• Tidak ada hasil yang ditemukan

Analisis Hidrograf Satuan Sintetik di DAS Wampu Kab. Langkat

N/A
N/A
Protected

Academic year: 2016

Membagikan "Analisis Hidrograf Satuan Sintetik di DAS Wampu Kab. Langkat"

Copied!
95
0
0

Teks penuh

(1)

ANALISIS HIDROGRAF SATUAN SINTETIK

DI DAS WAMPU KAB. LANGKAT

TUGAS AKHIR

Diajukan untuk Melengkapi Tugas-tugas dan Memenuhi Syarat

Untuk Memenuhi ujian sarjana Teknik Sipil

08 0404 028

RAHMAD SIDDIK NASUTION

BIDANG STUDI TEKNIK SUMBER DAYA AIR

DEPARTEMEN TEKNIK SIPIL

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA

(2)

ABSTRAK

Daerah Sungai Wampu merupakan suatu Daerah Aliran Sungai yang terletak di Kabupaten Karo dan Kabupaten Langkat Sumatera Utara. Daerah rawan banjir berpotensi mencakup daerah muara sungai. Faktor-faktor penyebab potensi banjir antara lain adalah perubahan tata guna lahan di sebagian wilayah. Untuk pengamanan potensi bahaya banjir di muara Daerah Aliran Sungai Wampu perlu diadakan penelitian untuk menentukan debit banjir di Daerah Aliran Sungai tersebut dan membandingkannya dengan debit observasi di lapangan atau debit observasi yang telah diteliti oleh badan yang berwenang, sehingga metode penulisan ini bisa digunakan untuk kepentingan penentuan data debit banjir beberapa waktu ke depan.

Metode penelitian yang digunakan yaitu metode pengumpulan dan analisa data. Pengumpulan data primer dan data sekunder, merupakan langkah awal dalam penelitian ini. Kemudian dianalisa dengan metode Analisa Intensitas Curah hujan jam-jaman dari tiga stasiun hujan yang selanjutnya parameter tersebut menjadi pendukung untuk menentukan debit banjir dari Metode Hidrograf Satuan Sintetik.

Nilai curah hujan yang digunakan untuk perhitungan intensitas curah hujan adalah nilai curah hujan Distribusi Log Person III periode ulang 5 tahun. Hasil debit puncak banjir Hidrograf Satuan Sintetik Snyder 854,07099 m3/detik pada t = 29 jam, Hidrograf Satuan Sintetik Nakayasu 2028,645848 m3/detik pada t = 10 jam dan Hidrograf Satuan Sintetik Gamma I sebesar 2253,38 m3/detik pada t = 3,183 jam.

Hasil penelitian ini menunjukkan bahwa metode Hidrograf Satuan Sintetik Snyder menunjukkan hasil yang lebih mendekati data debit observasi sebesar 792,114 m3/detik dibandingkan dengan metode Hidrograf Satuan Sintetik Nakayasu dan Gamma I yang sangat jauh dari debit observasinya. Hidrograf Satuan Sintetik Snyder adalah metode yang dapat digunakan untuk pengukuran debit di DAS Wampu.

(3)

KATA PENGANTAR

Assalamu’alaikum.Wr.Wb.

Alhamdulillah, segala puji syukur bagi Allah SWT yang telah memberi karunia kesehatan dan kesempatan kepada penulis untuk menyelesaikan Tugas Akhir ini. Shalawat dan salam ke atas Baginda Rasullah Muhammad SAW yang telah memberi keteladanan tauhid, ikhtiar dan kerja keras sehingga menjadi panutan dalam menjalankan setiap aktifitas kami sehari-hari, karena sungguh suatu hal yang sangat sulit yang menguji ketekunan dan kesabaran untuk tidak pantang menyerah dalam menyelesaikan penulisan ini.

Penulisan skripsi ini merupakan salah satu syarat untuk menyelesaikan studi pada Program Studi Strata Satu (S1) Jurusan Teknik Sipil Fakultas Teknik Universitas Sumatera Utara. Adapun judul skripsi yang diambil adalah “Analisis Hidrograf Satuan Sintetik di DAS Wampu Kab. Langkat”.

Penulis menyadari bahwa dalam menyelesaikan Tugas Akhir ini tidak terlepas dari dukungan, bantuan serta bimbingan dari berbagai pihak. Oleh karena itu, penulis ingin menyampaikan ucapan terima kasih yang sebesar-besarnya kepada beberapa pihak yang berperan penting yaitu :

1. Ibunda saya Painem. Spd dan Ayahanda saya Drs. Reflin Nasution tercinta yang telah banyak berkorban, memberikan motivasi hidup, semangat dan nasehat.

2. Kedua adik saya tercinta, Asyifah Regina Finkan Nasution dan Pristia Juli Astuti Nasution yang selalu mendoakan dan mendukung saya.

(4)

masukan, dukungan serta meluangkan waktu, tenaga dan pikiran dalam membantu penulis menyelesaikan Tugas Akhir ini.

4. Bapak Ir. Terunajaya, M.Sc selaku Dosen Koordinator Teknik Sumber Daya Air Fakultas Teknik Universitas Sumatera Utara.

5. Bapak Prof. Dr. Ir. Bustami Syam, MSME selaku Dekan Fakultas Teknik Universitas Sumatera Utara.

6. Bapak Prof. Dr. Ing. Johannes Tarigan selaku Ketua Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara.

7. Bapak Ir. Syahrizal, MT selaku Sekretaris Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara.

8. Bapak Dr. Ir. Ahmad Perwira Mulia, M.Sc dan Bapak Ir. Alferido Malik, selaku Dosen Pembanding, atas saran dan masukan yang diberikan kepada penulis terhadap Tugas Akhir ini.

9. Bapak/Ibu seluruh staff pengajar Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara.

10.Seluruh pegawai administrasi Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara yang telah memberikan bantuan selama ini kepada penulis. (Kak Lince, Kak Dina, Kak Dewi, Bang Zul, Mas Bandi, Bang Edi dan Bang Amin).

11.Pak Arisman Hidrologi, Kak Dewi, dan Bg Diva di BWSS II yang sudah sangat membantu seluruh data debit observasi di DAS Wampu.

12.Pak Manat Panggabean di BMKG Sampali yang sudah membantu seluruh data Curah Hujan di Tugas Akhir ini.

(5)

adik-adik angkatan 2011 serta teman-teman angkatan 2008 yang tidak dapat disebutkan seluruhnya, terima kasih atas semangat dan bantuannya selama ini.

14.Dan segenap pihak yang belum penulis sebut di sini atas jasa-jasanya dalam mendukung dan membantu penulis dari segi apapun, sehingga Tugas Akhir ini dapat diselesaikan dengan baik.

Mengingat adanya keterbatasan-keterbatasan yang penulis miliki, maka penulis menyadari bahwa laporan Tugas Akhir ini masih jauh dari sempurna. Oleh karena itu, segala saran dan kritik yang bersifat membangun dari pembaca diharapkan untuk penyempurnaan laporan Tugas Akhir ini.

Akhir kata penulis mengucapkan terima kasih dan semoga laporan Tugas Akhir ini bermanfaat bagi para pembaca.

Medan, Desember 2014 Penulis,

(6)

DAFTAR ISI

Halaman

ABSTRAK ... i

KATA PENGANTAR ... ii

DAFTAR ISI... v

DAFTAR TABEL ... vii

DAFTAR GAMBAR ... ix

DAFTAR NOTASI... x

BAB I PENDAHULUAN ... 1

1.1 Latar Belakang ... 1

1.2 Perumusan Masalah ... 3

1.3 Tujuan Penelitian ... 3

1.4 Manfaat ... 4

1.5 Pembatasan Masalah ... 4

1.6 Sistematika Penulisan ... 5

BAB II TINJAUAN PUSTAKA ... 7

2.1 Hidrologi ... 7

2.1.1 Curah Hujan ... 10

2.1.2 Distribusi Frekuensi Curah Hujan ... 13

2.1.3 Uji Distribusi Frekuensi Curah Hujan ... 16

2.1.4 Uji Smirnov Kolmogorof ... 20

2.2 Hidrograf Satuan Sintetik ... 21

2.2.1 Hidrograf Satuan Sintetik Snyder ... 21

2.2.2 Hidrograf Satuan Sintetik Nakayasu ... 25

2.2.3 Hidrograf Satuan Sintetik Gamma I ... 27

BAB III METODE PENELITIAN ... 32

3.1 Waktu dan Tempat Penelitian ... 32

3.2 Rancangan Penelitian ... 32

(7)

3.4 Pelaksanaan Penelitian ... 36

3.5 Variabel yang Diamati ... 37

BAB IV ANALISA DATA DAN PEMBAHASAN ... 38

4.1 Analisa Hidrologi ... 38

4.1.1 Curah Hujan Harian Maksimum ... 38

4.1.2 Penentuan Pola Distribusi Hujan ... 41

4.1.2.1 Parameter Statistik Sebaran Normal... 42

4.1.2.2 Analisa Curah Hujan Distribusi Log Normal ... 44

4.1.2.3 Analisis Curah Hujan Dengan Distribusi Log Pearson III ... 46

4.1.2.4 Analisa Curah Hujan Distribusi Gumbel... 48

4.2 Analisa Hidrologi ... 50

4.2.1 Analisa Frekuensi Curah Hujan ... 50

4.2.2 Jenis Distribusi ... 52

4.2.3 Uji Sebaran Smirnov-Kolmogorov ... 53

4.2.4 Koefisien Pengaliran ... 56

4.2.5 Perhitungan Intensitas Hujan Jam-jaman ... 57

4.3 Hidrograf Satuan Sintetik ... 60

4.3.1 Hidrograf Satuan Sintetik Snyder ... 60

4.3.2 Hidrograf Satuan Sintetik Nakayasu ... 70

4.3.3 Hidrograf Satuan Sintetik Gamma-I ... 81

BAB V KESIMPULAN DAN SARAN ... 93

5.1 Kesimpulan ... 93

5.2 Saran ... 94

DAFTAR PUSTAKA ... 95

(8)

DAFTAR TABEL

Halaman

Tabel 2.1 Nilai Variabel Reduksi Gauss ... 13

Tabel 2.2 Nilai K untuk Distribusi Log Normal ... 14

Tabel 2.3 Nilai K untuk distribusi Log-Pearson III ... 16

Tabel 2.4 Standar Deviasi (Yn) untuk distribusi Gumbel... 18

Tabel 2.5 Reduksi Variat (YTr) sebagai fungsi periode ulang Gumbel ... 19

Tabel 2.6 Reduksi Standar Deviasi (Sn) untuk distribusi Gumbel ... 19

Tabel 4.1 Data Curah Hujan Harian Maksimum Stasiun Teluk ... 39

Tabel 4.2 Data Curah Hujan Harian Maksimum Stasiun Perdamean ... 40

Tabel 4.3 Data Curah Hujan Harian Maksimum Stasiun Padang Brahrang ... 40

Tabel 4.4 Curah Hujan Harian Maksimum Tahunan ... 41

Tabel 4.5 Analisa Curah Hujan Distribusi Normal ... 42

Tabel 4.6 Analisa Curah Hujan Rencana dengan Distribusi Normal ... 43

Tabel 4.7 Analisa Curah Hujan dengan Distribusi Log Normal ... 44

Tabel 4.8 Analisa Curah Hujan Rencana dengan Distribusi Log Normal ... 44

Tabel 4.9 Analisa Curah Hujan dengan Distribusi Log Pearson III ... 46

Tabel 4.10 Analisa Curah Hujan Rencana dengan Distribusi Log Pearson III ... 47

Tabel 4.11 Analisa Curah Hujan dengan Distribusi Gumbel ... 48

Tabel 4.12 Analisa Curah Hujan Rencana dengan Distribusi Gumbel ... 49

Tabel 4.13 Analisa Frekuensi Curah Hujan ... 50

(9)

Tabel 4.15 Perhitungan Uji Smirnov Kolmogorov ... 54

Tabel 4.16 Nilai D kritis untuk Uji Keselarasan Smirnov-Kolmogorov ... 55

Tabel 4.17 Nilai Koefisien Run Off (C) ... 56

Tabel 4.18 Analisa Perhitungan Intensitas dan Waktu Konsentrasi ... 58

Tabel 4.19 Parameter Untuk Menghitung HSS Snyder ... 60

Tabel 4.20 Tabel Hasil Perhitungan HSS Snyder ... 63

Tabel 4.21 Zona Penggunaan Lahan DAS Wampu ... 71

Tabel 4.22 Nilai Koefisien Pengaliran di DAS Wampu ... 72

Tabel 4.23 Parameter Untuk Menghitung HSS Nakayasu... 73

Tabel 4.24 Hujan Efektif Daerah Pengaliran ... 73

Tabel 4.25 Tabel Hasil Perhitungan HSS Nakayasu ... 77

Tabel 4.26 Parameter untung menghitung HSS Gamma I ... 81

Tabel 4.27 Tabel Hasil Perhitungan HSS Gamma I ... 83

(10)

DAFTAR GAMBAR

Halaman

Gambar 1.1 Peta DAS Wampu ... 2

Gambar 2.1 Siklus Hidrologi ... 9

Gambar 2.2 Poligon Thiessen pada DAS ... 11

Gambar 2.3 Peta Isyohet ... 12

Gambar 2.4 Model Hidrograf Nakayasu ... 26

Gambar 2.5 Model Parameter Karakteristik DAS Metode Gamma I ... 28

Gambar 3.1 Tahapan Rencana Pelaksanaan Tugas Akhir ... 34

Gambar 4.1 Peta Lokasi Stasiun Hujan pada DAS Wampu ... 38

Gambar 4.2 Grafik Intensitas Curah Hujan ... 59

Gambar 4.3 Grafik Hidrograf Satuan Sintetik Snyder ... 69

Gambar 4.4 Peta Daerah Aliran Sungai Wampu ... 70

Gambar 4.5 Grafik Hidrograf Satuan Sintetik Nakayasu ... 80

Gambar 4.6 Grafik Hidrograf Satuan Sintetik Gamma I ... 85

(11)

DAFTAR NOTASI

XT = Perkiraan nilai yang diharapkan terjadi dalam periode ulang T tahunan

KT =Faktor frekuensi (nilai variabel reduksi Gauss)

X =Nilai varian pengamatan

YT =Perkiraan nilai yang diharapkan terjadi dengan periode ulang T- tahunan

Y = Nilai rata-rata hitung variat S = Deviasi standar nilai variat X = Harga rata-rata sampel

Yn =Reduced mean yang tergantung jumlah sampel/data ke-n

Sn =Reduced standard deviation, yang tergantung pada jumlah sample/data ke-n

YTr =Reduced variated

I = Intensitas Hujan (mm/jam)

R24 = Curah hujan maksimum harian (selama 24 jam) (mm)

Qp = Debit puncak banjir (debit maksimum) (m3/detik)

C = Koefisien aliran Permukaan A = Luas daerah Pengaliran (Km2). tc = Waktu Konsentrasi (jam)

to =Inlet time ke saluran terdekat (menit)

n = Angka kekasaran manning L = panjang aliran utama

Lc = panjang aliran utama dari titik berat DAS ke pelepasan DAS (km)

V = Kecepatan aliran didalam saluran (m/detik) R = Jari-jari hidraulis (m)

S = Kemiringan Dasar Saluran n = Koefisien kekasaran Manning

m = Koefisien kekasaran, harganya tergantung jenis bahan saluran

(12)

T0,3 = waktu yang diperlukan oleh penurunan debit Ro = hujan satuan (mm)

α = parameter hidrograf

qp = puncak hidrograf satuan (m3/det/mm/km2)

tp = waktu mulai titik berat hujan sampai debit puncak (mm) Tb = waktu dasar hidrograf (jam)

(13)

BAB I

PENDAHULUAN

1.1 Latar Belakang

Hidrograf Satuan Sintetis merupakan suatu metode yang digunakan untuk memperkirakan penggunaan konsep hidrograf satuan dalam suatu perencanaan pada daerah yang data observasi debitnya kurang atau tidak tersedia. Berdasarkan cara-cara untuk mendapatkan hidrograf satuan pengamatan, diperlukan serangkaian data antara lain data tinggi muka air (rekaman AWLR), data pengukuran debit, data hujan harian dan data hujan jam-jaman dari ARR.

Sungai Wampu adalah salah satu sungai besar dengan panjang sekitar 127 km yang terdapat di Sumatra Utara. Sungai ini terletak di dua kabupaten dimana bagian hulu terletak di Kabupaten Karo dan lintasannya melalui Kabupaten Langkat dan bermuara di kawasan Suaka Margasatwa Karang Gading Langkat Timur Laut. Sungai inilah yang menjadi bahan untuk melakukan pengamatan karena pada sebagian kawasan tidak tersedia pengukuran-pengukuran langsung mengenai hidrograf banjirnya.

(14)

Satuan Sintetis (HSS) yang telah dikembangkan oleh para pakar antara lain HSS Snyder, HSS Nakayasu, HSS SCS, HSS Gama I, HSS Limantara dan lain-lain. Berikut ini merupakan Gambar (1.1) Peta DAS Wampu.

(15)

1.2 Perumusan Masalah

Secara umum perumusan masalah pada tugas akhir ini dapat dinyatakan sebagai berikut:

1. Perlunya analisa hujan jam-jaman untuk parameter pendukung Hidrograf Satuan Sintetik (HSS).

2. Penggunaan metode Hidrograf Satuan Sintetik sebagai cara praktis dalam menentukan debit banjir DAS Wampu.

3. DAS Wampu adalah Daerah Aliran Sungai di Sumatera Utara dimana dibagian hilir sungai terjadi peningkatan jumlah penduduk yang pesat yang menyebabkan terjadinya perubahan tata guna lahan sehingga berpotensi banjir.

1.3 Tujuan Penelitian

Adapun tujuan dari tugas akhir saya ini adalah sebagai berikut:

1. Memperoleh model Hidrograf Satuan Sintetik yang paling sesuai dan mendekati data observasi pada DAS Wampu.

2. Mengetahui parameter-parameter yang menunjang akurasi Hidrograf Satuan Sintetik (HSS) yang sesuai pada DAS Wampu.

1.4 Manfaat

Manfaat penulisan Tugas Akhir Analisis Hidrograf Satuan Sintetik di DAS Wampu Kabupaten Langkat adalah:

(16)

2. Mendapat pengalaman dan wawasan terhadap penulis sendiri tentang analisis debit puncak banjir pada Daerah Aliran Sungai.

3. Hasil pada Tugas Akhir ini diharapkan bisa menjadi acuan praktis tanpa survey langsung ke lapangan dalam menentukan debit puncak banjir khususnya untuk Departemen Teknik Sipil Universitas Sumatera Utara.

1.5 Pembatasan Masalah

Agar pembahasan tugas akhir ini tidak terlalu meluas sehingga dapat mengaburkan masalah yang sebenarnya maka perlu dibuat pembatasan masalah. Adapun permasalahan yang akan dibahas antara lain:

1. Penggunaan data curah hujan 10 tahun terakhir untuk perhitungan debit banjir sungai Wampu berdasarkan analisis hidrologi.

2. Penelitian berada di DAS Wampu Kabupaten Langkat Sumatera Utara. 3. Curah hujan dianggap merata pada seluruh bagian wilayah DAS.

4. Analisis distribusi hujan yang digunakan merupakan distribusi frekuensi.

5. Hidrograf Satuan Sintetik (HSS) yang digunakan untuk menganalisis DAS Wampu adalah:

• HSS Snyder • HSS Nakayasu • HSS Gama I

6. Analisis perbandingan penggunaan model hidrograf satuan sintetik yang diterapkan dengan data debit observasi di DAS Wampu (data debit puncak banjir dari BWSS II sebagai perbandingan yang sesuai).

(17)

Adapun tahapan sistematika penulisan tugas akhir ini :

Bab I Pendahuluan

Merupakan bingkai studi atau rancangan yang akan dilakukan meliputi tinjauan umum, latar belakang, ruang lingkup permasalahan, pembatasan masalah, tujuan, manfaat ,dan sistematika penulisan.

Bab II Tinjauan Pustaka

Bab ini menguraikan tentang teori yang berhubungan dengan penelitian agar dapat memberikan gambar model dan metode analisis yang akan digunakan dalam menganalisa masalah.

Bab III Metodologi Penelitian dan Karakteristik Lokasi Penelitian

Bab ini menguraikan tentang metode yang akan digunakan dan rencana kerja dari penelitian serta mendeskripsikan lokasi penelitian.

Bab IV Analisis Pembahasan

Bab ini merupakan analisa tentang permasalahan, evaluasi, dan perhitungan terhadap masalah yang ada di lokasi penelitian.

Bab V Kesimpulan dan Saran

(18)

BAB II

TINJAUAN PUSTAKA

2.1 Hidrologi

Hidrologi merupakan tahapan awal perecanaan suatu rancang bangunnan dalam suatu DAS untuk memperkirakan besarnya debit banjir yang terjadi didaerah tersebut. Pada saat air hujan jatuh ke bumi, sebagian air jatuh langsung ke permukaan bumi dan ada juga yang terhambat oleh vegetasi (Intersepsi). Intersepsi memiliki 3 macam, yaitu interception loss,

through fall, dan stem flow. Interception loss adalah air yang jatuh ke vegetasi tetapi belum sampai mencapi tanah sudah menguap. Through fall adalah air hujan yang tidak langsung jatuh ke bumi, tetapi terhambat oleh dedaunan terlebih dahulu. Stem flow adalah air hujan yang jatuh ke vegetasi dan mengalir melalui batang vegetasi tersebut.

(19)

Air yang jatuh di permukaan sebagian ada yang mengalami infiltrasi atau diserap oleh tanah. Kapasitas infiltrasi tergantung dari tekstur tanah, vegetasi, lengas tanah, kemiringan lereng, dan waktu. Air tersebut memasuki celah-celah batuan yang renggang di dalam bumi atau mengalami perkolasi untuk mengisi persediaan air tanah. Air tanah dapat muncul ke permukaan tanah karena air memiliki kapilaritas yang tinggi. Dalam air tanah ada zona aquifer (zona penahan air) yaitu menyediakan simpanan air yang besar yang mengatur siklus hidrologi dan berpengaruh pada aliran air. Air tanah juga dapat menyuplai debit air sungai apabila jalur air tanah terputus oleh jalur sungai. Air tanah dapat berkurang apabila digunakan manusia untuk keperluan sehari-hari.

Selain itu, air yang langsung jatuh ke permukaan tanah langsung mengisi channel storage contohnya sungai, danau, dan bendungan lalu menjadi run off. Tipe-tipe aliran adalah over land flow, through flow, dan base flow. Over land flow terjadi apabila ketika kapasitas presipitasi melebihi batas infiltrasi. Through flow adalah air perkolasi yang bergerak di zona perkolasi yang bergerak pada horizon tanah. Baseflow adalah air yang bergerak di atas aliran air untuk pengukuran muka air. Channel storage ini mengalami infiltrasi untuk mengisi persediaan air tanah apabila dasar suatu channel storage jaraknya jauh dari tempat persediaan air tanah. Sebagian air pada channel storage mengalami evaporasi kembali karena pengaruh panas matahari.

(20)

melalui dahan-dahan ke permukaan tanah. Gambar (2.1) berikut merupakan gambar siklus hidrologi.

Gambar 2.1 Siklus Hidrologi

2.1.1 Curah Hujan

(21)

atau pencatat curah hujan, maka dapat diambil nilai rata-rata untuk mendapatkan nilai curah hujan areal.

Ada 3 macam cara yang berbeda dalam menentukan tinggi curah hujan rata-rata pada areal tertentu dari angka-angka curah hujan di beberapa titik pos penakar atau pencatat.

1. Rata-rata aljabar

Tinggi rata-rata curah hujan didapatkan dengan mengambil nilai rata-rata hitung (arithmatic mean) pengukuran hujan di pos penakar-penakar hujan di dalam areal studi.

d = d1+d2+d3+ … + dn

n = ∑

di n n

i=1 (2.1)

di mana d = tinggi curah hujan rata-rata, d1, d2 . . . dn = tinggi curah hujan pada pos penakar

1, 2, . . . , n, dan n = banyak pos penakaran.

Cara ini akan memberikan hasil yang dapat dipercaya jika pos-pos penakarnya ditempatkan secara merata di areal tersebut, dan hasil penakaran masing-masing pos penakar tidak menyimpang jauh dari nilai rata-rata seluruh pos di seluruh areal.

2. Cara Poligon Thiessen

(22)

Gambar 2.2 Poligon Thiessen pada DAS Curah hujan pada suatu daerah dapat dihitung dengan persamaan berikut:

(2.2) (2.3)

dimana d = tinggi curah hujan rerata daerah (mm), dn = hujan pada pos penakar hujan (mm),

An = luas daerah pengaruh pos penakar hujan (km2), dan A = luas total DAS (km2).

3. Cara isohyet

Dalam hal ini kita harus menggambarkan dulu kontur dengan tinggi curah hujan yang sama (isohyet), seperti terlihat pada Gambar (2.3) berikut.

Gambar 2.3 Peta Isohyet n 2 1 n n 2 2 1 1 A ... A A d . A ... d . A d . A d + + + + + + = A d . A ... d . A d . A

(23)

Kemudian luas bagian di antara isohyet-isohyet yeng berdekatan diukur, dan nilai rata-ratanya dihitung sebagai berikut:

(2.4)

(2.5)

di mana d = tinggi curah hujan rata-rata areal, A = luas areal total = A1 + A2 + A3 + ...+ An,

dan d0, d1, ..., dn = curah hujan pada isohyet 0, 1, 2, ..., n.

Ini adalah cara yang paling teliti untuk mendapatkan hujan areal rata-rata, tetapi memerlukan jaringan pos penakar yang relatif lebih padat yang memungkinkan untuk membuat isohyet. Pada waktu menggambar garis-garis isohyet sebaiknya juga memperhatikan pengaruh bukit atau gunung terhadap distribusi hujan (hujan orografik).

2.1.2 Distribusi Frekuensi Curah Hujan

Untuk menganalisis probabilitas curah hujan biasanya dipakai beberapa macam distribusi yaitu: (A) Distribusi Normal, (B) Log Normal, (C) Gumbel, (D) Log Pearson Type III.

A. Distribusi Normal

Distribusi normal atau kurva normal disebut pula distribusi Gauss. Untuk analisa frekuensi curah hujan menggunakan metode distribusi Normal, dengan persamaan sebagai berikut:

XT = X + k.Sx (2.6)

Dimana:

XT : Variate yang diekstrapolasikan, yaitu besarnya curah

(24)

X : Harga rata–rata dari data n X n 1 i

=

K : Variabel reduksi

Sx : Standard Deviasi

1 n X X n 1 i n 1 2 i − − =

Tabel 2.1 Nilai Variabel Reduksi Gauss

B. Distribusi Log

Normal

Untuk analisa frekuensi curah hujan menggunakan metode distribusi Log Normal, dengan persamaan sebagai berikut:

Log XT = Log X + k.Sx Log X (2.7)

Dimana:

Log XT : Variate yang diekstrapolasikan, yaitu besarnya curah hujan

rancangan untuk periode ulang T tahun.

Log X : Harga rata – rata dari data

n ) (X log n 1 i

=

SxLog X : Standard Deviasi

1 n ) X Log (LogX n 1 i n 1 2 i − − =

K : Variabel reduksi

Tabel 2.2 Nilai K untuk Distribusi Log Normal

(25)

Sumber: Buku Sistem Drainase Perkotaan yang Berkelanjutan hal 37

C. Distribusi Log Person III

Untuk analisa frekuensi curah hujan dengan menggunakan metode Log Person Type III, dengan persamaan sebagai berikut:

Log XT = LogX + Ktr. S1 (2.10)

Dimana:

Log XT : Variate diekstrapolasikan, yaitu besarnya curah hujan

rancangan untuk periode ulang T tahun.

Log X : Harga rata – rata dari data, LogX

n X Log n 1 i i

= =

S1 : Standard Deviasi, S1 =

(

)

1 n X Log X Log n 1 i 2 i − −

=

dengan periode ulang T

(26)

Dimana:

Cs = Koefisien kemencengan

Tabel 2.3 Nilai K untuk distribusi Log Pearson III

2.1.3 Uji Distribusi Frekuensi Curah Hujan

Untuk mengetahui apakah data tersebut benar sesuai dengan jenis sebaran teoritis yang dipilih maka perlu dilakukan pengujian lebih lanjut. Untuk keperluan analisis uji kesesuaian dipakai dua metode statistik sebagai berikut:

(27)

1. Uji Chi Kuadrat

Uji Chi Kuadrat digunakan untuk menguji apakah distribusi pengamatan dapat disamai dengan baik oleh distribusi teoritis. Perhitungannya dengan menggunakan persamaan berikut:

(2.11)

di mana k = 1 + 3,22 Log n, OF = nilai yang diamati, dan EF = nilai yang diharapkan.

Agar distribusi frekuensi yang dipilih dapat diterima, maka harga X2 hitung < X2Cr.

Harga X2Cr dapat diperoleh dengan menentukan taraf signifikan α dengan derajat kebebasan. Batas kritis X2 tergantung pada derajat kebebasan dan α. Untuk kasus ini derajat kebebasan mempunyai nilai yang didapat dari perhitungan sebagai berikut:

DK = JK - (P + 1) (2.12)

Dimana :

DK = derajat kebebasan JK = jumlah kelas

P = faktor keterikatan (untuk pengujian Chi-Square mempunyai keterikatan 2)

D. Distribusi Gumbel

Untuk analisa frekuensi curah hujan menggunakan metode E.J. Gumbel, dengan persamaan sebagai berikut:

XT= X + K.Sx (2.8)

Dimana:

XT : Variate yang diekstrapolasikan, yaitu besarnya

curah hujan rencana untuk periode ulang T (tahun).

X : Harga rata – rata dari data

n X

n

1 i

=

=

= k

1 i

2 2

hit

(28)

Sx : Standard Deviasi

1 n

X X

n

1 i n

1 2 i

− −

=

K : Variabel reduksi

Untuk menghitung variabel reduksi E.J. Gumbel mengambil harga:

K

n n T

S Y

Y −

= (2.9)

Dimana:

YT : Reduced variate sebagai fungsi dari periode ulang T

Yn : Reduced mean sebagai fungsi dari banyak data (N)

Sn : Reduced standard deviation sebagai fungsi dari banyak data N

Tabel 2.4 Standar Deviasi (Yn) untuk Distribusi Gumbel

Tabel 2.5 Reduksi Variat

(YTR) sebagai fungsi periode ulang Gumbel

Sumber: Buku Sistem Drainase Perkotaan yang Berkelanjutan hal 51

(29)

Tabel 2.6 Reduksi Standard Deviasi (Sn) untuk Distribusi Gumbel

2.1.4 Uji Smirnov Kolmogorof

Tahap-tahap pengujian Smirnov Kolmogorof adalah sebagai berikut:

a. Plot data dengan peluang agihan empiris pada kertas probabilitas, dengan menggunakan persamaan Weibull:

(

n 1

)

x 100%

m P

+

= (2.13)

Dimana:

m = nomor urut dari nomor kecil ke besar n = banyaknya data

b. Tarik garis dengan mengikuti persamaan:

LogXT =logX+G .Sd (2.14)

(30)

Dari grafik ploting diperoleh perbedaan perbedaan maksimum antara distribusi teoritis dan empiris:

∆max = Pe-Pt (2.15)

Dimana:

max

∆ = selisih maksimum antara peluang empiris dengan teoritis, Pe = peluang empiris, dan Pt = peluang teoritis

c. Taraf signifikan diambil 5% dari jumlah data (n), didapat ΔCr dari tabel.

Dari tabel Uji Smirnov Kolmogorof, bila Δ maks < ΔCr, maka data dapat

diterima.

2.2 Hidrograf Satuan Sintetik

Di daerah di mana data hidrologi tidak tersedia untuk menurunkan hidrograf satuan, maka dibuat hidrograf satuan sintetis yang didasarkan pada karakteristik fisik dari DAS. Berikut ini diberikan beberapa metode yang biasa digunakan dalam menurunkan hidrograf banjir.

2.2.1. Hidrograf satuan Sintetik Snyder

Dalam permulaan tahun 1938, F.F. Snyder dari Amerika Serikat telah mengembangkan rumus empiris dengan koefisien-koefisien empiris yang menghubungkan unsur-unsur hidrograf satuan dengan karakteristik daerah pengaliran.

Unsur-unsur hidrograf tersebut dihubungkan dengan :

(31)

L= Panjang aliran utama (km)

LC= Jarak antara titik berat daerah pengaliran dengan pelepasan (outlet) yang diukur sepanjang aliran utama

Dengan unsur-unsur tersebut Snyder membuat rumus-rumusnya sebagai berikut :

tp = Ct (L. Lc) (2.28)

5, 5

p r

t

t = (2.29)

.A 2, 78 p p

p

C Q

t

= (2.30)

72 3

b p

T = + t (2.31)

dimana:

tp : Waktu mulai titik berat hujan sampai debit puncak dalam jam

tr : Lama curah hujan efektif

Qp : Debit maksimum total

Tb : Waktu dasar hidrograf

Koefisien-koefisien Ct dan Cp harus ditentukan dengan rumus sebagai berikut :  Keterlambatan DAS (basin lag)

(32)

dimana :

Ct : Koefisien yang diturunkan dari DAS yang memiliki data pada daerah yang

sama

 Menghitung debit puncak per satuan luas dari hidrograf satuan standar :

(2.33)

dimana :

Cp : Koefisien yang diturunkan dari DAS yang memiliki data pada daerah yang

sama

Harga L dan Lc diukur dari peta DAS untuk menghitung Ct dan Cp pada DAS yang terukur. Berdasarkan hidrograf satuan yang diturunkan dapat diperolrh durasi efektif tR dalam jam,

kelambatan DAS tpR dalam jam. Jika maka :

tr = tR

tp = tpR dan qp = qpR

Jika tpR jauh dari 5,5 tR, maka kelambatan DAS standar adalah :

(2.34)

Dan persamaan (2.29) dan (2.33) diselesaikan untuk mendapatkan nilai tr dan tp. Nilai Ct dan Cp kemudian dihitung dari persamaan (2.32) dan (2.33).

Lamanya hujan efektif tr ‘=tp/5,5 dimana tr diasumsi 1 jam. Jika tr’ > tr ( asumsi), dilakukan

koreksi terhadap tp 2, 75.Cp q =p

tp

t = 5, 5 tp r

t tr- R t = t R +p p

(33)

'p p 0, 25( 'r R)

t = +t tt (2.35)

' 2

tr Tp=t p+

maka : ' 2 r P p t

T =t + (2.36)

Jika tr’ < tr (asumsi), maka :

2 r

p p

t

T = +t (2.37)

Menentukan grafik hubungan antara Qp dan t (UH) berdasarkan persamaan Alexseyev sebagai berikut :

.

Q=Y Qp (2.38)

dimana : 2 (1 ) 10 x a x Y − −

= (2.39)

R t X T = (2.40) 2

1, 32 0,15 0, 045

a= λ + λ + (2.41)

( . ) ( . )

p R

Q T

h A

λ = (2.42)

dimana:

(34)

Y : Perbandingan debit periode hidrograf dengan debit puncak

X : Perbandingan waktu periode hidrograf dengan wktu mencapai puncak banjir

Setelah λ dan a dihitung, maka nilai y untuk masing-masing x dapat dihitung (dengan membuat table), dari nilai-nilai tersebut diperoleh t=xTp dan Q=y.Qp , selanjutnya dibuat

grafik hidrograf satuan.

2.2.2 Hidrograf Satuan Sintetik Nakayasu

Perhitungan debit banjir rancangan menggunakan metode Nakayasu. Persamaan umum Hidrograf Satuan Sintetik Nakayasu adalah sebagai berikut:

) T T (0,3 3,6 R . A . C Q 0,3 P 0

p = + (2.43)

Tp = tg + 0,8 tr (2.44)

tg = 0,21 x L0,7 (L < 15 km) (2.45)

tg = 0,4 + 0,058 x L (L > 15 km) (2.46)

T0,3= α x tg (2.47)

p 4 , 2

p

t x Q

T t

Q

      = (2.48) dimana:

Qp = debit puncak banjir (m3/det)

C = koefisien pengaliran

(35)

A = luas DAS (km2)

Tp = tenggang waktu dari permulaan hujan sampai puncak banjir (jam)

T0,3 = waktu yang diperlukan oleh penurunan debit, dari debit puncak sampai menjadi

30% dari debit puncak, tg= waktu konsentrasi (jam),

tr = satuan waktu hujan, diambil 1 jam, α = parameter hidrograf, bernilai antara

1.5 – 3.5, Qt = debit pada saat t jam (m3/det), dan L = panjang sungai (m).

[image:35.595.84.477.342.594.2]

Gambar (2.5) merupakan contoh gambar hidrograf nakayasu berupa hubungan antara waktu dengan debit puncaknya.

Gambar 2.4 Model Hidrograf Nakayasu

0,3 Qp

0,32 Qp

0,8 Tr tg

Qp

LengkungNaik Lengkung Turun

Tp T0,3 1,5 T0,3

Tr

Q

(36)

Persamaan-persamaan yang digunakan dalam hidrograf nakayasu adalah:

a. Pada kurva naik, 0 ≤ t ≤ Tp, maka: p 4 , 2 p

t x Q

T t

Q

      =

b. Pada kurva turun, Tp < t ≤ (Tp + T0,3),

maka:        

= T0,3

Tp -t

p t Q x 0,3

Q , untuk (Tp + T0,3) ≤ t ≤ (Tp + T0,3 + 1,5T0,3),

maka: 

       + = 0,3 0,3 1,5T 0,5T Tp -t p t Q x 0,3

Q , dan untuk t > (Tp + T0,3 + 1,5T0,3),

maka 

       + = 0,3 0,3 2T 1,5T Tp -t p t Q x 0,3

Q .

di mana Qt = debit pada saat t jam (m3/det)

2.2.3 Hidrograf Satuan Sintetik Gamma I

Kajian sifat dasar Hidrograf Satuan Sintetik (HSS) Gamma I adalah hasil penelitian 30 buah daerah aliran sungai di Pulau Jawa. Sifat-sifat daerah aliran sungai dalam metode HSS Gamma I adalah sebagai berikut:

a. Faktor sumber (source factor, SF) adalah perbandingan antara jumlah panjang sungai-sungai tingkat satu dengan jumlah panjang sungai semua tingkat.

(37)

c. Faktor simetri (symmetry factor, SIM), ditetapkan sebagai hasil kali antara faktor lebar (WF) dengan luas relatif DPS sebelah hulu (RUA).

d. Faktor lebar (width factor, WF) adalah perbandingan antara lebar DAS yang diukur dari titik di sungai yang berjarak ¾ L dan lebar DPS yang diukur dari titik di sungai yang berjarak ¼ L dari tempat pengukuran.

e. Luas relatif DPS sebelah hulu (relative upper catchment area), yaitu perbandingan antara luas DPS sebelah hulu garis yang ditarik terhadap garis yang mengubungkan titik tersebut dengan tempat pengukuran dengan luas DPS.

Jumlah pertemuan sungai (number of junction, JN). Gambar (2.4) berikut merupakan model parameter karakteristik DAS Metode Gamma I. Untuk X ~ A = 0,25 L, X ~ B = 0,75 L, dan WF = WU/WL

Gambar 2.5 Model Parameter Karakteritik DAS Metode Gamma I

Rumus-rumus yang digunakan dalam metode HSS Gamma I adalah sebagai berikut:

B = 1,5518 N-0,14991 A-0,2725 SIM –0,0259 S-0,0733 (2.49)

dimana :

N = jumlah stasiun hujan,

A = luas DAS (km2)

A

B WL

(38)

SIM = faktor simetri,

S = landai sungai rata-rata

B = koefiesien reduksi.

Menghitung waktu puncak HSS Gamma I (tr) dengan rumus berikut:

tr = 0.43 ( L/ 100 SF) 3 + 1.0665 SIM + 1.277 (2.50)

dimana :

tr = waktu naik (jam)

L = panjang sungai induk (km)

SF = faktor sumber

SIM = faktor simetri.

Menghitung debit puncak banjir HSS Gamma I (Qp) dengan rumus berikut:

Qp = 0,1836 A0,5884 JN0,2381 tr-0,4008 (2.51)

dimana :

Qp = debit puncak (m3/det), dan JN = jumlah pertemuan sungai.

Menghitung waktu dasar pada metode HSS Gamma I (tb) dengan rumus berikut:

tb = 27,4132 tr0,1457 S-0,0986 SN0,7344 RUA0,2574 (2.52)

dimana :

S = landai sungai rata-rata

(39)

RUA = luas relatif DPS sebelah hulu (km2).

Menghitung koefisien tampungan (K) pada metode ini dihitung dengan rumus:

K = 0,5671 A0,1798 S-0,1446 SF-1,0897 D0,0452 (2.53)

dimana :

K = koefisien tampungan (jam) A = luas DPS (km2)

S = landai sungai rata-rata SF = faktor sumber (km/km2)

D = kerapatan jaringan kuras (km/km2). Menghitung aliran dasar sungai dihitung dengan rumus:

QB = 0,4751 A0,6444 D0,9430 (2.54)

dimana :

QB = aliran dasar (m3/det)

A = luas DPS (km2)

D = kerapatan jaringan kuras (km/km2).

(40)

BAB III

METODOLOGI PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian untuk penulisan skripsi ini berlangsung pada semester A Tahun ajaran 2014-2015 sampai dengan selesai yang dilakukan di Sungai Wampu yang terletak di Kabupaten Langkat, Provinsi Sumatera Utara. Secara geografis Kabupaten Langkat, Provinsi Sumatera Utara terletak pada 03° 44’ 25” LU – 98° 26’ 49” BT.

3.2 Rancangan Penelitian

Studi penelitian dilakukan sesuai urutan di bawah ini: 1. Studi Literatur

Pertama dalam penulisan ini yaitu melakukan studi literatur yang berisi konsep-konsep teoritis dari berbagai literatur yang dipelajari dan dipahami agar landasan teoritis terpenuhi dalam mengembangkan konsep penelitian mengenai hidrograf satuan sinetik.

2. Pengumpulan Data

Pengumpulan data dalam penelitian ini meliputi: a. Data Primer

Data Primer adalah data yang diperoleh dengan pengamatan dan pengukuran di lapangan. Secara umum pengertian data primer adalah data yang diperoleh dari sumber pertama/sumber data atau data yang dikumpulkan peneliti secara langsung melalui obyek penelitian.

b. Data Sekunder

(41)

didapatkan melalui instansi-instansi yang terkait dalam permasalahan ini, seperti jurnal, buku literatur, internet dan data-data yang digunakan. Secara umum pengertian data sekunder adalah data yang diperoleh dari pihak kedua, data ini biasanya sudah dalam keadaan diolah.

c. Pengolahan Data

Setelah semua data yang dibutuhkan diperoleh, langkah selanjutnya adalah pengolahan data. Data-data yang diperoleh dari hasil survei lapangan, hasil analisa dan data-data yang telah diolah oleh suatu pusat penelitian akan di hitung dengan menggunakan suatu metode.

3. Analisis Data

Dari hasil pengolahan akan dilakukan analisa data sehingga dapat diperoleh kesimpulan akhir yang berarti. Beberapa analisa tersebut berupa:

a. Analisis curah hujan

Data ini berguna untuk mengetahui intensitas curah hujan jam-jaman dalam kala ulang tahunan untuk digunakan sebagai bagian dalam parameter perhitungan Hidrograf yang akan ditentukan.

b. Analisis debit puncak Hidrograf Satuan Sintetik

Data ini berguna untuk mengetahui debit puncak dari masing-masing metode Hidrograf Satuan Sintetik di Sungai Wampu yang terletak pada Kabupaten Langkat, Provinsi Sumatera Utara.

c. Analisa Pemodelan hidrograf satuan sintetik dengan debit observasi

Menghitung debit menggunakan metode HSS Snyder, HSS Nakayasu, HSS Gamma-I yang berguna untuk perbandingan pada debit observasi.

(42)

Penarikan kesimpulan dapat dilakukan setelah hasil pengolahan data diperoleh, ditambah dengan uraian dan informasi yang diperoleh di lapangan.

3.3 Sistematika Penulisan

Adapun sistematika penulisan Tugas Akhir ini adalah: 1. Pendahuluan

Gambar 3.1 Tahapan Rencana Pelaksanaan Tugas Akhir

Analisis pemodelan hidrograf banjir rencana - HSS Snyder - HSS Nakayasu - HSS Gama I

Debit Observasi

Analisis perbandingan debit model dengan debit observasi

Analisis kesesuian dan akurasi (pemilihan hidrograf yang sesuai)

Analisis penentuan parameter yang berpengaruh pada pemilihann HSS

Kesimpulan dan Saran

Selesai Mulai

Studi Literatur

Pengumpulan data

- Data DAS

- Peta DAS

- Peta Tata Guna Lahan

- Data Curah Hujan

- Data Debit

Analisa Distribusi Hujan

(43)

Pada bab ini akan dibahas latar belakang masalah, maksud dan tujuan penelitian, ruang lingkup atau batasan pembahasan, metodologi penulisan serta sistematika penulisan tugas akhir ini.

2. Tinjauan Pustaka

Pada bab ini akan diuraikan berbagai literature yang berkaitan dengan penelitian/pembahasan. Di dalamnya termasuk paparan tentang hidrologi, hidrograf satuan sintetik, analisis curah hujan, serta rumus-rumus yang berkaitan dengan judul tugas akhir ini.

3. Metodologi Penelitian

Bab ini akan menjelaskan mengenai metodologi yang digunakan penulis yang akan menampilkan bagaimana kerangka pemikiran dari keseluruhan penelitian ini dengan membahas semua tahapan secara umum yang dilakukan dari awal penelitian sampai dengan penarikan kesimpulan.

4. Analisa Data dan Pembahasan

Bab ini berisi spesifikasi data yang akan digunakan dalam penelitian yaitu mencakup data curah hujan, data debit observasi, dan data-data lingkungan lainnya yang mendukung. Kemudian membandingkan antara data debit observasi dengan debit yang didapat dari metode HSS.

5. Kesimpulan dan Saran

Bab ini menjelaskan mengenai hasil dan kesimpulan yang dapat ditarik setelah dilakukan penelitian sehubungan dengan masalah yang telah ditentukan pada bab sebelumnya. Selain itu juga akan diberikan beberapa saran untuk penelitian selanjutnya atau untuk pengembangan lokasi penelitian di masa mendatang.

3.4 Pelaksanaan Penelitian

(44)

1. Penentuan Lokasi Penelitian

Lokasi penelitian dilakukan langsung di daerah aliran Sungai Wampu di Kabupaten Langkat yang berada di tiga stasiun pengamatan hujan yaitu, Stasiun Teluk di kecamatan Secanggang, Stasiun Perdamean di Kecamatan Stabat, dan Stasiun Padang Brahrang di Kecamatan Selesai Kabupaten Langkat Sumatera Utara. Selain itu, data-data pelengkap diambil di Kantor Badan Wilayah Sungai Sumatera (BWSS II) untuk menunjang penulisan tugas akhir ini.

2. Metode Penelitian

Metode yang digunakan pada penelitian ini adalah metode analisis hidrologi berupa analisis curah hujan sebagai pendukung untuk mendapatkan debit banjir yang paling mendekati dari ketiga metode Hidrograf Satuan Sintetik.

3.5 Variabel yang diamati

(45)

BAB IV

ANALISA DATA DAN PEMBAHASAN

4.1 Analisa Hidrologi

4.1.1 Curah Hujan Harian Maksimum

Data curah hujan merupakan banyaknya hujan yang jatuh di suatu tempat. Curah hujan mempengaruhi debit dan aliran permukaan pada suatu sungai. Data curah hujan diambil di 3 stasiun pengamatan yang ditunjukkan pada gambar (4.1).

[image:45.595.111.419.321.658.2]

Sumber: Balai Wilayah Sungai Sumatera II

(46)

Penelitian ini menggunakan data curah hujan selama sepuluh tahun yang tercatat mulai 2003 sampai dengan 2012 pada 3 stasiun penangkaran hujan yaitu Teluk, Perdamean dan Padang Brahrang Kabupaten Langkat Provinsi Sumatera Utara.

[image:46.595.71.533.546.722.2]

Dengan metode aljabar (rata-rata) dipilih curah hujan tertinggi setiap tahun.Data hujan yang terpilih setiap tahun merupakan hujan maksimum harian DAS untuk tahun yang bersangkutan.

Tabel 4.1 Data Curah Hujan Harian Maksimum Stasiun Teluk

Tahun Jan Feb Mar Apr Mei Jun Jul Agt Sep Okt Nov Des Har.Maks

2003 29 35 28 58,5 65 29 70 82 46 53 120 68,5 120 2004 40 85 59 70 24 76 75 30 100 72 61 43,5 100 2005 21 45 65 80 21 34 34 43 42 35 55 32 80 2006 20 85 24,5 99 53 44 23 22 78 79 49 37,5 99 2007 23 40 92 52 60,5 29 44 92 26 76,5 43,5 94 94 2008 77 69 59 43 34 61,5 34 69 75 55 49 96 96 2009 32 47 76 88 24 54 63 23 22 32 67 45 88 2010 62 25 24 70 50 60 65 50 34 45 94 50 94 2011 78 105 41 130 49,5 82 114 72 115 29 41 85 130 2012 45 52 75 55 67 50 58,5 25 47 52 65 71 75

Sumber: Badan Meteorologi, Klimatologi dan Geofisika Sampali Medan

Tabel 4.2 Data Curah Hujan Harian Maksimum Stasiun Perdamean

Tahun Jan Feb Mar Apr Mei Jun Jul Agt Sep Okt Nov Des Har.Maks

2003 46 85 36 74 68,5 66 75 33,5 58 61 36 53 85 2004 44 45 36 58 44 40 27 46 38 77 65 54 77 2005 51 44 80 107 40 34 59 31 54 73 35 31 107 2006 43 50 97 51 42 77 47,5 30 42 77 85 94 97 2007 37 53 73 55 46 66 43 61 62 56 47 79 79 2008 41 16,5 33 42 15 56 29 44 42 62 86 84 86 2009 22 34 53 43 45 31 46 35 60 53 21 45 60 2010 78 25 44 46 48 122 32 40 77 34 45 78 122 2011 54 55 77 74 36 36 89 32 84 43 33 63 89 2012 66 30 84 87 95 49 15 52 39 25 51 75 95

(47)
[image:47.595.71.536.98.275.2]

Tabel 4.3 Data Curah Hujan Harian Maksimum Stasiun Padang Brahrang

Tahun Jan Feb Mar Apr Mei Jun Jul Agt Sep Okt Nov Des Har.Maks

2003 40 43 51 39 49 34 30 50 79 46 115 88 115 2004 106 65 64 72 25 83 68 65 75 52,5 76 125 125 2005 49 29 90 76 35 36 20 54,5 42 31 80,5 44 90 2006 44 53 106 75 29 45 23 43 67 68 75 37,5 106 2007 50 12 41 92 88 45 74 28 64 33,5 29 82,5 92 2008 22 30,5 73 74 76 36 180 140 110 25 29 88 180 2009 80 104 126 81 111 76 35 75 31 105 75 121,5 126 2010 58 32,5 30 60 61 53 22,5 20,5 20,5 93 16 31 93 2011 32 87 58 19 25 26,2 70,5 64 66,8 68,5 72,5 57,8 87 2012 109 55 52 73 41 42 75,5 59 79,5 75 85 37 109

Sumber:Badan Meteorologi, Klimatologi dan Geofisika Sampali Medan

Curah Hujan tertinggi pada tahun 2008 sebesar 120,67 mm. Data urut hujan maksimum harian secara lengkap ditunjukkan pada tabel4.4 di bawah ini:

Tabel 4.4 Curah Hujan Harian Maksimum Tahunan (mm/jam)

Tahun Rmax

2007 88,33

2009 91,33

2005 92,33

2012 93,00

2004 100,67 2003 100,67 2011 102,00 2010 103,00 2003 106,67 2008 120,67

Sumber: Hasil perhitungan

4.1.2 Penentuan Pola Distribusi Hujan

[image:47.595.228.368.423.597.2]
(48)

(analisa frekuensi) maka dicari parameter statistik dari data curah hujan wilayah baik secara normal maupun secara logaritmatik.

Langkah yang ditempuh adalah dengan menggunakan data-data mulai dari terkecil sampai terbesar. Dari hasil analisis diperoleh nilai untuk masing-masing parameter statisik. Untuk menganalisis probabilitas curah hujan biasanya dipakai beberapa macam distribusi yaitu: (A) Distribusi Normal, (B) Log Normal, (C) Log Pearson Type III, (D Gumbel).

4.1.2.1 Parameter Statistik Sebaran Normal

[image:48.595.150.438.375.597.2]

Data-data yang digunakan dalam perhitungan parameter statistik sebaran normal dapat dilihat pada tabel 4.5.

Tabel 4.5 Analisa Curah Hujan Distribusi Normal No Curah hujan (mm) Xi

1 88,33 -11,53 133,02

2 91,33 -8,53 72,82

3 92,33 -7,53 56,75

4 93 -6,87 47,15

5 100,67 0,80 0,64

6 100,67 0,80 0,64

7 102 2,13 4,55

8 103 3,13 9,82

9 106,67 6,80 46,24

10 120,67 20,80 432,64

Jumlah 998,67 804,27

X 99,87

S 9,45

Sumber: Hasil Perhitungan

Dari data-data diatas didapat: X 998, 67 99,87 mm 10

= =

Standar deviasi:

2 i

(X X) 804, 27

S 9, 45

n 1 10 1

= = =

− −

(49)
[image:49.595.78.521.197.327.2]

Selanjutnya pada analisa curah hujan rencana dengan distribusi normal diperlukan nilai KT (variabel reduksi) yang diperoleh dari tabel 2.1 untuk menentukan analisa curah hujan rencana dengan Distribusi Normal seperti pada tabel 4.6 dibawah ini.

Tabel 4.6 Analisa Curah Hujan Rencana dengan Distribusi Normal

No Periode ulang (T) tahun

KT S Curah Hujan (XT)

(mm)

1 2 0 99,87 9,45 99,87

2 5 0,84 99,87 9,45 107,81

3 10 1,28 99,87 9,45 111,96

4 25 1,64 99,87 9,45 115,37

5 50 2,05 99,87 9,45 119,24

6 100 2,33 99,87 9,45 121,89

Sumber: Hasil Perhitungan

Berikut hasil analisa curah hujan rencana dengan Distribusi Normal:  Untuk periode ulang (T) 2 tahun

= 99,87 + (0 x 9,87) = 99,87 mm  Untuk periode ulang (T) 5 tahun

= 99,87 + (0,840 x 9,45) = 107,81 mm

4.1.2.2 Analisa Curah Hujan Distribusi Log Normal

Data-data yang digunakan dalam perhitungan parameter statistik dengan sebaran logaritmatik dapat dilihat pada tabel 4.7.

Tabel 4.7 Analisa Curah Hujan dengan Distribusi Log Normal

No Curah hujan (mm) Xi Log Xi 2

i

(Log X −Log X)

1 88,33 1,95 -0,05 0,00

2 91,33 1,96 -0,04 0,00

3 92,33 1,97 -0,03 0,00

4 93 1,97 -0,03 0,00

(50)

6 100,67 2,00 0,00 0,00

7 102 2,01 0,01 0,00

8 103 2,01 0,01 0,00

9 106,67 2,03 0,03 0,00

10 120,67 2,08 0,08 0,01

Jumlah 998,67 20,0 0,01

X 99,87 2

S 0.03

Sumber: Hasil perhitungan

Dari data-data diatas didapat :X 20 2 mm 10

= =

Standar deviasi :S = (Xi X) 0, 01 0, 03 n -1 10 -1

[image:50.595.113.483.73.187.2]

= =

Tabel 4.8 Analisa Curah Hujan Rencana dengan Distribusi Log Normal

No Periode ulang

(T) tahun KT Log X Log S Log XT Curah hujan ( XT)

1 2 0 2.00 0.03 2.00 99.48

2 5 0.84 2.00 0.03 2.03 105.97

3 10 1.24 2.00 0.03 2.04 108.94

4 20 1.64 2.00 0.03 2.05 112.00

5 50 2.05 2.00 0.03 2.06 115.21

6 100 2.33 2.00 0.03 2.07 117.46

Sumber: Hasil Perhitungan

Berikut adalah hasil analisa curah hujan rencana dengan Distribusi Log Normal:

Log X

T

=

T = 2 tahun

Log X2 = 2+ (0 × 0,03)

Log X2 = 2

X2 = 99,48 mm

Log X

T

=

T = 5 tahun

Log X2 = 2 + (0.84 × 0,03)

Log X2 = 2,025

T

LogX (K+ ×S)

T

(51)

X2 = 105,97 mm

Log X

T

=

T = 10 tahun

Log X2 = 2 + (1.24 × 0,03)

Log X2 = 2,037

X2 = 108,94 mm

Log X

T

=

T = 20 tahun

Log X2 = 2 + (1.64 × 0,03)

Log X2 = 2.04

X2 = 112 mm

Log X

T

=

T = 50 tahun

Log X2 = 2 + (2.05× 0,03)

Log X2 = 2.062

X2 = 115.21 mm

Log X

T

=

T = 100 tahun

Log X2 = 2 + (2.33× 0,03)

Log X2 = 2.07

X2 = 117.46mm

4.1.2.3 Analisa Curah Hujan Dengan Distribusi Log Pearson III T

LogX (K+ ×S)

T

LogX (K+ ×S)

T

LogX (K+ ×S)

T

(52)
[image:52.595.71.526.164.434.2]

Berikut ini adalah tabel 4.9 yang menunjukkan data analisa curah hujan dengan distribusi Log Pearson III.

Tabel 4.9 Analisa Curah Hujan dengan Distribusi Log Pearson III

No Curah hujan (mm) Xi Log Xi Log(Xi−X) Log(Xi−X)2 Log(Xi−X)3

1 88,33 1,95 -0,05 0,0028 -0,0002

2 91,33 1,96 -0,04 0,0015 -0,0001

3 92,33 1,97 -0,03 0,0012 0,0000

4 93 1,97 -0,03 0,0010 0,0000

5 100,67 2,00 0,00 0,0000 0,0000

6 100,67 2,00 0,00 0,0000 0,0000

7 102 2,01 0,01 0,0001 0,0000

8 103 2,01 0,01 0,0002 0,0000

9 106,67 2,03 0,03 0,0008 0,0000

10 120,67 2,08 0,08 0,0068 0,0006

Jumlah 998,67 20,0 0,0143 0,0030

X 99,87 2,00

S 0,04

G 0,10

Sumber: Hasil Perhitungan

Dari data-data diatas didapat: X 20 2 mm 10

= =

Standar deviasi:

2 i

(X X) 0, 0143

S 0, 04

n 1 10 1

− = = = − − Koefisien kemencengan:

(

)

n 3 i i 1 3 3 X X G

(n 1)(n 2)S 10 0.003

G 0,1012 0,1

9 8 0, 04

= − = − − × = = ≈ × ×

(53)

Tabel 4.10 Analisa Curah Hujan Rencana dengan Distribusi Log Pearson III

No Periode ulang (T) tahun K Log

X Log S Log XT Curah hujan ( XT)

1 2 -0.017 2 0.04 2.00 99.84

2 5 0.836 2 0.04 2.03 *108.00

3 10 1.292 2 0.04 2.05 112.64

4 25 2.785 2 0.04 2.11 129.24

5 50 2.107 2 0.04 2.08 121.42

6 100 2.400 2 0.04 2.10 124.74

Tanda * merupakan parameter Curah Hujan (h) pada HSS Snyder

Sumber: Hasil Perhitungan

Berikut hasil analisa curah hujan rencana dengan Distribusi Log Person III:

Log X

T

=

T = 2 tahun

Log X2 = 2 + (-0,017× 0,04)

Log X2 = 2

X2 = 99.84 mm

Log X

T

=

T = 5 tahun

Log X2 = 2 + (0,8 × 0,04)

Log X2 = 2,03

X2 = 107,45 mm

[image:53.595.73.482.100.233.2]

4.1.2.4 Analisa Curah Hujan Distribusi Gumbel

Tabel 4.11 Analisa Curah Hujan dengan Distribusi Gumbel

No

Curah hujan (mm) Xi

m P n 1 = + Periode Ulang 1 T P

= (Xi−X)

2 i (X −X)

1 88,33333333 0,09 11,11 -11,53 133,0177778

2 91,33333333 0,18 5,56 -8,53 72,81777778

3 92,33333333 0,27 3,70 -7,53 56,75111111

T

LogX (K+ ×S)

T

(54)

4 93 0,36 2,78 -6,87 47,15111111

5 100,6666667 0,45 2,22 0,80 0,64

6 100,6666667 0,54 1,85 0,80 0,64

7 102 0,64 1,56 2,13 4,551111111

8 103 0,73 1,37 3,13 9,817777778

9 106,6666667 0,82 1,21 6,80 46,24

10 120,6666667 0,91 1,10 20,80 432,64

umla 998,67 804,27

X 99,87

S 9.45

Sumber: Hasil Perhitungan

Dari data-data diatas didapat: X 998, 67 99,867 mm 10

= =

Standar deviasi:

2 i

(X X) 804, 27

S 9, 45

n 1 10 1

= = =

− −

Dari tabel 2.4 dan tabel 2.6 untuk n = 10 n

n

Y 0.4952 S 0.94

= =

Untuk periode ulang (T) 2 tahun TR

Y =0.3668

TR n

n

Y Y 0.3668 0.4952

K 0,14

S 0,94

− −

= = = −

T

(55)

Di bawah ini merupakan tabel 4.12 yang berisikan data analisa curah hujan rencana dengan Distribusi Gumbel. Nilai YTR diperoleh dari tabel 2.5 Yn dari tabel 2.4, dan Sn

[image:55.595.98.501.183.472.2]

diperoleh dari tabel 2.6 seperti yang tertera di bawah ini.

Tabel 4.12 Analisa Curah Hujan Rencana dengan Distribusi Gumbel

No Periode ulang

(T) tahun YTR Yn Sn X S K

Curah hujan (XT)

1 2

0,366 8

0,495

2 0,94 99,87 9,45

-0.14 98.547

2 5

1,500 4

0,495

2 0,94 99,87 9,45 1.06 109.87

3 10

2,251 0

0,495

2 0,94 99,87 9,45 1.85 117.34

4 20

2,970 9

0,495

2 0,94 99,87 9,45 2.61 124.50

5 50

3,902 8

0,495

2 0,94 99,87 9,45 3.59 133.78

6 100

4,601 2

0,495

2 0,94 99,87 9,45 4.32 140.73

Sumber: Hasil Perhitungan

4.2 Analisa Hidrologi

4.2.1 Analisa Frekuensi Curah Hujan

(56)

Tabel 4.13 Analisa Frekuensi Curah Hujan

No. Xi P

1 88,33333 0.09 -11,53 133,02 -1534,14 17693,83

2 91,33333 0.18 -8,53 72,82 -621,38 5302,47

3 92,33333 0.27 -7,53 56,75 -427,53 3220,72

4 93 0.36 -6,87 47,15 -323,77 2223,24

5 100,6667 0.45 0,80 0,64 0,51 0,41

6 100,6667 0.55 0,80 0,64 0,51 0,41

7 102 0.64 2,13 4,55 9,71 20,71

8 103 0.73 3,13 9,82 30,76 96,39

9 106,6667 0.82 6,80 46,24 314,43 2138,16

10 120,6667 0.91 20,80 432,64 8998,94 187178,13

Total 998,7 804,27 6448,04 217874,47

Rata-rata 99,87

Dari hasil perhitungan diatas selanjutnya ditentukan jenis sebaran yang sesuai, dalam penentuan jenis sebaran diperlukan faktor-faktor sebagai berikut:

1. Koefesien Kemencengan (Cs)

n 3 i i 1 S 3 S 3

n (X X)

C

(n 1)(n 2) S 10 6448, 04

C 1, 06

9 8 9, 4 5

= − = − − × = = × ×

2. Koefesien Kurtosis (Ck)

x

xi − 2

)

(x x

i −

3

)

(xi −x 4

)

(x x

(57)

n 2 4 i i 1 k 4 2 k 4

n (X X)

C

(n 1)(n 2)(n 3)S

10 217874, 47

C 5, 42

9 8 7 9, 45

= − = − − − × = = × × ×

3. Koefesien Variasi (Cv)

v v S C X 9, 45 C 0.09 99,87 = = =

4.2.2 Jenis Distribusi

Untuk menentukan jenis sebaran yang akan digunakan, maka parameter statistik data curah hujan wilayah diperiksa terhadap beberapa jenis sebaran sebagai berikut :

1. Distribusi Gumbel 2. Distribusi Log Normal 3. Distribusi Log Pearson III 4. Distribusi Normal

Berikut ini adalah perbandingan syarat-syarat distribusi dan hasil perhitungan analisa frekuensi hujan.

Tabel 4.14 Uji parameter statistik untuk menentukan jenis sebaran

No Jenis Sebaran Syarat Hasil

Perhitungan Keterangan

1 Normal Cs ≈ 0 1,06 tidak sesuai

Ck ≈ 3 5,42 tidak sesuai

2 Log Normal

CS≈CV3 + 3CV 0,27 tidak sesuai

CK ≈ CV8+6CV6 +15CV4 +

16CV2 +3

3,13 tidak sesuai

(58)

CK≈5.4 5,42 tidak sesuai

4 Log Pearson

III Selain dari nilai di atas Sesuai

Sumber: Bambang Triadmojo, 2008: 250

Berdasarkan tabel 4.14, maka distribusi Log Pearson III dapat digunakan sebagai metode perhitungan curah hujan rancangan. Berdasarkan analisis frekuensi yang dilakukan pada data curah hujan harian maksimum diperoleh bahwa jenis distribusi yang paling cocok dengan sebaran data curah hujan harian maksimum di daerah aliran air adalah distribusi Log Pearson III.

4.2.3 Uji Sebaran Smirnov-Kolmogorov

(59)
[image:59.842.85.761.111.421.2]

Tabel 4.15 Perhitungan Uji Smirnov Kolmogorov

No Tahun Curah Hujan (mm)

Xi

m P(X) m

N 1 =

+ P(X )< X

X X

k S

= P '(X) m

N 1 =

− P '(X )< D=P(X )< −P '(X )<

1 2007 88.33333333 1 0.091 0.909 -1.221 0.111 0.889 0.020

2 2009 91.33333333 2 0.182 0.818 -0.903 0.222 0.778 0.040

3 2005 92.33333333 3 0.273 0.727 -0.798 0.333 0.667 0.061

4 2012 93 4 0.364 0.636 -0.727 0.444 0.556 0.081

5 2004 100.6666667 5 0.455 0.545 0.084 0.556 0.444 0.101

6 2003 100.6666667 6 0.545 0.455 0.084 0.667 0.333 0.121

7 2011 102 7 0.636 0.364 0.225 0.778 0.222 0.141

8 2010 103 8 0.727 0.273 0.331 0.889 0.111 0.162

9 2003 106.6666667 9 0.818 0.182 0.719 1.000 0.000 0.182

(60)

Dmax = 0,202

Dari table kritis Smirnov-Kolmogorov didapat Dcr (0,05) = 0,41

Dmax < Dcr

0,202 < 0,41 (memenuhi syarat)

[image:60.595.197.429.321.550.2]
(61)

4.2.4 Koefisien Pengaliran

Koefisien pengaliran adalah suatu variabel yang didasarkan pada kondisidaerah pengaliran dan karakteristik hujan yang jatuh di daerah tersebut. Adapunkondisi dan karakteristik yang dimaksud adalah:

 Kondisi hujan

 Luas dan bentuk daerah pengaliran

 Kemiringan daerah aliran dan kemiringan dasar sungai  Daya infiltrasi dan perkolasi tanah

 Kebasahan tanah

 Suhu udara dan angin serta evaporasi  Tata guna lahan

Dalam hal ini telah ditentukan nilai dari koefisien limpasan terhadap kondisi karakter permukaannya yaitu:

Tabel 4.17 Nilai Koefisien Run Off (C)

Diskripsi lahan/karakter permukan Koefisien aliran, C

Industri

Ringan 0,55

Sedang 0,65

Berat 0,85

Perumahan

Multiunit, tergabung 0,60

Ruang Terbuka Hijau 0,28

(62)

4.2.5 Perhitungan Intensitas Hujan Jam-jaman

Waktu yang diperlukan oleh hujan yang jatuh untuk mengalir dari titik terjauh sampai ketempat keluarnya (titik control) disebut dengan waktu konsentrasi suatu daerah aliran dimana setelah tanah menjadi jenuh dan tekanan kecil terpenuhi. Dalam hal ini diasumsikan bahwa jika durasi hujan sama dengan waktu konsentrasi maka setiap bagian daerah aliran secara serentak telah menyumbangkan aliran terhadap titik control.

Intensitas hujan adalah tinggi atau kedalaman air hujan persatuan waktu. Sifat umum hujan adalah semakin singkat hujan berlangsung, intensitasnya cendrung makin tinggi dan makin besarperiode ulangnya makin jauh pula intensitasnya.

Hubungan antara intensitas hujan, lamanya hujan dan frekuensi hujan biasanya dinyatakan dalam lengkung Intensitas Durasi Frekuensi (IDF) yaitu

intensity, duration, frequency Cureve.Diperlukan data hujan jangka pendek misalnya 5 menit, 10 menit, 30 menit, 60 menit dan jam-jaman untuk membentuk lengkung IDF. Data hujan jenis ini hanya dapat diperoleh dari stasiun penangkar otomatis, selanjutnya berdasarkan hujan jangka pendek tersebut lengkung IDF dapat dibuat dari table dibawah dan divariasikan terhadap waktu.

(63)

No T (menit)

t (jam)

I (mm/jam)

R2 R5 R10 R20 R50 R100

(64)

Sumber: Hasil Perhitungan

Gambar 4.2 Grafik Intensitas Curah Hujan

Intensitas Curah Hujan 2 tahun:

I = R24 24 (

24 tc

)2/3

I = 99,84

24 (

24 0.083)

2

3= 181 ,426 mm/jam

0 25 50 75 100 125 150 175 200 225 250 5

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Int e ns it a s C ur a h H uj a n ( m m /j a m )

[image:64.595.113.509.81.388.2]

Waktu Konsentrasi (menit)

Grafik Intensitas Curah Hujan

(65)

4.3 Hidrograf Satuan Sintetik

4.3.1 Hidrograf Satuan Sintetik Snyder

Dalam permulaan tahun 1938, F.F.Snyder dari Amerika Serikat, telah menemukan tiga parameter hidrograf yaitu, lebar dasar hidrograf, debit puncak, dan kelambatan DAS (basin lag) yang cukup memadai untuk mendifinisikan hidrograf satuan.

Adapun parameter-parameter yang dibutuhkan dalam analisis HSS Snyder adalah sebagai berikut :

Tabel 4.19 Parameter Untuk Menghitung HSS Snyder

Parameter Nilai Satuan Keterangan

Luas DAS (A) 5930,2 Km2 Dari data BWS

Panjang Sungai Utama (L) 127 Km Dari data BWS Jarak antara titik berat DAS dan

outlet (Lc)

44,055 Km Dari Peta DAS Wampu

Koefisien Ct ? - Perhitungan

Koefisien Cp ? - Perhitungan

TR asumsi 1 Jam Asumsi

Curah Hujan (h) 0,108 m Log Pearson III

sumber: Hasil Perhitungan dan analisa data

Dari parameter diatas nilai Ct dan Cp harus diperoleh melalui perhitungan terlebih dahulu. Adapun parameter tambahan yang diperlukan adalah nilai tpR=

24 jam (Suripin,2003) dan debit rata rata sebesar 110,5055 m / det3 yang diperoleh dari BWS untuk DAS WAMPU.

R

(66)

Karena tpR jauh dari 5,5 tR, maka kelambatan DAS standar adalah:

(dikombinasikan ke pers 2.29)

Dapat diperoleh nilai tr dan tp sebagai berikut :

Menghitung nilai Ct dan Cp dengan rumus sebagai berikut :

Koefisien Cp dihitung dengan rumus sebagai berikut :

t tr- R t = t R +p p

4

tr -1 t = 24 +p

4

tr -1 5, 5 t = 24 +r

4

(5, 5 4) t = 24 4 + t× r × r−1 (22 1) t = 96 1− r

t = 4, 5238r jam

t = 5, 5 tp r t = 24,88p jam

0,3

t = C (L.L )p t c 24,88 = C (127 . 44, 055)t 0,3 C = 1,868t

110, 5055 3

q = 0.018m / det.cm

pR 5930, 2 =

2, 75.Cp

q =

pR t

pR

2, 75.Cp 0, 018 =

24 C p= 0,157

t 1 r-t = 24 +p

4

(67)

Dari parameter diatas selanjutkan kita akan mencari hidrograf satuan dengan beberapa faktor-faktor, antara lain :

1. Mencari waktu mulai titik berat hujan sampai debit puncak (tp)

2.Mencari waktu mencapai puncak banjir (Tp’)

3. Mencari lama curah hujan efektif (tr’)

karena tr’>tr maka digunakan persamaan 2.33 antar lain :

4. Mencari debit puncak (Qp)

5. Memasukkan hasil perhitungan ke tabel

Ordinat hidrograf satuan dihitung dengan persamaan Alexeyev t = 24,88 jamp

tr 4, 5238

T ' = t +p p = 24,88 + = 27,1419 jam

2 2

tp 24,88

t ' =r = = 4, 5236 5, 5 5, 5

r R

t' = t + 0, 25 (t ' - t ) = 24.88 + 0.25 (4.5236 - 1) = 25, 7609 jamp p

3

Qp = qp x A = 0, 0175426 x 5930, 2 = 10, 40311532 m / det / mm

Cp 0,157

qp = 0, 278. = 0, 278 = 0, 0175426

tp 24,88

2

a = 1, 32.λ + 0,15λ + 0,045 2

= 1, 32(0, 455178609) + 0,15(0, 455178609) + 0, 045 = 0, 386764378

t

Gambar

Gambar 2.4 Model Hidrograf Nakayasu
Gambar 4.1 Peta Lokasi Stasiun Hujan pada DAS Wampu
Tabel 4.1 Data Curah Hujan Harian Maksimum Stasiun Teluk
Tabel 4.4 Curah Hujan Harian Maksimum Tahunan (mm/jam)
+7

Referensi

Dokumen terkait

Bejo Slamet : Model Hidrograf Satuan Sintetik Menggunakan Parameter Morfometri (Studi Kasus Di DAS…, 2006 USU Repository © 2008... Bejo Slamet : Model Hidrograf Satuan

Metode Hidrograf Satuan Sintetik (synthetic unit hydrograph) di Indonesia merupakan metode empiris yang sebagian besar digunakan di Indonesia untuk membuat perhitungan

adalah untuk membandingkan nilai debit banjir rancangan Sungai Bangga dengan mengolah data curah hujan dengan menggunakan metode Hidrograf Satuan Sintetik Gama I dan data debit

adalah untuk membandingkan nilai debit banjir rancangan Sungai Bangga dengan mengolah data curah hujan dengan menggunakan metode Hidrograf Satuan Sintetik Gama I dan data debit

Metode Hidrograf Satuan Sintetik (synthetic unit hydrograph) di Indonesia merupakan metode empiris yang sebagian besar digunakan di Indonesia untuk membuat perhitungan

Keandalan hidrograf satuan sintetik Gama 1 terhadap rancangan sub Daerah Aliran Sungai Siak di Wilayah Kota Pekanbaru dilihat dari nilai waktu kosentrasi untuk mecapai debit

Kesesuaian Hidrograf Satuan Sintetik Terhadap Hidrograf Satuan Terukur (Studi Kasus Sub Sub Daerah Aliran Sungai Pedindang Bagian Tengah) beserta perangkat yang ada

SKRIPSI ANALISIS DEBIT BANJIR MENGGUNAKAN HIDROGRAF SATUAN SINTETIK NAKAYASU TERHADAP DAS LESTI BIDANG TEKNIK KEAIRAN Hidrologi Diajukan Untuk Memenuhi Salah Satu Syarat