• Tidak ada hasil yang ditemukan

Analisis Kompleksitas Masalah Optimasi Linear Menggunakan Metode Interior Primal-Dual dengan Langkah Full-Newton.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Analisis Kompleksitas Masalah Optimasi Linear Menggunakan Metode Interior Primal-Dual dengan Langkah Full-Newton."

Copied!
31
0
0

Teks penuh

(1)

ANALISIS KOMPLEKSITAS MASALAH OPTIMASI LINEAR

MENGGUNAKAN METODE INTERIOR PRIMAL-DUAL

DENGAN LANGKAH FULL-NEWTON

RINI MAEDIANENGSIH

DEPARTEMEN MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

INSTITUT PERTANIAN BOGOR

(2)

ABSTRAK

RINI MAEDIANENGSIH. Analisis Kompleksitas Masalah Optimasi Linear Menggunakan Metode Interior Primal-Dual dengan Langkah Full-Newton. Dibimbing oleh BIB PARUHUM SILALAHI dan MUHAMMAD ILYAS.

Metode interior primal-dual dengan langkah full-Newton adalah salah satu metode untuk menyelesaikan masalah optimasi linear. Metode ini dirancang sedemikian rupa sehingga solusi optimal diperoleh di dalam interior dari domain. Metode ini memiliki kompleksitas polinomial. Karya ilmiah ini membahas dan menganalisis kompleksitas algoritme masalah optimasi linear menggunakan metode interior primal-dual langkah full-Newton. Beberapa masalah optimasi linear diselesaikan dengan metode ini untuk melihat kesesuainnya dengan kompleksitas algoritme. Dari studi kasus yang telah dilakukan, dapat disimpulkan bahwa banyaknya iterasi sesuai dengan kompleksitas algoritme.

(3)

ABSTRACT

RINI MAEDIANENGSIH. Complexity Analysis of Linear Optimization Problems Using Primal-Dual Interior Methods with Full-Newton Step. Supervised by BIB PARUHUM SILALAHI and MUHAMMAD ILYAS.

Primal-dual interior method with full-Newton step is a method for solving linear optimization problems. This method is designed in such a way that an optimal solution is obtained an interior of the domain. It has polynomial complexity. This paper discusses and analyzes the complexity of linear optimization problems using primal-dual interior method with full-Newton steps. From the case studies that have been conducted, can be concluded that the number of iterations is in accordance with the complexity of the algorithm.

(4)

ANALISIS KOMPLEKSITAS MASALAH OPTIMASI

LINEAR MENGGUNAKAN METODE INTERIOR

PRIMAL-DUAL DENGAN LANGKAH FULL-NEWTON

RINI MAEDIANENGSIH

Skripsi

sebagai salah satu syarat untuk memperoleh gelar

Sarjana Sains pada

Departemen Matematika

DEPARTEMEN MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

INSTITUT PERTANIAN BOGOR

(5)

Judul Sripsi : Analisis Kompleksitas Masalah Optimasi Linear Menggunakan

Metode Interior Primal-Dual dengan Langkah

Full-Newton

.

Nama

: RINI MAEDIANENGSIH

NIM

: G54080044

Menyetujui,

Tanggal Lulus :

Pembimbing I

Dr. Ir. Bib Paruhum Silalahi, M.Kom.

NIP. 19670101 199203 1 004

Pembimbing II

Muhammad Ilyas, S.Si, M.Sc.

Mengetahui:

Ketua Departemen Matematika

(6)

KATA PENGANTAR

Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas segala rahmat dan karunia-Nya serta shalawat dan salam kepada Nabi Muhammad SAW sehingga karya ilmiah ini berhasil diselesaikan. Penyusunan karya ilmiah ini juga tidak lepas dari bantuan berbagai pihak. Untuk itu penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

1. Dr. Ir. Bib Paruhum Silalahi, M.Kom, selaku dosen pembimbing I (terima kasih atas semua ilmu, kesabaran, motivasi, dan bantuannya selama penulisan skripsi ini).

2. Muhammad Ilyas, S.Si, M.Sc, selaku dosen pembimbing II (terima kasih atas semua ilmu, saran dan motivasinya).

3. Dr. Ir. I Gusti Putu Purnaba, DEA, selaku dosen penguji (terima kasih atas semua ilmu dan sarannya).

4. Semua dosen Departemen Matematika (terima kasih atas semua ilmu yang telah diberikan). 5. Staf Departemen Matematika: Pak Yono, Bu Ade, Mas Heri, Bu Susi dan Mas Deni (terima

kasih atas bantuan dan motivasinya).

6. Keluargaku tercinta: Bapak, Mamah, adikku Rena dan Adelia (terima kasih atas doa, dukungan, kesabaran, kepercayaan dan kasih sayangnya).

7. Teman-teman kosan: Yuli, Sri, Davi, Chacha, Kak Nurul, Kak Tanti, Kak Runi (terima kasih atas bantuan, doa dan dukungannya).

8. Teman-teman satu bimbingan: Haya, Bram, Irwan (terima kasih atas bantuan dan dukungannya).

9. Sahabat terdekat: Roni, Nova, Dina, Aisyah (terima kasih atas semangat, doa dan dukungannya).

10.Teman-teman Math 45: Herlan, Prama, Arbi, Dini, Rahma, Mya, Pipin, Tiwi, Mega, Fuka, Annisa, Ana, Dimas, Fina dan yang lainnya (terima kasih atas dukungan, bantuan dan doanya). 11.Adik-adik Math 46: Sefira, Fitria, Anne, Mirna, Andri dan yang lainnya (terima kasih atas

dukungan, bantuan, dan doanya).

Semoga karya ilmiah ini dapat bermanfaat bagi dunia ilmu pengetahuan khususnya matematika dan menjadi inspirasi bagi penelitian-penelitian selanjutnya.

Bogor, April 2013

(7)

RIWAYAT HIDUP

Penulis dilahirkan di Ciamis pada tanggal 5 Februari 1990 sebagai anak pertama dari tiga bersaudara. Anak dari pasangan Muhaemin dan Eros Saripah.

Pada tahun 1996 penulis menyelesaikan pendidikan di TK LKMD Kuningan. Tahun 2002 penulis lulus dari SDN Tangkolo 1, Kuningan. Tahun 2005 penulis lulus dari SLTPN 3 Rancah, Ciamis. Tahun 2008 penulis lulus dari SMAN 2 Ciamis dan pada tahun yang sama lulus seleksi masuk IPB melalui jalur Ujian Saringan Masuk IPB (USMI). Penulis memilih Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam.

(8)

viii

DAFTAR ISI

Halaman

DAFTAR TABEL ... ix

DAFTAR LAMPIRAN ... ix

I. PENDAHULUAN ... 1

1.1 Latar Belakang ... 1

1.2 Tujuan ... 1

1.3 Sistematika Penulisan ... 1

II. LANDASAN TEORI ... 2

2.1 Sistem Persamaan Linear... 2

2.2 Matriks dan Vektor ... 2

2.3 Optimasi Linear dan Dualitas ... 3

2.4 Metode Newton ... 3

2.5 Kompleksitas ... 4

III.HASIL DAN PEMBAHASAN ... 5

3.1 Kondisi Optimal ... 5

3.2 Central Path... 5

3.3 Langkah Full-Newton ... 5

3.4 Ukuran Kedekatan ... 6

3.5 Kompleksitas Algoritme ... 7

IV.STUDI KASUS ... 11

V. SIMPULAN DAN SARAN ... 16

5.1 Simpulan ... 16

5.2 Saran... 16

DAFTAR PUSTAKA ... 16

(9)

ix

DAFTAR TABEL

Halaman

1 Hasil Iterasi pada Saat = 4, = 2,�= 10, dan = 10−5 ... 11

2 Hasil Iterasi pada Saat = 4, = 2, �= 100, dan = 10−5 ... 12

3 Hasil Iterasi pada Saat = 4, = 2, �= 10, dan = 10−3 ... 12

4 Hasil Iterasi pada Saat = 6, = 3�= 10, dan = 10−5 ... 13

5 Hasil Iterasi pada Saat = 6, = 3�= 100, dan = 10−5 ... 14

6 Hasil Iterasi pada Saat = 6, = 3�= 10, dan = 10−3 ... 15

DAFTAR LAMPIRAN

Halaman 1 Program MATLAB untuk Fungsi Langkah Newton ... 18

2 Program MATLAB untuk Kasus Dua Dimensi ( = 4) ... 19

(10)

I PENDAHULUAN

1.1 Latar Belakang

Pengoptimuman merupakan salah satu cabang matematika terapan yang mempelajari masalah meminimumkan atau memaksimum-kan. Dalam kehidupan sehari-hari banyak permasalahan yang memerlukan optimasi. Optimasi digunakan secara luas hampir di setiap aspek kehidupan, seperti di bidang teknik, ekonomi, manajemen dan industri. Banyak penelitian yang telah menghasilkan teknologi baru, dan metode baru dalam optimasi.

Pada tahun 1947, Dantzig mengajukan penggunaan metode simpleks untuk me-mecahkan masalah optimasi linear (OL). Daerah fisibel dari masalah optimasi linear adalah suatu polihedron. Metode simpleks bergerak dari verteks ke verteks dari polihedron untuk memperoleh solusi optimal. Metode ini dirancang sehingga nilai dari fungsi tujuan berubah secara monoton ke arah nilai optimal. Penemuan Dantzig telah menginspirasi begitu banyak penelitian dalam matematika. Terdapat banyak varian dari metode simpleks, yang dibedakan oleh aturan untuk memilih verteks yang akan dikunjungi (dikenal dengan aturan pivot) (Silalahi 2011). Pada tahun 1972, Klee dan Minty mem-berikan suatu masalah dengan metode simpleks memerlukan 2 −1 iterasi untuk menyelesaikan suatu masalah optimasi linear dengan 2n pertidaksamaan. Klee-Minty juga menunjukkan bahwa metode simpleks merlukan waktu eksponensial untuk me-nyelesaikan masalah optimasi linear. Contoh yang diberikan oleh Klee dan Minty kemudian dikenal dengan problem Klee-Minty (KM), yaitu

min

kendala � �−1 1− � �−1 , k = 1,...,m

dengan 0 = 0,  (0,1

2) (Silalahi 2011). Pada tahun 1979, Khachiyan meng-usulkan metode elipsoid untuk memecahkan permasalahan optimasi linear secara polinomial. Walaupun metode elipsoid ini memiliki kompleksitas polinomial, namun dalam penerapan secara komputasional metode ini tidak efisien (Silalahi 2011).

Pada tahun 1984, Karmarkar me-ngembangkan metode interior dan mem-presentasikan suatu algoritme (algoritme Karmarkar) yang memiliki kompleksitas polinomial yang lebih baik dari metode

elipsoid. Sesuai dengan namanya, metode ini akan melalui daerah dalam (interior) dari daerah solusi yang mungkin (feasible) dalam mencari solusi optimal. Hal ini berlawanan dengan metode simpleks yang bergerak dari verteks ke verteks (Silalahi 2011).

Dalam perkembangannya, metode ini telah dikembangkan dengan beberapa pendekatan. Secara umum metode ini dapat dikelompokkan menjadi tiga kategori, yaitu metode affine scaling, metode potential reduction (barrier) dan metode central trajectory (path-following). Selain itu, persoalan yang bisa diselesaikan dengan metode ini juga mengalami perkembangan. Awalnya metode ini dikembangkan untuk pemrograman linear dan sekarang sudah dikembangkan untuk masalah-masalah yang lain, seperti pemrograman integer, pemrograman jaringan, pemrograman semidefinit (Mitchell 1998).

Dalam karya ilmiah ini akan digunakan metode interior primal-dual dengan langkah full-Newton dalam memecahkan masalah Klee-Minty tersebut. Selanjutnya akan dilakukan analisis kompleksitas algoritme dari masalah Klee-Minty dan menyelesaikan beberapa masalah optimasi linear untuk melihat kesesuaiannya dengan kompleksitas algoritme dengan bantuan software MATLAB R2008b.

1.2 Tujuan

Berdasarkan latar belakang di atas, maka tujuan karya ilmiah ini adalah

(i) Membahas metode interior primal-dual dengan langkah full-Newton.

(ii) Menganalisis kompleksitas algoritme interior primal-dual dengan langkah full-Newton.

(iii) Menyelesaikan beberapa masalah Klee-Minty dan melihat kesesuaiannya dengan kompleksitas algoritme.

1.3 Sistematika Penulisan

(11)

2

II LANDASAN TEORI

2.1 Sistem Persamaan Linear

Definisi 1 (Sistem Persamaan Linear) Suatu persamaan linear dalam n peubah (variable) adalah persamaan dengan bentuk

a1x1 + a2x2 + . . . + anxn = b di mana a1, a2, . . . , an dan b adalah bilangan-bilangan real dan x1, x2, . . . ,xn adalah peubah. Dengan demikian maka suatu sistem linear dari m persamaan dalam n peubah adalah satu sistem berbentuk:

a11x1 + a12x2 + . . . + a1nxn = b1 a21x1 + a22x2 + . . . + a2nxn = b2

. . .

am1x1 + am2x2 + . . . + amnxn = bm dengan aij dan bi semuanya adalah bilangan-bilangan real. Kita akan menyebut sistem-sistem di atas sebagai sistem-sistem linear × .

(Leon 2001)

2.2 Matriks dan Vektor Definisi 2 (Ortogonal)

Vektor – vektor x dan y di dalam ℝ2

(atau ℝ3) dikatakan ortogonal jika xTy = 0.

(Leon 2001)

Definisi 3 (Hasil Kali Skalar di ℝ�) Misalkan x,y ∈ℝ� dengan

x= 1 2 . . .

, y= 1 2

. . .

maka hasil kali skalar dari x dan y adalah T =

1 1 + 2 2 + . . . +

(Leon 2001)

Definisi 4 (Hadamardproduct)

Misalkan vektor x, y ∈ ℝ , X, Y ∈ ℝ × dengan n menyatakan banyak baris dan banyak kolom pada matriks. Vektor x dan y didefinisikan sebagai berikut

x=

1 2

, y=

1 2

dan notasi diag(x) adalah matriks diagonal dengan unsur diagonal utama ialah vektor x

= �� =

1 0 0

0 2 0

0 0

= �� =

1 0 0

0 2 0

0 0

maka Hadamard product dari x dan y adalah xy = Xy = Yx = yx

Dengan kata lain, Hadamard product adalah perkalian antara unsur dengan unsur yang seletak (componentwise) dari dua buah vektor yang berukuran sama. Componentwise juga berlaku pada operasi pembagian dan operasi akar untuk vektor x dan s sebagai berikut

�= i �� = 1 2 �1 �2 �

= i=

1 2

(Roos et al. 2006)

Definisi 5 (Norm dari Suatu Vektor di ℝ�) Misalkan x∈ ℝ dengan

x=

1 2

,

maka norm dari vektor x di ℝ adalah

= � = 12+

22+ + 2

(12)

3

Definisi 6 (Ruang Baris dan Ruang Kolom) Jika A adalah matriks × , maka ruang bagian dari ℝ1× yang direntang oleh vektor-vektor baris dari A disebut ruang baris dari A. Ruang bagian dari ℝ yang direntang oleh vektor-vektor kolom dari A disebut ruang kolom dari A.

(Leon 2001)

Definisi 7 (Ruang Nol)

Misalkan A adalah matriks × . Misalkan N(A) menyatakan himpunan semua penyelesaian dari sistem homogen � =�. Jadi

� � = { ∈ ℝ |� =�}

Himpunan semua penyelesaian dari sistem homogen � =� membentuk ruang bagian dari ℝ . Ruang bagian N(A) disebut kernel (ruang nol atau nullspace) dari A.

(Leon 2001)

2.3 Optimasi Linear dan Dualitas

Masalah optimasi linear dalam bentuk standar diberikan sebagai berikut

min{ Tx : Ax = b, x 0} (P)

dengan, c, x  ℝ , b  ℝ dan A ℝ . Masalah (P) disebut masalah primal.

Masalah dual dari masalah primal (P) diberikan sebagai berikut

max { Ty : Ty + s = c, s ≥ 0 } (D) dengan, s  ℝ dan y  ℝ . Masalah (D) disebut masalah dual.

Daerah fisibel dari (P) dan (D) masing-masing adalah :

 := {x : Ax = b, x ≥ 0}

 := {(y,s) : �Ty + s = c, s ≥ 0}

Daerah interior masalah (P) dan (D) didefinisikan sebagai berikut

0

:= {x : Ax = b, x > 0},

0

:= {(y,s) : �Ty + s = c, s >�}

(Silalahi 2011)

Definisi 8 (Daerah Fisibel)

Himpunan titik-titik yang memenuhi semua kendala dan pembatasan tanda pada optimasi linear.

(Winston 2004)

Definisi 9 (Solusi Optimal)

Solusi optimal pada masalah maksimisasi adalah suatu titik pada daerah fisibel dengan

nilai fungsi objektif paling besar. Sedangkan solusi optimal untuk masalah minimisasi adalah suatu titik pada daerah fisibel dengan nilai fungsi objektif paling kecil.

(Winston 2004)

Proposisi 1 ( Dualitas Lemah)

Misalkan x dan s masing-masing fisibel untuk (P) dan (D). Kemudian Tx - Ty = Ts ≥ 0. Akibatnya, Tx terbatas di atas untuk nilai optimal dari (D), dan Ty terbatas di bawah untuk nilai optimal dari (P). Selain itu, jika kesenjangan dualitas (duality gap) Ts bernilai nol maka x adalah solusi optimal untuk (P) dan (y,s) adalah solusi optimal untuk (D).

(Roos et al. 2006)

Bukti :lihat Roos Teorema 1 (Dualitas)

Jika (P) dan (D) fisibel maka kedua masalah tersebut mempunyai solusi optimal.

Kemudian, x  dan (y,s)  adalah solusi optimal jika dan hanya jika Ts = 0.

(Roos et al. 2006)

Bukti : lihat Roos

Definisi 10 (Kendala Redundant)

Kendala redundant adalah kendala yang tidak mengubah daerah fisibel dari masalah optimasi linear.

(Silalahi 2011)

Definisi 11 (Central Path)

Suatu kurva yang bergerak dari bagian dalam pada daerah fisibel menuju solusi optimal.

(Silalahi 2011)

2.4 Metode Newton

Metode Newton disebut juga metode Newton-Raphson. Metode Newton adalah suatu metode yang digunakan untuk menyelesaikan persamaan taklinear, yang dituliskan dalam bentuk :

� =�,�= 1,2,…,

= ( 1, 2,…, )T.

(13)

4

Taylor. Sebagai contoh untuk fungsi satu peubah atau �= 1, dan = 1∈ ℝ, orde pertama deret Taylor 1( 1) sebagai berikut

1 1 ≈ 1.0 + ′ 1.0 1− 1.0

=�( 1)

dengan 1.0 adalah hampiran awal (Munir 2003).

Dengan menggunakan metode Newton, fungsi taklinear dapat diubah menjadi fungsi

linear. Untuk mencari solusi persamaan

1 1 = 0, metode Newton melakukan pendekatan dengan cara mencari solusi

� 1 = 0, dengan � adalah fungsi linear. Selain itu, untuk fungsi dua peubah atau

�= 2, dan = ( 1, )T ∈ ℝ. Deret Taylor orde pertama dapat dituliskan untuk masing-masing persamaan sebagai berikut

1 1, 2 ≈ 1 1.0, 2.0 + 1− 1.0

� 1 1.0, 2.0

� 1

+ 2− 2.0

� 1 1.0, 2.0

� 2

2 1, 2 ≈ 2 1.0, 2.0 + 1− 1.0

� 2 1.0, 2.0

� 1

+ 22.0 � 2 1.0, 2.0

� 2

dengan 1.0 dan 2.0 adalah hampiran awal (Munir 2003).

Contoh 1

Diketahui fungsi taklinear f 1 = 1−5 1 dengan hampiran awal 1.0= 0.

1 1 ≈ 1.0 + ′ 1.0 1− 1.0 1 1 ≈ � 1 = 0

� 1 = 0 + ′ 0 1−0 = 05 0 + 05

1−0 = 1 + −4 1

Pada saat � 1 = 0 maka

1 + −4 1 = 0

1 = 1

4

Contoh 2

Diketahui fungsi taklinear dengan dua variabel sebagai berikut

1 1, 2 = 12− 1 2+ 1 (1) 2( 1, 2) = 22− 1 2−2 (2)

dengan hampiran awal 1.0= 0, 2.0= 1

 Pelinearan untuk persamaan (1)

1 1, 2 ≈ � 1, 2 = 0

12− 1 2+ 1 = 0

1 0,1 + −1 0 1−

0

2−1

= 0

1 + −1 1 = 0

1 = 1

Jadi, persamaan baru setelah pelinearan adalah

− 1+ 1 = 0

 Pelinearan untuk persamaan (2) 2 1, 2 ≈ � 1, 2 = 0

22− 1 2−2 = 0

2 0,1 + −1 2 1−

0

2−1

= 0

−1 + −1 1+ 2 2−1 = 0

− 1+ 2 2−3 = 0

Jadi, persamaan baru setelah pelinearan adalah

− 1+ 2 2= 3

Solusi dari 1 dan 2 dapat diperoleh dengan mensubstitusikan persamaan (1) ke persamaan (2) sebagai berikut

− 1 + 2 2 = 3

2 2 = 4

2 = 2

Jadi, solusi dari 1 dan 2 setelah dilakukan pelinearan adalah 1= 1dan 2= 2.

2.5 Kompleksitas

Definisi 12 (Kompleksitas)

Fungsi kompleksitas waktu ( ) adalah fungsi yang mengukur banyak operasi dalam suatu algoritme yang mempunyai variabel input n.

(14)

III HASIL DAN PEMBAHASAN

3.1 Kondisi Optimal

Berdasarkan teorema dualitas, mencari solusi optimal dari masalah primal (P) dan masalah dual (D) sama halnya dengan menyelesaikan sistem

� = , �

� +�= , � �

�=�.

dengan xs adalah Hadamard product. Sistem (1) merupakan kondisi optimal untuk masalah optimasi linear. Baris pertama merupakan kendala fisibel masalah primal (P) dan baris kedua merupakan kendala fisibel masalah dual (D). Sedangkan baris ketiga disebut dengan kondisi pelengkap.

3.2 Central Path

Central path merupakan aspek penting dari metode interior, yang akan membantu dalam membangun suatu algoritme umum untuk metode primal-dual. Secara geometrik, central path merupakan kurva analitik yang konvergen menuju solusi optimal.

Untuk menyelesaikan sistem (1) kondisi pelengkap diubah menjadi xs = µe. Dengan, µ adalah bilangan positif dan e adalah vektor semua satu. Kendala baru ini disebut kondisi pemusatan. Sistem yang dihasilkan adalah

� = , �

�T + = , � �

�= � .

Solusi dari sistem (2) dinotasikan dengan x(µ), y(µ), dan s(µ). x(µ) disebut µ-center dari (P) dan (y(µ), s(µ)) disebut µ-center dari (D).

Himpunan semua x(µ) disebut central path dari (P), demikian pula himpunan semua (y(µ), s(µ)) disebut central path dari (D). Ketika µ berjalan menuju nol, maka x(µ),

y(µ), dan s(µ) konvergen ke solusi optimal dari (P) dan (D).

3.3 Langkah Full-Newton

Langkah full-Newton merupakan metode yang dapat digunakan untuk mencari solusi pendekatan sistem (2). Diberikan pasangan fisibel primal-dual (x,(y,s)), kita ingin mencari ∆ , ∆ , dan ∆� sehingga

+ = + , + = + ,

�+ = + ∆�.

memenuhi sistem (2), dengan kata lain

� + ∆ = ,

�T +++∆� = ,

+∆ �+∆� =� .

Dari sistem (3) diperoleh sistem baru sebagai berikut

�∆ = –� , �T + ∆�= T ,

�∆ + ∆�+∆ ∆�=� − �.

karena � = dan �T += , maka sistem berikut setara dengan sistem (4)

�∆ =�,

�T + ∆�=,

�∆ + ∆�+∆ ∆�=� – �.

Untuk mencari solusi sistem (5) digunakan metode Newton. Persamaan pertama dan persamaan kedua pada sistem (5) merupakan persamaan linear. Sedangkan, persamaan ketiga merupakan persamaan taklinear karena mengandung faktor kuadratik ∆ ∆�. Untuk menyelesaikan sistem (5), persamaan ketiga dilinearkan dengan menggunakan metode Newton, sebagai berikut

sx + xs + ∆ ∆� = µe – xs

(15)

6

�1∆ 1+ 1∆�1+∆ 1∆�1− �+ 1�1= 0

�2∆ 2+ 2∆�2+∆ 2∆�2− �+ 2�2= 0

� ∆ + ∆� +∆ ∆� − �+ � = 0

Misalnya, dilakukan pelinearan pada persamaan pertama sebagai berikut

1 ∆ 1,∆�1 ≈ 1 ∆ 1.0,∆�1.0 +

�1 ∆ 1.0,∆�1.0

�∆ 1 ∆ 1− ∆ 1.0 +

�1 ∆ 1.0,∆�1.0

�∆�1 ∆�1− ∆�1.0 = 0,

dengan hampiran awal ∆ 1.0=∆�1.0= 0, sehingga diperoleh

1 0,0 +

� 1 0, 0

�∆ 1 ∆ 1

−0 +� 1 0,0

�∆�1 ∆�1

−0 = 0

−�+ 1�1+�1∆ 1+ 1∆�1= 0

�1∆ 1+ 1∆�1=� − 1�1

Untuk persamaan kedua sampai dengan ke-n dilakukan pelinearan dengan cara yang sama, sehingga diperoleh

�1∆ 1+ 1∆�1− �+ 1�1= 0

�2∆ 2+ 2∆�2− �+ 2�2= 0

� ∆ + ∆� − �+ � = 0

Dapat juga ditulis

�1 �2 � ∆ 1 ∆ 2 ∆ + 1 2 ∆�1 ∆�2 ∆� - � 1 1 1 + 1 2 �1 �2 � = 0 0 0

s∆ + ∆� − � + �=�

Sehingga diperoleh persamaan baru yang merupakan persamaan linear, sebagai berikut

�∆ =�

�T +∆�=

�∆ + ∆�=� – �

Sistem (6) dapat dinyatakan dalam bentuk matriks SPL sebagai berikut

� 0 0

0 � 1

0 � ∆∆ ∆� = 0 0 � − �

Dengan X = diag (x) dan S = diag (s). Solusi

∆ ,∆ , dan ∆� dinamakan primal-dual langkah Newton. Dengan langkah full-Newton diperoleh

+ = + , + = + ,

�+ = + ∆�.

3.4 Ukuran Kedekatan

Pada proses mengikuti central path menuju solusi optimal dengan menggunakan langkah full-Newton, dihasilkan barisan titik-titik yang berada di sekitar central path. Diperlukan suatu ukuran untuk mengukur kedekatan ( , ( ,�)) ke �-center dan central path. Sebelum mendefinisikan ukuran kedekatan, terlebih dahulu merumuskan sistem linear (6) yang mendefinisikan arah Newton dalam kasus primal-dual. Untuk tujuan ini, kita definisikan vektor sebagai berikut

x =

�∆

,

s

=

�∆�

,

y

=

(16)

7

jika didefinisikan

= diag

� maka

sistem (6) setara dengan

�� x =�

�� T

y+ s =�

x+ s=�−1− �

Bukti :

(i)

Persamaan pertama AD x = 0

AD�∆ = 0

AD

� � ∆

= 0

AD

� = 0

A

1

s 1 0 … 0

0 2

�2 0

… ⋱

0 … …

� �1

1∆ 1 �2

2∆ 2

� ∆

� = 0

� ∆ 1 ∆ 2 ∆ � =� �∆ =�

Jadi, persamaan pertama terbukti.∎

(ii)Persamaan kedua

�T +∆�=

�T

y �+ s

� �=� �T

y �+ s

� �

=�

�T

y �+ s

��

=�

� �T y+ s

=�

�TT y+ s

=�T

�TT

y+ s=�

�� T

y+ s =�

Jadi, persamaan kedua terbukti.∎

(iii)Persamaan ketiga Ruas kiri

�∆ + ∆� = s x d + x s −1 = (� x + x −1 s) =(� � −1 x+ � −1 s) = �� ( x+ s) Ruas kanan

� − � = � − � � (� � −1)

= � − �2� −1 = � − �2 = ���−1− ��2 = �� �−1− �

�∆ + ∆� = � − �

��( x+ s) = �� �−1− � x+ s =�−1− �

Jadi, persamaan ketiga terbukti.∎

Persamaan dari sistem (6) menunjukkan bahwa vektor x dan s adalah ruang nol dan ruang baris dari matriks AD, ini berarti x dan s ortogonal. Ortogonalitas dari x dan

s mengimplikasikan bahwa

x 2+ s 2= x+ s 2

= �−1− � 2 Perhatikan bahwa x, s dan y adalah nol jika dan hanya jika �−1− �=. Untuk mengukur jarak (x, (y, s)) ke �-center, di-gunakan ukuran ,�;� yang didefinisi-kan sebagai berikut

,�;� := 1

2 �

−1

:= 1 2

� �

� �

(Roos et al. 2006)

3.5 Kompleksitas Algoritme

Selanjutnya akan dibahas mengenai kompleksitas algoritme dari metode interior primal-dual dengan langkah full-Newton. Berikut ini adalah algoritmenya

Langkah 1. Pilih nilai awal

parameter akurasi > 0; parameter pendekatan �,

(17)

8

strictly fisibel ( 0, 0,0) dengan

( 0)T0= 0dan

( 0,0; 0) ;

parameter barrier �, 0 <�< 1. Didefinisikan ≔ 0; � ≔ �0;

≔ 0; � ≔ �0;

Dengan penghitung iterasi awal

�= 0.

Langkah 2. Selama � lanjut ke langkah 4

Langkah 3. Selainnya, STOP.

Langkah 4. Lakukan pencarian solusi baru

��+1 = (1− �)�+10 �+1 = + �+1 = +

��+1 = + ∆�

Langkah 5. �=�+ 1, kembali ke langkah 2

Lema 1

Jika langkah Newton primal-dual adalah fisibel maka ( +)T+= .

(Roos et al. 2006)

Bukti : lihat Roos

Vektor + dan �+ merupakan langkah full-Newton primal-dual dan n adalah banyaknya pertidaksamaan dari masalah primal-dual.

Lema 2

Metode interior primal-dual dengan langkah full-Newton memiliki jumlah iterasi tidak lebih dari

1

�ln �0

dan iterasi akan berhenti pada saat � . (Silalahi 2011)

Bukti :

Awalnya duality gap adalah n�0, sehingga dengan menggunakan Lema 1 diperoleh

( 0)T0= n0

Pada saat iterasi bertambah maka nilai � dikalikan dengan faktor 1− � sebagai berikut

�+= (1− �) Untuk iterasi pertama diperoleh

( 1)T1= (1− �) n0 Untuk iterasi ke-k diperoleh

( �)T= (1− �) n0

Oleh karena itu, setelah iterasi ke-k duality gap lebih kecil dari jika :

(1− �)� n�0

Dengan menggunakan logaritma maka di-peroleh

�ln 1− � + ln �0 ln

−�ln 1− � −ln �0ln

�(−ln 1− � )−ln �0 −ln

Karena –ln 1− � �, maka pertidaksamaan diatas tetap terpenuhi jika

�� −ln �0 ln

�� ln �0ln

1 (ln �0 −ln ) = 1

�ln �0

Jadi, Lema 2 terbukti.∎

Lema berikut ini memperlihatkan efek dari langkah Newton primal-dual.

Lema 3

Misal ( ,�) adalah pasangan primal-dual positif dan �> 0 sedemikian rupa sehingga T = . Selanjutnya, jika

∶= ( ,�; �) dan �+= (1− �)� maka ( ,�;�+)2 = 1− � 2 + �2 4(1−�)

(Silalahi 2011) Bukti :

Didefinisikan +≔ ( ,�; �+)dan �= �

� , maka dapat dituliskan

( +)2 = 1 2 (�

+)−1− �+ 2

= 1 4 (�

+)−1− �+ 2

Karena �+= �

(18)

9

+

=

�+

=

(1−�)�

=

� �

1 1−�

=

1−�

(�+)−1= 1− �

Sehingga diperoleh

+ 2= 1

4

1− �

� − �

1− �

2

=1

4 1− ��

−1

1− �

2

=1

4 1− ��

−1

1− �−

��

1− �+

��

1− �

2

= 1

4 1− ��

−1� − ��

1− �+

��

1− �

2

= 1

4 1− ��

−1(1− �)�

1− � +

��

1− �

2

= 1 4

1− � �−1−(1− �)�

1− � +

��

1− �

2

= 1 4

1− � (�−1− �)

1− � +

��

1− �

2

= 1

4 1− � (�−

1− �) + ��

1− �

2

Dari T= diperoleh � 2= , seperti berikut

� 2= T2= T= 1 �1

2�2

� … � �

1��1

2�2

� �

= 1�1

� +

2�2

� + + � � = T � = kemudian,

�T−1= 1�1

2�2

� �

1��1

2�2

� �

= 1 + 1 + + 1 = . 1 =

selanjutnya, �T �−1− � = T−1 T= � 2= = 0 Jadi u ortogonal terhadap �−1− �. Akibatnya,

( +)2= 1− �

4 �

−1− � 2+ � 22

(19)

10

Karena �−1− � = 2 dan � 2= , diperoleh

( +)2= 1− � 2+ � 2

4(1− �)

Jadi, Lema 3 terbukti.∎

Untuk menjamin nilai pada Lema 3 maka diperlukan Lema 4 dan akibat 1 sebagai berikut

Lema 4

Jika ≔ ( ,�; �) 1, maka langkah Newton primal-dual fisibel yaitu + dan �+ taknegatif. Selain itu, jika < 1 maka + dan

�+ positif dan

( +,�+; �)

2

2(1− 2)

(Roos et al. 2006)

Bukti : lihat Roos Akibat 1

Jika ∶= ,�; � 1

2, maka +,+; 2.

(Silalahi 2011)

Teorema berikut ini adalah batas atas iterasi untuk metode interior primal-dual dengan langkah full-Newton.

Teorema 2 Jika �= 1

2 dan �= 1

+1, maka jumlah iterasi tidak lebih dari

+ 1 ln �

0

Output dari primal-dual pasangan (x, s) yaitu T .

(Silalahi 2011)

Bukti :

Misalkan dipilih �= 1

2. Dengan meng-gunakan akibat 1 yaitu ,�; � 1

2, maka setelah langkah Newton primal-dual diperoleh

+,+; 1

2. Setelah iterasinya ber- tambah, nilai � menjadi �+= (1− �). Dengan mengambil nilai �= 1

+1, diperoleh +,+; + 2 sebagai berikut

+,+; + 2 1− �

4 +

�2

4 1− � =

1− � 2+2

4 1− � =

�22+ 1 +2

4 1− �

= 1 + 1−

2

+ 1+ 1 + + 1

4 1− 1 + 1

= + 1 + 1−

2 + 1+ 1

4 1− 1 + 1

=

1− 2 + 1+ 1

4 1− 1 + 1

=

2− 2 + 1

4 1− 1 + 1

=

2 1− 1 + 1

4 1− 1 + 1

= 2 4=

1 2

Dari penyelesaian di atas diperoleh +,+; + 2 1

2=�. Ini berarti bahwa

( ,�; �) � tetap dipertahankan pada setiap iterasi. Dengan menggabungkan penjelasan di

atas dengan Lema 2 maka diperoleh Teorema 2.

(20)

IV STUDI KASUS

Untuk studi kasus pada metode interior digunakan masalah Klee-Minty dengan

=

1

3 dan 0 = 0 yang diberikan oleh : Minimumkan ,

Kendala 1

3 �−1 � 1− 1 3 �−1

�= 1,…,

Dengan menyatakan banyaknya pertidaksamaan dan menyatakan banyaknya variabel.

1) Pada saat = 4 dan = 2

Maksimumkan − 2 Dengan kendala 1 1

− 1 0

1

3 1− 2 0

1

3 1+ 2 1

Dengan menggunakan software MATLAB R2008b diperoleh gambar sebagai berikut

Gambar 1 Masalah Klee-Minty pada saat

= 4, �= 10, dan = 10−5.

Tabel 1 Hasil iterasi pada saat �= 10, = 10−5

Iterasi � 1 11

0 40 31.5518 0.3169 0.3169

1 22.1115 17.4458 0.3169 0.3169

2 12.2229 9.6518 0.3167 0.3167

3 6.7567 5.3499 0.3162 0.3162

4 3.7350 2.9833 0.3144 0.3144

5 2.0647 1.6947 0.3088 0.3088

6 1.1413 1.0117 0.2928 0.2928

7 0.6309 0.6669 0.2557 0.2557

8 0.3488 0.4994 0.1949 0.1949

9 0.1928 0.4189 0.1279 0.1279

10 0.1066 0.3791 0.0758 0.0758

11 0.0589 0.3583 0.0430 0.0430

12 0.0326 0.3470 0.0241 0.0241

13 0.0180 0.3409 0.0134 0.0134

14 0.0100 0.3375 0.0074 0.0074

15 0.0055 0.3356 0.0041 0.0041

16 0.0030 0.3346 0.0023 0.0023

17 0.0017 0.3340 0.0013 0.0013

(21)

12

Pada saat �= 10, = 10−5, = 4, dan = 2 maka jumlah iterasinya sebanyak 25 iterasi. Banyaknya iterasi pada Tabel 1 telah sesuai dengan Teorema 2 yaitu batas atas iterasinya sebanyak 34 iterasi.

Tabel 2 Hasil iterasi pada saat �= 100, = 10−5

Iterasi � 1 11

0 400 315.4705 0.3170 0.3170

1 221.1146 174.3883 0.3170 0.3170 2 122.2291 96.4003 0.3170 0.3170 3 67.5666 53.2902 0.3170 0.3170 4 37.3499 29.4607 0.3170 0.3170 5 20.6465 16.2903 0.3169 0.3169

6 11.4131 9.0137 0.3167 0.3167

7 6.3090 4.9982 0.3161 0.3161

8 3.4875 2.7907 0.3140 0.3140

9 1.9279 1.5911 0.3077 0.3077

10 1.0657 0.9583 0.2898 0.2898

11 0.5891 0.6407 0.2497 0.2497

12 0.3256 0.4869 0.1870 0.1870

13 0.1800 0.4128 0.1209 0.1209

14 0.0995 0.3760 0.0711 0.0711

15 0.0550 0.3566 0.0402 0.0402

16 0.0304 0.3461 0.0225 0.0225

17 0.0168 0.3404 0.0125 0.0125

18 0.0093 0.3372 0.0069 0.0069

19 0.0051 0.3355 0.0038 0.0038

20 0.0028 0.3345 0.0021 0.0021

21 0.0016 0.3340 0.0012 0.0012

22 8.6760e-004 0.3337 0.6505e-003 0.0007 23 4.7960e-004 0.3335 0.3596e-003 0.0002 24 2.6512e-004 0.3334 0.1988e-003 0.0001 25 1.4655e-004 0.3334 0.1099e-003 0.0001 26 8.1012e-005 0.3334 0.6076e-004 0.0000 27 4.4783e-005 0.3334 0.3359e-004 0.0000 28 2.4755e-005 0.3333 0.1857e-004 0.0000 29 1.3684e-005 0.3333 0.1026e-004 0.0002

Pada saat �= 100, = 10−5, = 4, dan = 2 maka jumlah iterasinya sebanyak 29 iterasi. Banyaknya iterasi pada Tabel 2 telah sesuai dengan Teorema 2 yaitu batas atas iterasinya sebanyak 39 iterasi.

Tabel 3 Hasil iterasi pada saat �= 10, = 10−3

Iterasi � 1 11

0 40 31.5518 0.3169 0.3169 1 22.1115 17.4458 0.3169 0.3169 2 12.2229 9.6518 0.3167 0.3167 3 6.7567 5.3499 0.3162 0.3162 4 3.7350 2.9833 0.3144 0.3144 5 2.0647 1.6947 0.3088 0.3088 6 1.1413 1.0117 0.2928 0.2928 7 0.6309 0.6669 0.2557 0.2557 8 0.3488 0.4994 0.1949 0.1949 9 0.1928 0.4189 0.1279 0.1279

(22)

13

10 0.1066 0.3791 0.0758 0.0758 11 0.0589 0.3583 0.0430 0.0430 12 0.0326 0.3470 0.0241 0.0241 13 0.0180 0.3409 0.0134 0.0134 14 0.0100 0.3375 0.0074 0.0074 15 0.0055 0.3356 0.0041 0.0041 16 0.0030 0.3346 0.0023 0.0023 17 0.0017 0.3340 0.0013 0.0013

Pada saat �= 10, = 10−3, = 4, dan = 2 maka jumlah iterasinya sebanyak 17 iterasi. Banyaknya iterasi pada Tabel 3 telah sesuai dengan Teorema 2 yaitu batas atas iterasinya sebanyak 24 iterasi.

2) Pada saat = 6 dan = 3 Maksimumkan − 3 Dengan kendala 1 1

− 1 0 1

3 1− 2 0 1

3 1+ 2 1 1

3 2− 3 0 1

3 2+ 3 1

Tabel 4 Hasil iterasi pada saat �= 10, = 10−5

Iterasi � 1 11

0 60 32.9543 0.3035 0.3035

(23)

14

30 3.9139e-005 0.1111 0.5870e-004 0.0001 31 2.4346e-005 0.1111 0.3652e-004 0.0000 32 1.5144e-005 0.1111 0.2272e-004 0.0000

Pada saat �= 10, = 10−5, = 6, dan = 3 maka jumlah iterasinya sebanyak 32 iterasi. Banyaknya iterasi pada Tabel 4 telah sesuai dengan Teorema 2 yaitu batas atas iterasinya sebanyak 41 iterasi.

Tabel 5 Hasil iterasi pada saat �= 100, = 10−5

Iterasi � 1 11

0 600 329.5349 0.3035 0.3035

1 373.2213 204.9825 0.3035 0.3035 2 232.1569 127.5065 0.3035 0.3035 3 144.4099 79.3137 0.3035 0.3035 4 89.8281 49.3362 0.3035 0.3035 5 55.8762 30.6893 0.3035 0.3035 6 34.7570 19.0906 0.3034 0.3034 7 21.6201 11.8762 0.3034 0.3034

8 13.4485 7.3893 0.3034 0.3034

9 8.3654 4.5994 0.3032 0.3032

10 5.2036 2.8657 0.3029 0.3029

11 3.2368 1.7901 0.3019 0.3019

12 2.0134 1.1248 0.2997 0.2997

13 1.2524 0.7159 0.2945 0.2945

14 0.7790 0.4671 0.2837 0.2837

15 0.4846 0.3180 0.2635 0.2635

16 0.3014 0.2306 0.2304 0.2304

17 0.1875 0.1804 0.1857 0.1857

18 0.1166 0.1518 0.1372 0.1372

19 0.0726 0.1355 0.0944 0.0944

20 0.0451 0.1259 0.0622 0.0622

21 0.0281 0.1202 0.0400 0.0400

22 0.0175 0.1167 0.0254 0.0160

23 0.0109 0.1146 0.0160 0.0100

24 0.0068 0.1133 0.0100 0.0063

25 0.0042 0.1124 0.0063 0.0160

26 0.0026 0.1119 0.0039 0.0039

27 0.0016 0.1116 0.0024 0.0024

28 0.0010 0.1114 0.0015 0.0015

29 6.2920e-004 0.1113 0.9427e-003 0.0009 30 3.9139e-004 0.1112 0.5867e-003 0.0006 31 2.4346e-004 0.1112 0.3650e-003 0.0004 32 1.5144e-004 0.1112 0.2271e-003 0.0002 33 9.4200e-005 0.1111 0.1413e-003 0.0001 34 5.8596e-005 0.1111 0.8788e-004 0.0001 35 3.6449e-005 0.1111 0.5467e-004 0.0001 36 2.2672e-005 0.1111 0.3401e-004 0.0000 37 1.4103e-005 0.1111 0.2115e-004 0.0000

(24)

15

Tabel 6 Hasil iterasi pada saat �= 10, = 10−3

Iterasi � 1 11

0 60 32.9543 0.3035 0.3035 1 37.3221 20.4994 0.3034 0.3034 2 23.2157 12.7524 0.3034 0.3034 3 14.4410 7.9342 0.3034 0.3034 4 8.9828 4.9381 0.3033 0.3033 5 5.5876 3.0761 0.3029 0.3029 6 3.4757 1.9205 0.3021 0.3021 7 2.1620 1.2053 0.3001 0.3001 8 1.3448 0.7652 0.2956 0.2956 9 0.8365 0.4969 0.2859 0.2859 10 0.5204 0.3357 0.2673 0.2673 11 0.3237 0.2408 0.2362 0.2362 12 0.2013 0.1862 0.1929 0.1929 13 0.1252 0.1551 0.1443 0.1443 14 0.0779 0.1374 0.1002 0.1002 15 0.0485 0.1270 0.0663 0.0663 16 0.0301 0.1209 0.0428 0.0428 17 0.0188 0.1171 0.0272 0.0272 18 0.0117 0.1148 0.0171 0.0171 19 0.0073 0.1134 0.0107 0.0107 20 0.0045 0.1125 0.0067 0.0067 21 0.0028 0.1120 0.0042 0.0042 22 0.0017 0.1117 0.0026 0.0026 23 0.0011 0.1115 0.0016 0.0016

(25)

2

V SIMPULAN DAN SARAN

5.1 Simpulan

(i) Metode interior primal-dual dengan langkah full-Newton dapat digunakan untuk menyelesaikan masalah optimasi linear.

(ii) Dari hasil analisis kompleksitas algoritme interior primal-dual dengan langkah full-Newton diketahui bahwa banyaknya iterasi yang diperoleh tidak

lebih dari + 1 log � 0

.

(iii) Dari hasil pengkajian dapat disimpulkan bahwa semakin besar nilai n dan �0 yang diberikan, maka jumlah iterasinya semakin meningkat. Sedangkan, semakin

besar nilai maka jumlah iterasinya semakin sedikit. Banyaknya iterasi yang diperoleh pada masing-masing nilai n,

�0, dan tidak lebih dari

+ 1 log � 0

.

5.2 Saran

Pada karya ilmiah ini telah dilakukakn analisis banyaknya iterasi untuk masalah optimasi linear dengan metode titik interior. Untuk penelitian lanjutan dapat dilakukan perbandingan banyaknya iterasi untuk kasus taklinear dengan metode titik interior.

DAFTAR PUSTAKA

Grimaldi RP. 2004. Discrete and Combinatorial Mathematics: An Applied Introduction. Ed ke-5. New York: Pearson.

Leon SJ. 2001. Aljabar Linear dan Aplikasinya. Ed ke-5. Bondan A, Penerjemah; Hardani HW, Editor. Jakarta: Erlangga. Terjemahan dari Linear Algebra with Aplications.

Mitchell JE, P.M. Pardalos and M.G.C. Resende. 1998. Interior Point Methods for Combinatorial Optimization. Kluwer Academic Publishers.

Munir Rinaldi. 2003. Metode Numerik. Bandung: Informatika.

Ross C, Terlaky T, and Vial J-Ph. 2006. Interior Point Methods for Linear Optimization. New York: Springer.

Silalahi BP. 2011. On the Central Path of Redundant Klee-Minty Problems. PhD thesis. Roos C (promotor). Delft University of Technology. The Netherlands: TU Delft.

(26)

2

(27)

18

Lampiran 1 Program untuk Fungsi Langkah Newton

function [x,y,s]= Newton_step(A,b,c,x,y,s,mu);

rb = b - A*x; rc = c - A'*y - s; v = sqrt(x.*s/mu);

r = v.^(-1)-v;

D = diag(sqrt(x./s)); AA=A*D;

M=AA*AA';

rhs = rb/sqrt(mu)+AA*(diag(v./s)*rc - r);

dy=M\rhs;

Dy = sqrt(mu)*dy;

ds = diag(v./s)*rc - AA'*dy; dx = r - ds;

Dx = x.*dx./v; Ds = s.*ds./v;

alpha = 1;

x = x + alpha*Dx; y = y + alpha*Dy; s = s + alpha*Ds;

(28)

19

Lampiran 2 Program untuk Kasus Dua Dimensi

function [A,b,c,x,y,s,mu,opt] = zigzag_Nematollahi(n) n=4

A=[-1 1 1/3 1/3; 0 0 -1 1] c=[0;1;0;1]; b=[0;-1]; figure(3) clf

y = [0.5 0.5]'; s = c - A'*y

mu = 10

% mu = 100

% hilangkan tanda persen jika digunakan

x = mu./s

figure(3)

axis([0 1 0 1])

line('color',[0 0 0],'linestyle','*','erase','none','xdata', y(1),'ydata',y(2),'markersize',5);

for i = 1:250,

[x,y,s] = Newton_step(A,b,c,x,y,s,mu);

line('color',[0 0 0], 'linestyle','*','erase','none','xdata', y(1),'ydata',y(2),'markersize',5);

end

rb = A*x-b;

rc = c - A'*y - s; [x s]

x y x.*s

mu=(x'*s)/(n); theta = 1/sqrt(5);

% theta = 1/sqrt(n+1)

% nilai theta bergantung pada n

eps = 10^(-3);

% eps = 10^(-5)

% hilangkan tanda persen jika digunakan

figure(3)

(29)

20

Lanjutan Lampiran 2

it=0

while n*mu>eps, nmu=n*mu

mu = (1-theta)*mu x

y s

[x,y,s] = Newton_step(A,b,c,x,y,s,mu);

line('color',[0 0 1],'linestyle','o','erase','none','xdata', y(1),'ydata',y(2),'markersize',2);

it=it+1

end

line('color',[1 0 0],'linestyle','*','erase','none','xdata',y(1),

'ydata',y(2),'markersize',4);

axis([-0.3 0.3 0 1])

axis([-0.1 1.1 -0.3 1.4]) xx=[0 1 1 0 0]

yy=[0 1/3 2/3 1 0]

line('color',[1 0 0],'linestyle','-','erase','none','xdata',xx,

'ydata',yy,'markersize',4);

y

(30)

21

Lampiran 3 Program untuk Kasus Tiga Dimensi

function [A,b,c,x,y,s,mu,opt] = zigzag_Nematollahi(n) n=6

A=[-1 1 1/3 1/3 0 0; 0 0 -1 1 1/3 1/3; 0 0 0 0 -1 1] c=[0;1;0;1;0;1]; b=[0;0;-1];

figure(3) clf

y = [0.5 0.5 0.5]'; s = c - A'*y

mu =10

% mu = 100

% hilangkan tanda persen jika digunakan

x = mu./s

figure(3)

axis([0 1 0 1])

line('color',[0 0 0],'linestyle','*','erase','none','xdata', y(1),'ydata',y(2),'markersize',5);

for i = 1:250,

[x,y,s] = Newton_step(A,b,c,x,y,s,mu);

line('color',[0 0 0], 'linestyle','*','erase','none','xdata', y(1),'ydata',y(2),'markersize',5);

end

rb = A*x-b;

rc = c - A'*y - s; [x s]

x y x.*s

mu=(x'*s)/(n); theta = 1/sqrt(7);

% theta = 1/sqrt(n+1)

% nilai theta bergantung pada n

eps = 10^(-3);

% eps = 10^(-5)

% hilangkan tanda persen jika digunakan

figure(3)

line('color',[0 1 0],'linestyle','o','erase','none','xdata',y(1),

(31)

22

Lanjutan Lampiran 3

it=0

while n*mu>eps, nmu=n*mu

mu = (1-theta)*mu x

y s

[x,y,s] = Newton_step(A,b,c,x,y,s,mu);

line('color',[0 0 1],'linestyle','o','erase','none','xdata', y(1),'ydata',y(2),'markersize',2);

it=it+1

%pause(0.2)

%end end

line('color',[1 0 0],'linestyle','*','erase','none','xdata',y(1),

'ydata',y(2),'markersize',4);

axis([-0.3 0.3 0 1])

axis([-0.1 1.1 -0.3 1.4]) xx=[0 1 1 0 0]

yy=[0 1/3 2/3 1 0]

line('color',[1 0 0],'linestyle','-','erase','none','xdata',xx,

'ydata',yy,'markersize',4);

y

Referensi

Dokumen terkait

Berdasarkan hasil dari penelitian, Program prediksi kelayakan penanaman modal PT.PNM Mekaar, dapat memprediksi kelayakan calon peminjam modal dengan cara memasukkan

Selanjutnya menguasa berbagai pendekatan dan teknik dalam konseling, seperti psikodinamik, perilaku, CBT, SFBT, humanistik- fenomenologi, REBT dan berbagai teknik

5) Menerima pinjaman dari bank lain atau lembaga non bank atas persetujuan Dewan Komisaris. Menerapkan Tata Kelola pada setiap kegiatan usaha BPR di seluruh tingkatan atau

Akan tetapi, pengujian dapat dihentikan di tengah proses dan dianggap gagal apabila telah terbukti bahwa produk pangan menunjukkan tanda-tanda penurunan mutu sebelum

Dengan adanya teknologi informasi yang semakin berkembang dengan seiringnya perkembangan zaman seperti yang kita rasakan sekarang maka sistem komputerisasi yang

Dimana sebelum menghitung tambahan modal kerja dengan menggunakan metode persentase penjualan, terlebih dahulu menghitung jumlah penjualan yang terjadi pada tahun

Belanja alat tulis

Kesesuaian hasil pemeriksaan laboratorium forensik dipertimbangkan hakim dalam memutuskan perkara pembunuhan berencana membuktikan kesalahan terdakwa hingga dijatuhi pidana