportional triangles, that is

y y

y y

K H

or K

H

= =

3 3

kN K

Hy = y =10

Gy Gx

Ly Lx

N 30 kN

15 kN

C

D

B

E

4 m H

I

J

K

3 m 3 m

2 m

+ ΣMN = 0: -30(6) - 15(2) + 3Gy + 3Ly = 0

The unknowns can be related by proportional triangles, that is

y y

y y

L G

or G

G

= =

3 3

kN L

(84)

32

10 kN 30 kN

2 m

C 3 m I

x = 15 kN I

y = 10 kN

Hx = 15 kN

10 kN D I

15 kN

10 kN

2 m 3 m

Kx = 15 kN

35 kN

15 kN 10 kN

15 kN

G H

J 2 m

2 m 3 m Jx = 7.5 kN J

y = 25 kN

G

x = 22.5 kN

35 kN 2 m

L K

J

2 m 3 m

15 kN

7.5 kN

25 kN

10 kN

L

x = 22.5 kN

A G

2 m 35 kN

22.5 kN

Ax = 22.5 kN

Ax = 35 kN MA = 45 kN•m

Fx = 22.5 kN

Fy = 35 kN MF = 45 kN•m F

L

2 m

(85)

33

Example 8

Show how to determine (approximately) the reactions at the base of the columns of the frame shown. The columns have the crossectional areas show. Use the cantilever of analysis.

35 kN

45 kN

6 m 6 m

4 m

P Q R

A B C D

L M N O

E F G H

I J K

4 m 8 m

5000mm2

5000mm2

4000 mm2

4000 mm2

6000 mm2

6000 mm2

6000 mm2

(86)

34

35 kN

45 kN

6 m 4 m

P Q R

A B C D

L M N O

E F G H

I J K

6 m 4 m 8 m

6 m 4 m 8 m

6000 mm2 5000mm2 4000 mm2 6000 mm2

x

m A

A x

x 8.48

6000 4000

5000 6000

) 18 ( 6000 )

10 ( 4000 )

6 ( 5000 )

0 ( 6000 ~

= +

+ +

+ +

+ =

=

(87)

35

35 kN 2 m

P Q R

Ly Lx My Mx Ny Nx Oy Ox 1.52 m 2.48 m

8.48 m 9.52 m

+ ΣMNA = 0: -35(2) + Ly(8.48) + My(2.48) + Ny(1.52) + Oy(9.52) = 0 ---(1)

) 2 ( ) ) 10 ( 6000 ( 48 . 8 48 . 2 ) 10 ( 5000 ; 48 . 8 48 . 2 ; 48 . 8 48 .

2 = = −6 = −6 −−−−−

y y

L M

L

M

σ

σ

σ

M L

σ

) 3 ( ) ) 10 ( 6000 ( 48 . 8 52 . 1 ) 10 ( 4000 ; 48 . 8 52 . 1 ; 48 . 8 52 .

1 = = −6 = −6 −−−−−

y y

L N

L

N

σ

σ

σ

N L

σ

) 4 ( ) ) 10 ( 6000 ( 48 . 8 52 . 9 ) 10 ( 6000 ; 48 . 8 52 . 9 ; 48 . 8 52 .

9 = = −6 = −6 −−−−−

y y

L O

L

O

σ

σ

σ

O L

σ

Since any column stress

σ

is proportional to its distance from the neutral axis
(88)

36

35 kN

45 kN

3 m

L M N O

I J K

4 m Ey Ex Fy Fx Gy Gx Hy Hx 1.52 m 2.48 m

8.48 m 9.52 m

+ ΣMNA = 0: -45(3) - 35(7) + Ey(8.48) + Fy(2.48) + Gy(1.52) + Hy(9.52) = 0 ---(5)

) 6 ( ) ) 10 ( 6000 ( 48 . 8 48 . 2 ) 10 ( 5000 ; 48 . 8 48 . 2 ; 48 . 8 48 .

2 = = −6 = −6 −−−−−

y y

E F

E

F

σ

σ

σ

F E

σ

) 7 ( ) ) 10 ( 6000 ( 48 . 8 52 . 1 ) 10 ( 4000 ; 48 . 8 52 . 1 ; 48 . 8 52 .

1 = = −6 = −6 −−−−−

y y

E G

E

G

σ

σ

σ

G E

σ

) 8 ( ) ) 10 ( 6000 ( 48 . 8 52 . 9 ) 10 ( 6000 ; 48 . 8 52 . 9 ; 48 . 8 52 .

9 = = −6 = −6 −−−−−

y y

E H

E

H

σ

σ

σ

H E

σ

Since any column stress

σ

is proportional to its distance from the neutral axis ;
(89)

37

One can continue to analyze the other segments in sequence, i.e.,

PQM, then MJFI, then FB, and so on. 35 kN

2 m

3.508 kN 3 m

I

x= 114.702 kN I

y= 15.536 kN L

x= 5.262 kN

E

x= 64.44 kN

P

x= 29.738 kN P

y= 3.508 kN

45 kN

3 m

I 2 m

19.044 kN 5.262 kN 3.508 kN

3 m

3 m E

19.044 kN

64.44 kN

Ax = 64.44 kN

(90)

1

!

Force Method of Analysis: Beams

!

Maxwell

s Theorem of Reciprocal Displacements;

Betti

s Law

!

Force Method of Analysis: Frames

!

Force Method of Analysis: Trusses

!

Force Method of Analysis: General

!

Composite Structures

(91)

2

+

=

P

A

C

B

+

P

=

P

A

C

B

L

Force Method of Analysis : Beams

• Compatibility of displacement

´

2

1 f22

´

2 + f22R2 = ∆2 = 0

2

R ×

θ

´1

1 α11

θ

´1 + α

11M1 =

θ

1= 0

R2 R1

M1

1

M × 1 Degree of freedom

2 1

α 11

1

M ×

θ

´1

f22 ×R2´

2

L P

A

C

B

• Compatibility of slope

2 1

R2 R1

(92)

3 x R1

x R2

A D

+

A D

+

A B C

P

D

A B C

P

D 2 Degree of freedom

1 2

´

2 + f21 R1 + f22 R2 = ∆2 = 0

´1 + f

11 R1 + f12 R2 = ∆

1 = 0

´1 ∆´2

1 f11

f21

x R1

f12

f22

x R2 1

´1

f11

x R1

f12

x R2´2

f21

f22

R1 R2 D

y

(93)

4

A B

m1

m2 1

f12 1

f21 f11

f22

Maxwell’s Theorem of Reciprocal Displacements; Betti’s Law

1 2

A B

=

= •

L L

dx EI

m m dx

EI M m

f21 2 1 2 1

1

=

L

dx EI

(94)

5

A B

1 2

A B

m2

1

m1 f12

f22

f11 f21

1

=

= •

L L

dx EI

m m dx

EI M m

f12 1 2 1 2

1

Maxwell’s Theorem:

ji ij f

f =

12 21 f

f =

=

L

dx EI

m m

f 1 2

12

f12

=

L

dx EI

(95)

6

A 1 B

m2 f12 f22 1 2 A B 1 m1 f21 f11

= = • L L dx EI m m dx EI M m

f11 1 1 1 1

1

= = • L L dx EI m m dx EI M m

f22 2 2 2 2

1 In general,

= = • L j i ij dx EI m m f f 1

= = • L i j ji ji dx EI m m f f 1
(96)

7

A D

P1

d

21 = f21 P1

d

11 = f11 P1

P2

d

12 = f12 P2 d22 = f22 P2

A D

(97)

8

f

12

f

22

f

11

f

21

´

1

´

2

+

+

w

=

Force Method of Analysis: General

´

1

´

2

=

1

2

Compatibility Eq.

´

1

+

f

11

R

1

+

f

12

R

2

=

1

= 0

General form:

f

11

f

21

f

n1

f

12

f

22

f

n2

..

.

f

1n

f

2n

f

nn

R

1

R

2

R

n

..

.

=

-∆

´

1

´

2

´

n

..

.

f

11

f

12

f

12

f

22

R

1

R

2

´

1

´

2

=

-∆

´

2

+

f

21

R

1

+

f

22

R

2

=

2

= 0

´

1

´

2

x

R

1

f

11

f

21

1

x

R

2

f

12

f

22

1

x

R

1

x

R

2

x

R

1

x

R

2

+

f

11

f

12

f

12

f

22

R

1

R

2

0

0

1

(98)

9

Example 9-1

Determine the reaction at all supports and the displacement at C.

A C B

50 kN

(99)

10

x RB fBB

+ 50 kN

=

A

B C

50 kN

6 m 6 m

SOLUTION

x RB´B

fBB RB

MA

RA

´B Use compatibility of displacement for find reaction

0

' + =

B fBBRB ---(1) Compatibility equation :

• Principle of superposition

(100)

11

6 m 6 m

A C B

50 kN

θ

´C

´

C

6

θ

´C ∆´B

´

B = ∆´C+ (6 m)

θ

´C

EI P EI

P

B

2 ) 6 ( ) 6 ( 3

) 6 ( '

2 3

+ =

∆ = + = 9000,↓

2 ) 6 )( 50 ( ) 6 ( 3

) 6 (

50 3 2

EI EI

EI

↑ =

=

= 576,

3 ) 12 )( 1 ( 3

3 3

EI EI

EI PL fBB

• Use formulation for ∆´B and fBB

1

A C B

(101)

12

6 m 6 m

A C B

50 kN

RB = 15.63 kN, 0

) 576 ( 9000

:− + =

+ RB

EI EI

15.63 kN RA

MA

Equilibrium equation :

+ ΣMA = 0: MA −50(6)+15.63(12) =0,

ΣF

y = 0:

+ + RA −50+15.63= 0, Ra = 34.37 kN,

MA = 112.4 kN, +

↓ =

' 9000, EI

B

↑ = 576,

EI fBB

(102)

13

6 m 6 m

A C B

50 kN

15.63 kN

M

(kN•m) x (m)

3.28 6 12

93.78

-112.44 V

(kN) x (m)

112.4 kN•m

34.37 kN

34.37

-15.63 -15.63

(103)

14

θ

´A

fAA

+

A

B C

=

A

B C

50 kN

A C B

50 kN

6 m 6 m

RB MA

RA

θ

´A

fAA

x MA Or use compatibility of slope to obtain reaction

x MA

Compatibility equation :

0 'A+ fAAMA =

θ

A=

θ

---(2)

• Principle of superposition

(104)

15

16 ) 12 )( 50 ( 3 16

3 =

= PL

MA = 112.5 kN•m, +

• Use the table on the inside front cover for θ´B and fBB

A

B C

50 kN

θ

´A

θ

´A

A

B C

1 f

AA

fAA

0 3

16

2

= +

A

M EI L EI

PL + :

0 'A+ fAAMA =

θ

A=

θ

Substitute the values in equation: EI PL

A

16 '

2

=

θ

EI L fCC

(105)

16

A C B

50 kN

6 m 6 m

M1 = (12RB - 300) + (50 - RB)x1 M

diagram

x (m) Or use Castigliano least work method

50 - RB = 12RB - 300 =

RB MA

RA

x1 x2

12RB - 300 M2 = RBx2

∂ = = ∆ L B B dx EI M R M 0 ) ( 0

− − + − + = 6 0 2 2 2 6 0 1 1 1

1 ( )

1 ) 50 300 12 )( 12 ( 1

0 x R x dx

EI dx x R x R x

EI B B B

RB =15.63 kN,

6 0 6 0 3 ) 3 3 50 2 24 2 900 3600 144 ( 0 3 2 3 1 3 1 2 1 2 1 1

1 B B B

B R x R x x R x x x x

R − + − − + +

(106)

17

Conjugate Beam

6 m 6 m

A B

C 50 kN

93.6/EI

-112/EI 223/(EI)

Use conjugate beam for find the displacement

M

(kN•m) x (m)

3.28 6 12

93.6

-112 112 kN•m

34.4 kN 15.6 kN

EI EI

EI

M'C = 281(2)− 223(6) = −776

↓ −

= =

' 776, EI M C

C

Real Beam

4 m 2 m

C

C 223/(EI)

281/(EI)

C

(107)

18

6 m 6 m

A B

C 50 kN

Use double integration to obtain the displacement

M

(kN•m) x (m)

3.28 6 12

93.6

-112 112 kN•m

34.4 kN 15.6 kN

1 2 2 4 . 34 112 x dx d

E

Gambar

Figure. The diagonals are to be designed to support both tensile and compressive
Figure. The diagonals are slender and therefore will not support a compressive
figure below. EI is constant.

Referensi

Garis besar

Dokumen terkait

Dari berbagai pengertian tersebut maka secara garis besar dapat dipahami bahwa Hak Asasi Manusia adalah hak-hak yang seharusnya diakui secara universal sebagai

Hasil penelitian yang dilakukan oleh Asfiah (2006) di Rumah Sakit Islam ‘Aisyiyah menjelaskan, bahwa penting untuk memperhatikan karakteristik individual, karakteristik

[r]

Exclude quotes On. Exclude

selama ini dengan dokter, perawat serta bagian administrasi rumah sakit?.. 2.Fasilitas pelayanan yang bagaimanakah yang diinginkan dokter perusahaan?. a. Apa fasilitas peralatan

Nanas kaleng yang merupakan pengolah lebih lanjut dari buah nanas segar ini adalah produk utama buah dalam kaleng Indonesia dan hampir keseluruhan produksinya ditujukan untuk

Cara mengobati eksim kulit kepala ketombe ~ Solusi terbaik untuk Anda yang saat ini sedang menderita penyakit gatal seperti di selangkangan, gatal kurap gatal

mendapat klarifikasi dari LPSE) akibat kesalahan pengiriman dokumen oleh Penyedia Jasa, yang mengakibatkan dokumen tersebut tidak dapat dilakukan evaluasi oleh Pokja