• Tidak ada hasil yang ditemukan

Identifikasi Faktor-Faktor yang Berpengaruh terhadap Banyaknya Kejahatan dengan Pendekatan Analisis Spasial (Studi Kasus: 42 Kecamatan di DKI Jakarta Tahun 2011)

N/A
N/A
Protected

Academic year: 2017

Membagikan "Identifikasi Faktor-Faktor yang Berpengaruh terhadap Banyaknya Kejahatan dengan Pendekatan Analisis Spasial (Studi Kasus: 42 Kecamatan di DKI Jakarta Tahun 2011)"

Copied!
30
0
0

Teks penuh

(1)

IDENTIFIKASI FAKTOR-FAKTOR YANG BERPENGARUH

TERHADAP BANYAKNYA KEJAHATAN DENGAN PENDEKATAN

ANALISIS SPASIAL

(Studi Kasus: 42 Kecamatan di DKI Jakarta Tahun 2011)

DE BUDI SUDARSONO

DEPARTEMEN STATISTIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

INSTITUT PERTANIAN BOGOR

(2)

RINGKASAN

DE BUDI SUDARSONO. Identifikasi Faktor-Faktor yang Berpengaruh terhadap Banyaknya Kejahatan dengan Pendekatan Analisis Spasial (Studi Kasus: 42 Kecamatan di DKI Jakarta Tahun 2011). Dibimbing oleh ANIK DJURAIDAH dan YENNI ANGRAINI.

Jakarta adalah ibukota negara yang memiliki aktifitas kegiatan yang tinggi. Namun Jakarta menyimpan berbagai masalah yang kompleks. Salah satu dampak yang ditimbulkan adalah kriminalitas. Beberapa faktor pendorong kriminalitas adalah kepadatan penduduk, latar belakang pendidikan yang tidak memadai, dan angka pengangguran yang terus melonjak. Kedekatan antar lokasi diduga berpengaruh terhadap terjadinya kriminalitas. Penelitian ini bertujuan untuk mengidentifikasi lokasi yang menjadi hotspot dan menentukan faktor-faktor yang mempengaruhi banyaknya kejahatan di Jakarta. Data yang digunakan terdiri dari data tindak pidana dari lima Polres di DKI Jakarta dan data PODES dari BPS tahun 2011, yang mencangkup 42 kecamatan. Metode yang digunakan adalah analisis asosiasi spasial, analisis regresi klasik, analisis regresi kekar, dan analisis regresi spasial. Hasil penelitian menunjukkan wilayah hotspot di DKI Jakarta adalah Cilincing, Koja, Sawah Besar, Tamansari, dan Tanjung Priok. Wilayah tersebut mampu memberikan dampak buruk (rawan kejahatan) terhadap wilayah tetangganya. Sedangkan wilayah coldspotnya adalah Cilandak, Mampang Prapatan, dan Pasar Minggu. Wilayah tersebut berpotensi dipengaruhi kejahatan oleh wilayah tetangganya. Secara eksplorasi pada regresi klasik dan kekar terjadi pelanggaran asumsi kehomogenan ragam. Untuk mengatasinya ditambahkan pembobot spasial ke dalam model regresi. Model regresi spasial terbaik adalah Model Galat Spasial (SEM). Faktor-faktor yang berpengaruh terhadap banyaknya kejahatan di DKI Jakarta adalah keberadaan tempat prostitusi, rasio industri terhadap banyaknya kelurahan, persentase penerima jamkesda, rasio restoran terhadap banyaknya kelurahan dan rasio tempat berkumpulnya anak jalanan terhadap banyaknya kelurahan.

(3)

IDENTIFIKASI FAKTOR-FAKTOR YANG BERPENGARUH

TERHADAP BANYAKNYA KEJAHATAN DENGAN PENDEKATAN

ANALISIS SPASIAL

(Studi Kasus: 42 Kecamatan di DKI Jakarta Tahun 2011)

DE BUDI SUDARSONO

Skripsi

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Statistika pada

Departemen Statistika

DEPARTEMEN STATISTIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

INSTITUT PERTANIAN BOGOR

(4)

Judul Skripsi : Identifikasi Faktor-Faktor yang Berpengaruh terhadap Banyaknya Kejahatan dengan Pendekatan Analisis Spasial

(Studi Kasus: 42 Kecamatan di DKI Jakarta Tahun 2011) Nama : De Budi Sudarsono

NRP : G14080076

Disetujui

Pembimbing 1 Pembimbing 2

Dr. Ir. Anik Djuraidah, MS. NIP. 196305151987032002

Yenni Angraini, S.Si, M.Si NIP. 197805112007012001

Diketahui

Ketua Departemen Statistika

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

Dr. Ir. Hari Wijayanto, MS. NIP. 196504211990021001

(5)

KATA PENGANTAR

Alhamdulillahi Robbil ‘Aalamiin, segala puji dan syukur penulis panjatkan kepada Allah SWT karena atas rahmat dan segala limpahan nikmat dari-Nya karya ilmiah ini berhasil diselesaikan. Shalawat serta salam selalu tercurah kepada junjungan besar Rasulullah Muhammad SAW beserta keluarga, sahabat dan umatnya hingga akhir zaman. Karya ilmiah ini merupakan hasil penelitian penulis dalam rangka memenuhi tugas akhir yang merupakan salah satu syarat untuk memperoleh gelar Sarjana Statistika pada Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Semoga karya ilmiah ini dapat memperkaya pengetahuan pada bidang statistika.

Terima kasih penulis ucapkan kepada:

1. Ibu Dr. Ir. Anik Djuraidah, MS. dan Ibu Yenni Angraini, S.Si, M.Si selaku pembimbing yang dengan sabar memberikan bimbingan, saran, ilmu serta motivasi kepada penulis.

2. Bapak Dr. Ir. I Made Sumertajaya, M.Si selaku penguji luar yang telah memberikan wawasan statistika kepada penulis.

3. Mama, Bapak dan Dewi yang selalu mengirimkan doa disetiap solatnya serta pengorbanan dan kasih sayangnya kepada penulis.

4. Seluruh Dosen dan Staf Pengajar Departemen Statistika atas segala ilmu yang diberikan. 5. Kapolda dan jajaran Polda Metro Jaya atas masukkan dan izin menggunakan data kepada

penulis.

6. Badan Pusat Statistik (BPS) Indonesia atas izin menggunakan data kepada penulis.

7. Bu Mar dan Bu Tri yang telah sabar melayani penulis membuat berbagai surat pengantar dari awal penelitian hingga sidang.

8. Teman-teman satu pembimbing skripsi, Andra, Fatulloh, Hendra dan Silvi yang telah berjuang bersama dari nol.

9. Freddy Yakob dan Ramdhanul Fajri yang selalu memberikan inspirasi dan arti sahabat kepada penulis.

10.Andzar, Fey, Aji, Seftian, Ibay, Wisnu, Agus, Ferdian, Rizal, Yogi, Nuril, Riza, dan Denny atas kehangatan sebuah pertemanan.

11.Keluarga besar Statistika 45 atas dukungan dan kebersamaannya selama ini.

Penulis memohon maaf atas segala kekurangan dalam karya ilmiah ini. Semoga karya ilmiah ini dapat memberikan manfaat yang baik bagi setiap pembacanya.

Bogor, Desember 2012

(6)

RIWAYAT HIDUP

Penulis dilahirkan di Jakarta pada tanggal 22 Maret 1990 dari pasangan Bapak Radjijo dan Ibu Suwarti. Penulis merupakan anak pertama dari dua bersaudara.

Penulis menyelesaikan pendidikan dasar di SDS Barunawati II Jakarta pada tahun 2002. Kemudian menyelesaikan pendidikan menengah pertama pada tahun 2005 di SMPN 88 Jakarta. Tahun 2008 penulis lulus dari SMA Negeri 65 Jakarta dan pada tahun yang sama lulus seleksi masuk IPB pada program studi mayor Statistika melalui jalur SNMPTN. Penulis memilih minor Ekonomi Pertanian sebagai ilmu penunjang.

(7)

DAFTAR ISI

Halaman

DAFTAR TABEL ... vii

DAFTAR GAMBAR ... vii

DAFTAR LAMPIRAN ... vii

PENDAHULUAN ... 1

Latar Belakang ... 1

Tujuan ... 1

TINJAUAN PUSTAKA ... 2

Analisis Data Spasial ... 2

Asosiasi Spasial ... 2

Indikator Lokal dari Asosiasi Spasial ... 2

Regresi Spasial ... 4

Model Regresi Spasial ... 4

Pengujian Efek Spasial ... 5

METODOLOGI ... 5

Data ... 5

Metode Analisis ... 6

HASIL DAN PEMBAHASAN ... 6

Eksplorasi Data ... 6

Penggabungan Respon ... 7

Asosiasi Spasial ... 7

Indeks Moran Global dan Lokal ... 7

Plot Pencaran Moran dan Peta Tematik ... 8

Analisis Regresi Berganda ... 9

Model Regresi Klasik ... 9

Model Regresi Kekar ... 10

Ukuran Kebaikan Model Regresi Berganda ... 10

Pengujian Efek Spasial ... 11

Analisis Regresi Spasial ... 11

Model Regresi Otoregresif Spasial ... 11

Model Galat Spasial ... 11

Model Spasial Umum ... 12

Ukuran Kebaikan Model Regresi Spasial ... 13

Interpretasi Faktor yang Berpengaruh ... 13

KESIMPULAN DAN SARAN ... 14

Kesimpulan ... 14

Saran ... 14

DAFTAR PUSTAKA ... 14

(8)

DAFTAR TABEL

Halaman

1 Sebaran Tindak Kejahatan ... 7

2 Nilai Statistik Jumlah Tindak Pidana ... 7

3 Penduga Parameter Regresi Klasik ... 9

4 Deteksi Pencilan dengan Sisaan Terbakukan ... 10

5 Penduga Parameter Regresi Kekar ... 10

6 Nilai Kebaikan Model Beganda ... 11

7 Nilai Pengganda Lagrange ... 11

8 Penduga Parameter Model Spasial ... 12

9 Hasil Uji Asumsi Regresi Spasial ... 12

10 Nilai Kebaikan Model Spasial ... 13

DAFTAR GAMBAR

Halaman 1 Penghitungan Matriks Pembobot Spasial dengan Langkah Ratu ... 2

2 Kuadran Plot Pencaran Moran ... 3

3 Jumlah Kasus Tindak Pidana Berdasarkan Kotamadya ... 7

4 Peta Kelompok Banyaknya Kejahatan Tingkat Kecamatan ... 8

5 Plot Pencaran Moran Banyaknya Kejahatan ... 8

6 Peta Hotspot Banyaknya Kejahatan ... 9

DAFTAR LAMPIRAN

Halaman 1 Peubah Penjelas yang digunakan dalam Analisis ... 16

2 Perhitungan Bobot setiap Tindak Pidana ... 17

3 Perbandingan Kebaikan Model Pembobotan ... 18

4 Indeks Moran Lokal ... 19

5 Korelasi antar Peubah Penjelas Bertipe Rasio ... 20

6 Pemeriksaan Asumsi Regresi Klasik secara Eksplorasi ... 20

7 Pemeriksaan Asumsi Regresi Kekar secara Eksplorasi ... 21

8 Pemeriksaan Asumsi Model SAR secara Eksplorasi ... 21

9 Pemeriksaan Asumsi Model SEM secara Eksplorasi... 22

(9)

1

PENDAHULUAN Latar Belakang

Ibu kota Jakarta adalah pusat peradaban yang menjadi tempat berkembangnya ilmu pengetahuan dan teknologi, ekonomi, politik, kesenian, hukum dan keadilan, etika, estetika, maupun moral. Jakarta telah berkembang sedemikian rupa karena fungsinya sebagai pusat industri dan pertumbuhan ekonomi pasar dalam program pembangunan nasional.

Aktifitas industri serta ekonomi di Jakarta menjadikan Jakarta menjadi suatu wilayah yang memiliki tingkat konsentrasi penduduk yang cukup tinggi, salah satunya disebabkan oleh urbanisasi. BPS (2009) menyebutkan bahwa tingkat urbanisasi untuk DKI Jakarta telah mencapai 100% dan diprediksikan hingga 2025 tetap pada angka tersebut. Kondisi ini menyebabkan kepadatan populasi di Jakarta yang berdampak pada berbagai permasalahan yang harus dihadapi, seperti polusi, persampahan, trasportasi, kriminalitas, kelangkaan tanah untuk perumahan, dan sebagainya.

Jakarta bukan saja sebagai pusat peradaban, lebih dari itu Jakarta telah berkembang menjadi sebuah ibukota negara dengan berbagai masalah sosial. Kondisi ini berdampak pada kerusakan peradaban dan derajat kemanusiaan manusia, kehancuran lingkungan, pemujaan terhadap uang secara berlebihan, dan kerakusan.

Salah satu dampak dari permasalahan sosial dan ekonomi adalah kriminalitas. Pada tahun 2010 jumlah tindak pidana (crime total) di DKI Jakarta, Depok, Tangerang, dan Bekasi yang merupakan wilayah hukum Polda Metro Jaya mencapai 25239 kasus (Humas Polda Metro Jaya 2010). Dampak negatif dari adanya kriminalitas ini yaitu munculnya korban jiwa maupun kerugian benda atau materiil sehingga meresahkan dan menimbulkan trauma kepada masyarakat.

Menurut Susanto (2010), kriminalitas dipengaruhi oleh faktor genetik, pendidikan, ekonomi, jenis kelamin, umur, kultur, status sosial dan urbanisasi. Sedangkan Yoga dan Pane (2006) menyebutkan bahwa meningkatnya kriminalitas di DKI Jakarta disebabkan oleh jumlah penduduk yang terus menerus meningkat, latar belakang pendidikan yang tidak memadai, dan angka pengangguran yang terus melonjak. Beberapa jenis kejahatan yang menjadi indeks kejahatan di Jakarta yakni pembunuhan, penganiayaan berat (anirat), pencurian dengan pemberatan (curat), pencurian dengan kekerasan (curas), pencurian

kendaraan bermotor (curanmor), kebakaran, perjudian, pemerasan, perkosaan, narkotika, dan kenakalan remaja. Penelitian ini ingin melihat secara umum kejahatan di DKI Jakarta, sehingga dilakukan penggabungan terhadap sebelas tindak pidana.

Penelitian tentang kriminal pernah dilakukan oleh Hidayatunnismah (2003) dengan menggunakan analisis korespondensi. Penelitian ini menyebutkan bahwa pelaku tindak kriminal berusia 26-35 tahun, dengan jenis kelamin laki-laki serta bekerja sebagai buruh dan pengangguran. Pembunuhan dan pencurian dengan pemberatan memiliki asosiasi dengan pendidikan dibawah SD, pengangguran dan remaja. Waktu kejadiannya pembunuhan, pencurian berat dan pencurian kekerasan memiliki asosiasi pada pukul 18.00-23.59 dan 00.00-05.59, sedangkan tempat yang paling rawan adalah pemukiman, tempat umum, pertokoan, jalan raya, dan lembaga.

Sebaran kejahatan dapat dijelaskan oleh perpaduan antara ruang (wilayah) dan waktu dari target kejahatan dan motivasi si pelaku. Adapun perpaduan ini dijelaskan oleh beberapa komplektifitas aktifitas suatu tempat, dari mulai wilayah dengan aktifitas yang kompleks seperti wilayah tempat kerja dan sekolah sampai wilayah yang sangat kondisif, seperti perumahan (Anselin et al. 2000)

Pengamatan di wilayah tertentu dipengaruhi oleh pengamatan di wilayah lain seperti yang dinyatakan pada hukum pertama tentang geografi yang dikemukakan W

Tobler’s dalam Anselin (1988) yang

menyebutkan bahwa segala sesuatu saling berhubungan satu dengan yang lainnya, tetapi sesuatu yang dekat lebih mempunyai pengaruh daripada sesuatu yang jauh. Penentuan daerah hotspot dan faktor-faktor yang mempengaruhi banyaknya kejahatan di DKI Jakarta sangat penting untuk menimbulkan sikap kritis terhadap statistik kriminal resmi dalam memberikan gambaran tentang fakta kejahatan yang ada di masyarakat, sehingga berguna bagi pihak kepolisian dan pihak-pihak yang berkaitan dalam memberikan pelayanan dan pengamanan kepada masyarakat.

Tujuan

Tujuan penelitian ini adalah

1. Mengidentifikasi lokasi yang menjadi hotspot dari banyaknya kejahatan di DKI Jakarta berdasarkan asosiasi spasialnya. 2. Menentukan faktor-faktor yang

(10)

TINJAUAN PUSTAKA Analisis Data Spasial Asosiasi Spasial

Asosiasi spasial atau otokorelasi spasial yaitu terdapat suatu kemiripan objek di dalam suatu ruang yang saling berhubungan. Pada kasus spasial, penggunaan istilah asosiasi mengacu pada data berbasis area dan memiliki hubungan yang bersifat kebertetangaan. Otokorelasi berbasis pada data area ada yang bersifat positif dan negatif. Positif jika dalam suatu daerah yang saling berdekatan mempunyai nilai yang mirip dan bersifat menggerombol. Dikatakan negatif jika dalam suatu daerah yang berdekatan nilainya berbeda dan tidak mirip (Silk 1979).

Indikator Lokal dari Asosiasi Spasial

Metode yang berhasil dikembangkan oleh Anselin (1995) untuk data spasial ialah Indikator Lokal dari Asosiasi Spasial (LISA). Suatu eksplorasi data (area) untuk menguji kestasioneran dan mendeteksi hotspot/coldspot, serta mampu menyajikan dalam bentuk visual. Hotspot merupakan suatu wilayah yang memiliki nilai pengamatan dengan pengukuran tertinggi, sedangkan coldspot sebaliknya. LISA juga mampu menemukan pola hubungan spasial yang berbasis lokal area (Indeks Moran Lokal) yaitu dengan menguji setiap area dan pengaruhnya terhadap aspek globalnya (Indeks Moran Global). Secara komputasi LISA diperoleh melalui

dengan merupakan fungsi dari dan , dan adalah nilai observasi dari wilayah ke-i, sedangkan adalah nilai observasi dari wilayah lain ke-j dari area i. Ada beberapa asumsi dan metode yang dikombinasikan dalam LISA yaitu penggunaan matriks pembobot spasial, perhitungan Indeks Moran Global dan Lokal, dan plot pencaran Moran.

a. Matriks Pembobot Spasial

Matriks pembobot spasial merupakan sebuah matriks yang menggambarkan hubungan kedekatan antar wilayah. Hubungan kedekatan antar wilayah dapat menggunakan berbagai metode, antara lain rook contiguity, bishop contiguity, dan queen contiquity. Penghitungan nilai W pada penelitian ini

menggunakan queen contiguity, yaitu matriks pembobot spasial berdasarkan hubungan kebertetanggaan yang bergerak berdasarkan langkah ratu pada permainan catur, dikatakan

berdekatan jika secara vertikal, horisontal, dan diagonal berbatasan langsung (Silk 1979). Matriks akan memberikan nilai pada daerah i yang berbatasan langsung dengan daerah j, sisanya diberikan nilai 0. Selanjutnya, isi dari matriks pembobot spasial pada baris ke-i kolom ke-j yakni , dengan

a.Langkah ratu (Queen contiguity) Tetangga j

c. Matriks pembobot spasial

(11)

3

b. Indeks Moran Global dan Lokal

Menurut Ward & Gleditsch (2008) statistik

Moran’s I adalah ukuran korelasi antara

pengamatan pada suatu wilayah dengan

wilayah lain yang berdekatan. Moran’s I dapat

diperoleh melalui persamaan berikut: [∑ ∑ Sedangkan merupakan nilai pada lokasi ke-i dan adalah nilai pada lokasi ke-j. Kemudian

adalah elemen matriks pembobot spasial.

Nilai dari statistika I merupakan koefisien korelasi yang berada pada batas antara -1 dan 1. Nilai mendekati 1 atau -1 berarti memiliki korelasi yang tinggi. Sedangkan nilai mendekati nilai 0 mengartikan korelasi spasial tidak ada. Pengujian hipotesis Indeks Moran Global sebagai berikut:

H0 : I = 0 (Tidak ada otokorelasi spasial)

H1 : I > 0 (Otokorelasi spasial positif)

: I < 0 (Otokorelasi spasial negatif) Statistik uji diturunkan dari sebaran normal baku, yaitu

I adalah Indeks Moran, dengan z (I) adalah nilai statistik uji dari Indeks Moran. E(I) nilai harapan Indeks Moran, merupakan simpangan baku dari Indeks Moran dan n banyaknya area.

Statistik Moran Lokal berguna untuk pendeteksian hotspot/coldspot pada data area. Moran Lokal dengan matriks pembobot spasial didefinisikan sebagai berikut

̅ ∑ ̅

dengan merupakan nilai pengamatan pada lokasi ke-i, adalah nilai pengamatan pada lokasi ke-j, ̅ adalah nilai rataan dari variabel pengamatan, dan adalah ukuran pembobot antara wilayah ke-i dan ke-j (Anselin 1995).

c. Plot Pencaran Moran

Plot Pencaran Moran adalah analisis eksplorasi secara visual yang mampu mendeteksi otokorelasi spasial (Anselin 1995). Output yang dihasilkan adalah bukan data asli melainkan data yang telah distandarisasikan dalam z-score yang merupakan beda nilai antara pengamatan dengan nilai (rataan) harapan dari peubah. Plot Pencaran Moran

disajikan berbasis pada data z-score lokasi pada sumbu (x), dan nilai z-score rata-rata tetangganya pada sumbu y. Standarisasi mengacu pada simpangan baku z-score berdistribusi normal dan memiliki persamaan sebagai berikut:

̅

dengan nilai dari peubah yang diamati di lokasi i. Sementara ̅ merupakan nilai (rataan) harapan dari peubah pada semua lokasi dan adalah simpangan baku dari peubah . Secara visual plot Pencaran Moran terbagi atas empat kuadran seperti pada Gambar 2.

Gambar 2 Kuadran plot pencaran moran Wilayah yang termasuk ke dalam kuadran pertama adalah wilayah Tinggi-Tinggi (TT), artinya wilayah tersebut memiliki otokorelasi positif. Pengamatan pada wilayah ini tinggi dan dikelilingi oleh wilayah dengan amatan yang juga tinggi. Wilayah yang berada pada kuadran kedua adalah wilayah Tinggi-Rendah (TR) yang memiliki otokorelasi negatif. Wilayah ini merupakan pencilan atau disebut hotspot, karena amatan pada wilayah ini tinggi namun dikelilingi oleh wilayah dengan amatan yang rendah. Dampak yang ditimbulkan dari wilayah yang berada pada daerah hotspot adalah wilayah ini berpotensi untuk menularkan pengaruhnya ke wilayah di sekelilingnya yang amatannya rendah. Wilayah yang berada pada kuadran ketiga adalah wilayah Rendah-Rendah (RR), artinya wilayah tersebut memiliki otokorelasi positif. Pengamatan pada wilayah ini rendah dan dikelilingi oleh wilayah dengan amatan yang juga rendah. Wilayah yang berada pada kuadran keempat adalah wilayah Rendah-Tinggi (RT) yang memiliki otokorelasi negatif. Wilayah ini merupakan pencilan atau disebut coldspot, karena amatan pada wilayah ini rendah namun dikelilingi oleh wilayah dengan amatan yang tinggi. Dampak yang ditimbulkan dari wilayah yang berada pada daerah coldspot adalah wilayah ini berpotensi untuk ditularkan oleh wilayah di sekelilingnya yang amatannya tinggi. Biasanya agar lebih menarik, hasil dari plot Pencaran Moran divisualisasikan ke dalam peta tematik.

1.TT

2.TR

3. RR

(12)

Regresi Spasial

Regresi spasial digunakan untuk menduga pengaruh peubah penjelas terhadap peubah respon dengan ditambahkan unsur spasial di dalamnya. Model umum regresi spasial sebagai berikut:

[1] , dengan merupakan vektor peubah respon berukuran (nx1), adalah koefisien otoregresif lag spasial, adalah matriks pembobot spasial berukuran (nxn), adalah matriks peubah penjelas berukuran nx(k+1), adalah vektor parameter yang berukuran (k+1)x1, adalah vektor galat yang diasumsikan mengandung otokorelasi (nx1), merupakan koefisien otoregresi sisaan spasial dan adalah vektor sisaan yang berukuran (nx1) dengan k adalah banyaknya peubah penjelas (Anselin 1988). Parameter pada model regresi spasial diduga dengan metode penduga kemungkinan maksimum.

Model Regresi Spasial

Pada model [1] jika tidak ada pengaruh spasialnya, yakni ketika nilai efek ketergantungan lag spasial atau dan efek ketergantungan galat spasial atau maka model akan menjadi model regresi linier klasik. Metode regresi spasial dengan pendekatan area sudah banyak berkembang diantaranya adalah Model Regresi Otoregresif Spasial (SAR), Model Galat Spasial (SEM) dan Model Spasial Umum (GSM).

a. Model Regresi Otoregresif Spasial

Pada model [1] bila dan maka model disebut Model Regresi Otoregresif Spasial (Spatial Autoregressive Regression/SAR) yaitu model regresi spasial yang peubah responnya berkorelasi spasial, artinya model ini memiliki ketergantungan antar satu pengamatan di suatu wilayah dengan pengamatan yang lain di wilayah tetangganya. Sehingga model umum regresi spasialnya menjadi

[2]

Parameter otoregresif spasial lag ( ) mengindikasikan tingkat korelasi komponen spasial dari suatu wilayah terhadap wilayah lain di sekitarnya (Ward & Gleditsch 2008). Pendugaan parameter pada model SAR menggunakan metode kemungkinan maksimum, penduga untuk adalah

̂ ̂

Penduga untuk tidak dapat dilakukan dengan cara memaksimalkan persamaan penduga untuk secara analitik. Namun, penduga untuk dapat diperoleh dengan cara sebagai berikut:

1. Regresikan antara dan dengan menggunakan MKT sehingga diperoleh ̂ .

2. Regresikan dan dengan

menggunakan MKT sehingga diperoleh ̂ .

3. Hitung galat ̂ dan

̂ .

4. Hitung dugaan untuk dengan memaksimalkan fungsi log kemungkinan parsial, yaitu:

[ ( )( )

]

b. Model Galat Spasial

Pada model [1] apabila nilai dan maka model disebut Model Galat Spasial (Spatial Error Model/SEM) yaitu model regresi linier yang peubah galatnya terdapat korelasi spasial, artinya model ini memiliki ketergantungan galat pada pengamatan di suatu wilayah dengan galat pada pengamatan yang lain di wilayah yang berbeda sehingga model umumnya menjadi

[3]

Parameter mengindikasikan tingkat korelasi komponen spasial galat dari suatu wilayah terhadap wilayah lain di sekitarnya (Ward & Gleditsch 2008). Penduga untuk model SEM juga menggunakan metode kemungkinan maksimum, penduga untuk adalah

̂ ( ̂ )( ̂ ) ( ̂ )( ̂ )

Penduga untuk tidak dapat dilakukan dengan cara memaksimalkan persamaan penduga untuk secara analitik. Penduga untuk diperoleh dengan cara yang sama seperti penduga untuk dan memaksimalkan fungsi log kemungkinan parsial.

c. Model Spasial Umum

(13)

5

lain di sekitarnya dan parameter mengindikasikan tingkat korelasi komponen spasial galat dari suatu wilayah terhadap wilayah lain di sekitarnya. Penduga untuk model GSM juga menggunakan metode kemungkinan maksimum (Anselin 1988), penduga untuk adalah

̂

dengan

Pengujian Efek Spasial

Pengujian efek spasial dibagi menjadi dua, yaitu efek ketergantungan spasial dan efek keragaman spasial. Pengujian ketergantungan spasial berguna dalam pemilihan model yang tepat, menggunakan ketergantungan lag spasial, ketergantungan galat spasial atau ketergantungan atas keduanya. Pengujian ketergantungan spasial menggunakan uji Pengganda Lagrange, sedangkan untuk menguji keragaman spasial menggunakan uji Breusch-Pagan.

Pengujian hipotesis Pengganda Lagrange dan statistik ujinya adalah

a. Model Regresi Otoregresif Spasial H0 :

yang dibuat adalah model otoregresif spasial. b. Model Galat Spasial

H0 :

c. Model Spasial Umum H0 : dan atau λ=0

(tidak ada otokorelasi spasial) H1 : dan

Uji keragaman spasial menggunakan uji Breusch-Pagan. Bentuk umum keheterogenan ragam sebagai berikut:

dengan adalah konstanta, adalah konstanta regresi yang selalu bernilai satu, dan adalah peubah penjelas. Jika keheterogenan ragam tidak terpenuhi maka tidak ditolak. Oleh karena itu hipotesis sebagai berikut (Arbia 2006).

H0 :

H1 :

Statistik uji Breusch-Pagan adalah

(∑

dengan k adalah banyaknya parameter regresi, tolak H0 jika BP lebih besar dari χ2(k-1).

METODOLOGI Data

(14)

turunnya kejahatan suatu wilayah. Penggabungan respon tidak bisa langsung dijumlahkan pada setiap wilayah karena setiap tindak pidana memiliki besarnya keragaman yang berbeda-beda. Oleh karena itu penggabungan respon dilakukan dengan pembobotan pada setiap tindak pidana. Hal yang harus diperhatikan saat menggabungkan adalah korelasi antar tindak pidana. Ada tiga cara pembobotan yang dibandingkan pada penelitian ini, yaitu pembobotan dengan proporsi masing-masing tidak pidana, pembobotan dengan simpangan baku masing-masing-masing tindak pidana, dan pembobotan dengan Komponen Utama (KU). Sehingga respon yang digunakan dalam penelitian ini adalah hasil penjumlahan dari sebelas tindak pidana yang sudah diboboti dan disebut banyaknya kejahatan. Pembobotan yang lebih baik dilihat dari sebarannya yang menyebar normal. Peubah penjelas yang digunakan dalam penelitian ini dapat dilihat pada Lampiran 1 yang berasal dari Badan Pusat Statistik.

Metode Analisis

Tahapan analisis yang digunakan untuk mencapai tujuan penelitian sebagai berikut: 1. Melakukan eksplorasi terhadap data tindak

pidana.

2. Menggabungan respon dengan pembobotan menggunakan proporsi, simpangan baku, dan KU serta membandingkan ketiganya. Pembobotan yang lebih baik dilihat dari sebaran datanya yang menyebar normal.

3. Membuat matriks pembobot spasial. 4. Menguji otokorelasi spasial terhadap data

banyaknya kejahatan dengan Indeks Moran.

5. Mengidentifikasi karakteristik wilayah di DKI Jakarta terhadap banyaknya kejahatan.

5.1 Memeriksa otokorelasi spasial untuk setiap wilayah berdasarkan Moran Lokal.

5.2 Membuat diagram pencar Moran. 5.3 Mengidentifikasi wilayah yang

termasuk ke dalam TT, TR, RT, dan RR.

5.4 Membuat peta tematik berupa signifikan Moran Lokal untuk data banyaknya kejahatan.

5.5 Interpretasi dari peta tematik yang dihasilkan.

6. Mengidentifikasi peubah-peubah yang berpengaruh terhadap banyaknya kejahatan

dengan analisis regresi klasik dan analisis regresi kekar.

6.1 Melakukan uji multikolinieritas. 6.2 Melakukan pendugaan dan pengujian

parameter model regresi klasik.

6.3 Menguji asumsi pada model regresi klasik (kehomogenan ragam sisaan, kenormalan sisaan, kebebasan antar sisaan, dan multikolinearitas).

6.4 Mendeteksi adanya pencilan atau amatan berpengaruh pada model regresi klasik.

6.5 Melakukan pendugaan dan pengujian parameter model regresi kekar.

6.6 Menguji asumsi sisaan pada model regresi kekar.

6.7 Membandingkan kebaikan model antara model regresi klasik dengan model regresi kekar berdasarkan nilai R2 dan RMSE.

7. Mengidentifikasi peubah-peubah yang berpengaruh terhadap banyaknya kejahatan dengan analisis regresi spasial.

7.1 Memeriksa otokorelasi spasial terhadap sisaan model regresi klasik menggunakan Indeks Moran.

7.2 Menguji efek kehomogenan ragam spasial dengan Breusch-Pagan. 7.3 Menguji efek ketergantungan spasial

dengan Pengganda Lagrange.

7.4 Melakukan pendugaan dan pengujian parameter model regresi spasial yang signifikan pada uji Pengganda Lagrange.

7.5 Menguji asumsi sisaan pada model regresi spasial (kehomogenan ragam sisaan, kenormalan sisaan, dan kebebasan antar sisaan).

7.6 Membandingkan kebaikan model antar regresi spasial berdasarkan nilai AIC, R2, dan RMSE (Chatterjee & Hadi 2006).

7.7 Interpretasi peubah yang signifikan pada model yang lebih baik.

8. Menarik kesimpulan

HASIL DAN PEMBAHASAN Eksplorasi Data

(15)

7

sentra ekonomi, hotel, istana negara, gedung DPR/MPR, gedung DPRD, Bank Indonesia, dan kantor departemen, sehingga Jakarta Pusat mempunyai potensi kerawanan kejahatan yang cukup tinggi.

Gambar 3 Jumlah kasus tindak pidana berdasarkan kotamadya

Pada Tabel 1, selama tahun 2011 jumlah tindak pidana dari sebelas tindak pidana di DKI Jakarta sebanyak 9268 kasus. Jenis tindak pidana yang paling sering terjadi adalah curanmor, curat, dan narkotika, sedangkan yang jarang terjadi adalah kasus pemerkosaan, pembunuhan, dan kenakalan remaja.

Tabel 1 Sebaran Tindak Kejahatan

Jenis Jumlah %

Berdasarkan Tabel 2, jumlah tindak pidana yang teringgi mencapai angka 535 kasus dalam setahun, kecamatan tersebut adalah kecamatan Kemayoran yang berada pada kotamadya Jakarta Pusat. Wilayah ini berbatasan langsung dengan Jakarta Utara. Jumlah tindak pidana yang terendah adalah 84 kasus dalam setahun, kecamatan tersebut adalah kecamatan Mampang Prapatan yang berada pada kotamadya Jakarta Selatan. Rata-rata dari seluruh tindak pidana di DKI Jakarta sebesar 220.7 kasus.

Tabel 2 Nilai statistik jumlah tindak pidana Statistik Jumlah Tindak Pidana

Rataan 220.7

Penggabungan respon tidak bisa langsung dijumlahkan pada setiap wilayah karena setiap tindak pidana memiliki besarnya keragaman yang berbeda-beda. Oleh karena itu penggabungan respon dilakukan dengan pembobotan pada setiap tindak pidana. Hal yang harus diperhatikan saat menggabungkan adalah korelasi antar tindak pidana. Metode pembobot yang digunakan untuk penelitian ini adalah yang lebih baik diantara pembobot dengan proporsi, pembobot dengan simpangan baku, dan pembobot dengan KU dilihat dari diagram kotak garis dan uji kenormalannya. Perhitungan ketiga metode pembobotan tersebut dapat dilihat pada Lampiran 2. Pada Lampiran 3 diperoleh bahwa metode pembobotan dengan proporsi terdapat pencilan dan datanya tidak menyebar normal, sedangkan metode pembobotan dengan simpangan baku dan KU tidak ada pencilan dan datanya menyebar normal. Namun metode pembobotan dengan KU secara eksplorasi lebih kecil nilai ragamnya dan lebih halus plot kenormalannya. Metode dengan KU ini membuat peubah baru yang peubahnya saling bebas satu sama lain atau antar peubah barunya ini tidak saling berkorelasi, sehingga pada penelitian ini menggunakan pembobotan dengan KU untuk menggabungkan respon dari sebelas tindak pidana dan disebut sebagai banyaknya kejahatan. Respon banyaknya kejahatan ini yang selanjutnya digunakan pada analisis berikutnya di penelitian ini.

Asosiasi Spasial Indeks Moran Global dan Lokal

Pada Gambar 4, berdasarkan data peubah respon yang sudah diboboti dengan KU, wilayah yang memiliki lebar selang yang sama cenderung membentuk kelompok. Sebagai contoh wilayah yang berwarna merah tua memiliki banyaknya kejahatan yang tinggi, dan wilayah tersebut membentuk pola mengelompok dengan wilayah tetangganya. Begitupun dengan kelompok warna yang lain.

(16)

Gambar 4 Peta kelompok banyaknya kejahatan tingkat kecamatan Banyaknya kejahatan di DKI Jakarta dipengaruhi oleh wilayah tetangganya dapat dilihat dari besarnya nilai Indeks Moran Global beserta nilai peluangnya. Sebelum melakukan pengujian Indeks Moran terlebih dahulu menentukan matriks pembobot yang kemudian dilakukan standarisasi pada setiap baris. Hasil Indeks Moran untuk data banyaknya kejahatan sebesar 0.5016 dengan nilai peluangnya 9.12e-09 (<α=5%). Besarnya nilai peluang tersebut menunjukkan bahwa terdapat otokorelasi spasial positif atau pola yang mengelompok dan memiliki kesamaan karakteristik pada wilayah yang berdekatan.

Secara global sudah diketahui bahwa ada otokorelasi spasial pada banyaknya kejahatan. Berdasarkan besarnya nilai peluang pada setiap wilayah yang dideteksi menggunakan Indeks Moran Lokal pada Lampiran 4, ada 11 wilayah yang signifikan. Wilayah tersebut yaitu Cilandak, Cilincing, Jagakarsa, Kemayoran, Koja, Mampang Prapatan, Pancoran, Pasar Minggu, Pasar Rebo, Sawah Besar, Tamansari dan Tanjung Priok.

Plot Pencaran Morandan Peta Tematik

Analisis eksplorasi secara visual untuk menentukan setiap kecamatan ke dalam empat kuadran yang berbeda menggunakan plot Pencaran Moran. Setiap wilayah yang signifikan pada Lokal Moran dibagi ke dalam empat kuadran yang berbeda, yaitu kuadran pertama (TT), kuadran kedua (TR) yang merupakan wilayah hotspot, kuadran ketiga (RR), dan kuadran keempat (RT) yang merupakan wilayah coldspot, dapat dilihat pada Gambar 5.

Gambar 5 Plot pencaran moran banyaknya kejahatan

Hasil plot Pencaran Moran pada Gambar 5 dapat divisualisasikan ke peta tematik pada Gambar 6. Berdasarkan Gambar 6, diketahui bahwa wilayah TT hanya kecamatan Kemayoran saja, dan diberi warna orange. Hal ini menunjukkan bahwa Kemayoran memiliki otokorelasi positif, artinya Kemayoran memiliki banyaknya kejahatan yang tinggi dan dikelilingi oleh wilayah yang juga tinggi. Kemayoran adalah wilayah yang berada pada kotamadya Jakarta Pusat yang berbatasan langsung dengan Jakarta Utara.

Wilayah hotspot adalah wilayah yang termasuk dalam wilayah TR yaitu Cilincing, Koja, Sawah Besar, Tamansari dan Tanjung Priok, diberi warna merah. Kelima wilayah hotspot ini memiliki otokorelasi negatif atau berpola pencilan, dengan nilai banyaknya kejahatan pada wilayah tersebut tinggi namun dikelilingi oleh wilayah yang memiliki banyaknya kejahatan yang rendah. Wilayah– wilayah tersebut berpotensi menjadikan wilayah disekitarnya menjadi wilayah yang rawan akan tindak pidana juga. Wilayah yang dikelilingi oleh wilayah hotspot ini terancam bahaya kejahatan.

Wilayah yang berwarna biru adalah wilayah yang termasuk ke dalam wilayah RR. Wilayah signifikan yang masuk ke dalam wilayah ini memiliki banyaknya kejahatan yang rendah dan wilayah disekitarnya juga rendah. Wilayah-wilayah tersebut adalah Jagakarsa, Pancoran dan Pasar Rebo. Wilayah yang dikelilingi oleh wilayah coldspot ini tergolong aman, namun tetap berpotensi menjadi berbahaya ketika suatu saat wilayah coldspot ini menjadi tinggi, karena hubungannya yang berkorelasi positif.

(17)

9

banyaknya kejahatan pada wilayah tersebut rendah (coldspot) sedangkan wilayah sekitarnya tinggi. Wilayah coldspot ini berpotensi menjadi rawan akan tindak pidana yang ditularkan oleh wilayah di sekitarnya yang tinggi. Wilayah yang diberi warna abu-abu artinya wilayah tersebut tidak signifikan ketika diuji Lokal Morannya.

Gambar 6 Peta hotspot banyaknya kejahatan

Analisis Regresi Berganda Model Regresi Klasik

Banyaknya kejahatan di DKI Jakarta dipengaruhi oleh beberapa faktor, untuk mengidentifikasi faktor-faktor yang mempengaruhi banyaknya kejahatan di DKI Jakarta digunakan analisis regresi klasik, tanpa memasukkan unsur spasial ke dalam model. Namun sebelum melakukan analisis, terlebih dahulu dideteksi multikolinearitasnya terhadap peubah penjelas yang digunakan. Hasil yang diperoleh pada Lampiran 5 menunjukkan bahwa peubah-peubah yang bertipe rasio tidak ada yang memiliki korelasi yang tinggi antar peubah penjelasnya, artinya semua peubah penjelas diikutsertakan dalam analisis regresi klasik maupun spasial.

Pemodelan menggunakan model regresi klasik pada Tabel 3 diperoleh tiga peubah penjelas yang signifikan yaitu keberadaan tempat prostitusi (x3), rasio banyaknya industri per kelurahan (x6) dan persentase penerima jamkesda (x8). Besarnya R2 pada model yang terbentuk sebesar 63.39%, artinya model regresi yang terbentuk dapat menjelaskan keragaman banyaknya kejahatan sebesar 63.28%, sedangkan sisanya dijelaskan oleh peubah lain yang tidak dimasukkan ke dalam model.

Tabel 3 Penduga parameter regresi klasik Prediktor Koefisien nilai-p VIF (Intercept) 14.214 0.078 klasik yang terbentuk harus terpenuhi agar model tersebut dapat memberikan keputusan yang tepat. Asumsi-asumsi tersebut meliputi kehomogenan ragam sisaan, kenormalan sisaan, kebebasan antar sisaan, dan tidak adanya multikolinieritas antar peubah penjelas. Secara eksplorasi pemeriksaan asumsi-asumsi untuk model regresi klasik ini dapat dilihat pada Lampiran 6 dan hasil dari tiap pengujian asumsi adalah sebagai berikut: a. Asumsi kehomogenan ragam sisaan

Uji kehomogenan ragam sisaan menggunakan uji Breush-Pagan. Besarnya nilai BP pada model regresi klasik sebesar 13.2778 dengan nilai-p sebesar 0.4266. Nilai nilai-p ini lebih besar dari α=5%, artinya asumsi kehomogenan ragam sisaan pada model regresi klasik tidak terlanggar atau terpenuhi. Asumsi ini juga digunakan sebagai pengantar sebelum dilakukan pemodelan regresi spasial.

b. Asumsi kenormalan sisaan

Nilai Kolmogorov-Smirnov yang dihasilkan sebesar 0.119 dengan nilai-p sebesar 0.134. Ini menunjukkan bahwa nilai-p lebih besar dari α=5%, artinya asumsi kenormalan sisaan pada model regresi klasik terpenuhi.

c. Asumsi kebebasan antar sisaan

(18)

Hal ini menunjukkan bahwa asumsi kebebasan antar sisaan terpenuhi.

d. Asumsi tidak adanya multikoliniearitas Nilai VIF pada Tabel 3 untuk semua peubah penjelas tidak ada yang lebih dari 10. Ini menunjukkan bahwa antar peubah penjelas tidak terjadi multikoliniearitas.

Model Regresi Kekar

Pada sisaan model regresi klasik menunjukkan bahwa secara uji formal asumsi kehomogenan ragam sisaan dan kenormalan sisaan terpenuhi. Namun perlu dicurigai adanya pencilan, karena secara eksplorasi plot kehomogenan ragam terlihat seperti corong, dapat dilihat kembali pada Lampiran 6.

Pencilan dapat mengakibatkan ragam menjadi tidak homogen. Pencilan dapat dideteksi dengan melihat besarnya nilai sisaan terbakukan atau , jika maka amatan tersebut dapat dikatakan pencilan. Jika terdapat pencilan maka untuk mengatasinya dapat menggunakan regresi kekar. Hasil pada Tabel 4 untuk lima amatan dengan tertinggi menunjukkan ada empat kecamatan yang memiliki , yaitu kecamatan Taman Sari, Menteng, Tanjung Priok, dan Jatinegara. Tabel 4 Deteksi pencilan dengan sisaan

terbakukan

No Kecamatan Banyaknya Kejahatan

Regresi kekar dengan penduga-Huber digunakan untuk mengatasi adanya pencilan pada model regresi klasik, dengan nilai k yang sudah ditetapkan sebesar (dimana adalah simpangan baku dari sisaan). Pada Tabel 5 diperoleh empat peubah penjelas yang signifikan pada model regresi kekar yaitu keberadaan tempat prostitusi (x3), rasio jenis kelamin laki-laki terhadap perempuan (x5), persentase penerima jamkesda (x8), dan rasio jumlah hotel terhadap banyaknya kelurahan (x9). Besarnya R2 pada model yang terbentuk sebesar 61.78%, artinya model regresi yang terbentuk dapat menjelaskan keragaman banyaknya kejahatan sebesar 61.78%, sedangkan sisanya dijelaskan oleh peubah lain yang tidak dimasukkan ke dalam model.

Tabel 5 Penduga parameter regresi kekar Prediktor Koefisien Nilai-p (Intercept) 13.466 0.059 memenuhi asumsi kehomogenan ragam sisaan, kenormalan sisaan, kebebasan antar sisaan. Secara eksplorasi dapat dilihat pada Lampiran 7 dan hasil dari tiap pengujian asumsi adalah sebagai berikut:

a. Asumsi kehomogenan ragam sisaan Uji kehomogenan ragam sisaan menggunakan uji Breush-Pagan. Besarnya nilai BP pada model regresi kekar sebesar 13.2778 dengan nilai-p sebesar 0.4266. Nilai nilai-p ini lebih besar dari α=5%, artinya asumsi kehomogenan ragam sisaan pada model regresi kekar terpenuhi. b. Asumsi kenormalan sisaan

Nilai Kolmogorov-Smirnov yang dihasilkan sebesar 0.135 dengan nilai-p sebesar 0.052. Ini menunjukkan bahwa nilai nilai-p lebih besar dari α=5%, artinya asumsi kenormalan sisaan pada model regresi kekar terpenuhi.

c. Asumsi kebebasan antar sisaan

Kebebasan antar sisaan model regresi kekar dapat dilihat secara eksplorasi pada Lampiran 7. Grafik tersebut memperlihatkan bahwa sisaannya saling bebas dan tidak membentuk pola tertentu. Hal ini menunjukkan bahwa asumsi kebebasan antar sisaan terpenuhi.

Ukuran Kebaikan Model Regresi Berganda

(19)

11

regresi klasik dengan model regresi kekar. Dapat dilihat juga pada plot di Lampiran 7, sisaan regresi kekar polanya hampir sama dengan regresi klasik. Hal ini menunjukkan bahwa model regresi kekar belum dapat memperbaiki model regresi klasik dalam mengatasi pencilan.

Tabel 6 Nilai kebaikan model berganda

R2 RMSE

Klasik 63.39% 1.589

Kekar 61.78% 1.624

Pengujian Efek Spasial

Model regresi klasik dan model regresi kekar secara uji formal asumsi-asumsi sisaan sudah terpenuhi, namun secara eksplorasi terlihat ragam sisaannya belum homogen, yakni masih berbentuk seperti corong. Pemodelan lainnya untuk memperbaiki kedua model diatas yaitu memasukkan unsur spasial dengan pembobotan spasial kedalam model, karena diduga kedekatan antar wilayah juga mempengaruh kriminalitas. Sebelum menguji dua efek spasial, diperiksa terlebih dahulu otokorelasi spasial terhadap sisaan model regresi klasik menggunakan Indeks Moran. Hasil Indeks Moran terhadap sisaan model regresi klasik sebesar 0.3630 dengan nilai-p sebesar 1.37e-05. Nilai nilai-p yang dihasilkan kurang dari α=5%, artinya terdapat otokorelasi spasial positif pada data sisaan model regresi klasik.

Uji efek spasial ada dua yaitu efek otokorelasi spasial dan efek keragaman spasial. Salah satu uji efek spasial yakni keragaman spasial telah diperoleh ketika menguji asumsi kehomogenan ragam sisaan pada model regresi klasik menggunakan uji Breush-Pagan. Hasilnya diketahui bahwa setiap wilayah di Jakarta memiliki ragam yang homogen. Efek yang selanjutnya diuji adalah efek otokorelasi spasial menggunakan uji Pengganda Lagrange, uji ini untuk mendeteksi ketergantungan spasial secara spesifik yaitu ketergantungan spasial dalam lag (SAR), ketergantungan spasial dalam galat (SEM), atau ketergantungan spasial dalam lag dan galat (GSM). Ringkasan hasil uji pengganda Lagrange dapat dilihat pada Tabel 7.

Tabel 7 Nilai Pengganda Lagrange

Model Nilai nilai-p

SAR 22.107 0.000*

SEM 13.424 0.000*

GSM 22.221 0.000*

Keterangan : *) nyata pada α=5%

Berdasarkan nilai-p dari hasil yang diperoleh uji Pengganda Lagrange mengindikasikan bahwa ketergantungan spasial dalam lag, ketergantungan spasial dalam galat, dan ketergantungan spasial dalam lag dan galat signifikan. Hal ini menunjukkan perlu membuat model spasial dengan memasukkan ketergantungan spasial dalam lag, model spasial dengan memasukkan ketergantungan spasial dalam galat, dan model spasial dengan memasukkan ketergantungan spasial dalam lag dan galat secara bersamaan.

Analisis Regresi Spasial Model Regresi Otoregresif Spasial

Hasil pendugaan dan pengujian parameter untuk model SAR menunjukkan bahwa ada enam peubah penjelas yang berpengaruh nyata terhadap banyaknya kejahatan. Peubah penjelas tersebut yaitu keberadaan tempat prostitusi (x3), rasio jenis kelamin laki-laki terhadap perempuan (x5), rasio banyaknya industri per kelurahan (x6), persentase penerima jamkesda (x8), rasio banyaknya restoran per kelurahan (x10) dan rasio banyaknya tempat berkumpulnya anak jalanan per kelurahan (x12). Hasil ini menambahkan tiga peubah penjelas yang nyata dari model regresi klasik, yaitu rasio jenis kelamin laki-laki terhadap perempuan (x5), rasio banyaknya restoran per kelurahan (x10) dan rasio banyaknya tempat berkumpulnya anak jalanan per kelurahan (x12), sedangkan ketiga peubah penjelas yang lainnya sama dengan peubah yang nyata pada model regresi klasik. Hal ini terjadi karena pada model regresi klasik tidak memasukkan ketergantungan lag spasial ke dalam modelnya. Pendugaan parameter SAR dapat dilihat pada Tabel 8.

Koefisien pada model SAR berpengaruh nyata terhadap model, dengan nilainya sebesar 0.619. Besarnya nilai ini mengandung makna jika suatu wilayah yang dikelilingi oleh wilayah lain sebanyak n, maka pengaruh dari masing-masing wilayah yang mengelilinginya sebesar 0.619 dikalikan rata-rata banyaknya kejahatan di sekelilingnya. Nilai AIC yang dihasilkan pada model SAR ini sebesar 168.39, lebih kecil dari nilai AIC pada model regresi klasik yang sebesar 188.11.

Model Galat Spasial

(20)

penerima jamkesda (x8), rasio jumlah restoran per kelurahan (x10) dan rasio jumlah tempat berkumpulnya anak jalanan per kelurahan (x12). Hasil ini menambahkan dua peubah penjelas yang nyata dari model regresi klasik, yaitu rasio jumlah restoran per kelurahan (x10) dan rasio jumlah tempat berkumpulnya anak jalanan per kelurahan (x12), sedangkan ketiga peubah penjelas yang lainnya sama dengan peubah yang nyata pada model regresi klasik. Hal ini terjadi karena pada model regresi klasik tidak memasukkan ketergantungan spasial dalam sisaan ke dalam modelnya.

Model SEM ini memiliki koefisien λ yang berpengaruh nyata, dengan nilainya sebesar 0.837. Besarnya nilai ini memiliki makna bahwa jika suatu wilayah yang dikelilingi oleh wilayah lain sebanyak n, maka pengaruh dari masing-masing wilayah yang mengelilinginya sebesar 0.837 dikalikan rata-rata sisaan di sekelilingnya. Model SEM ini memiliki nilai AIC sebesar 166.51, lebih kecil bila dibandingkan dengan nilai AIC pada model regresi SAR yang sebesar 168.39.

Model Spasial Umum

Hasil pendugaan dan pengujian parameter untuk model GSM menunjukkan bahwa ada empat peubah penjelas yang berpengaruh nyata terhadap banyaknya kejahatan. Peubah penjelas tersebut yaitu keberadaan tempat prostitusi (x3), persentase penerima jamkesda (x8), rasio banyaknya restoran per kelurahan (x10) dan rasio banyaknya tempat berkumpulnya anak jalanan per kelurahan (x12), dapat dilihat pada Tabel 8.

Model GSM yang memasukkan dua ketergantungan spasial secara bersamaan, menghasilkan koefisien yang tidak signifikan, tetapi koefisien λ signifikan, dengan nilainya sebesar 0.915. Besarnya nilai ini memiliki makna bahwa jika suatu wilayah yang dikelilingi oleh wilayah lain sebanyak n, maka pengaruh dari masing-masing wilayah yang mengelilinginya sebesar 0.915 dikalikan rata-rata sisaan di sekelilingnya. Model GSM ini memiliki nilai AIC sebesar 168.11, lebih kecil bila dibandingkan dengan nilai AIC pada model regresi SAR yang sebesar 168.39 namun lebih besar dari nilai AIC SEM.

Pada Tabel 8 terlihat bahwa ketiga model spasial yakni SAR, SEM dan GSM memiliki tanda koefisien yang konsisten. Namun ada yang berbeda ketika di model GSM, pada peubah tandanya berbeda dengan model SAR, ini diperkuat dengan tidak signifikannya peubah di model GSM. Hal ini menunjukkan bahwa pada model GSM ketika dua peubah

spasial yakni ketergantungan lag spasial dan ketergantungan galat spasial (λ) dimasukkan secara bersamaan maka peubah menjadi tidak signifikan. Pada Tabel 8 terlihat bahwa peubah x3, x8, x10, dan x12 selalu signifikan di semua model spasial.

Tabel 8 Penduga parameter model spasial

Prediktor Koefisien diperoleh akan tepat digunakan jika memenuhi asumsi. Asumsi yang harus dipenuhi sama seperti saat menguji asumsi pada model regresi klasik, yaitu kehomogenan ragam sisaan, kenormalan sisaan dan kebebasan antar sisaan. Secara eksplorasi pemeriksaan asumsi-asumsi untuk model SAR, SEM, dan GSM berturut-turut dapat dilihat pada Lampiran 8, 9, dan 10. Pengujian asumsi secara formal dapat dilihat pada Tabel 9.

Tabel 9 Hasil uji asumsi regresi spasial Nilai-p

SAR SEM GSM

Kenormalan >0.150 0.416 0.119 Kehomogenan

Ragam

0.605 0.930 0.943

(21)

13

menggunakan uji Breush-Pagan, berdasarkan nilai-p dari ketiga model spasial menunjukkan bahwa ragam sisaan pada masing-masing model homogen, dapat dilihat kembali pada Lampiran 8, 9, dan 10. Secara eksplorasi juga dapat terlihat bahwa ragamnya sudah homogen dan tidak lagi berbentuk corong seperti pada regresi klasik dan kekar. Namun ada dua titik yang berbeda, yaitu kecamatan Tamansari dan Tanjung Priok, yang ternyata dua kecamatan ini termasuk ke dalam daerah hotspot, yakni daerah yang memiliki banyaknya kejahatan yang tinggi tetapi daerah disekitarnya rendah.

Ukuran Kebaikan Model Regresi Spasial

Kriteria yang digunakan untuk memilih model terbaik dari ketiga model spasial dengan membandingkan nilai AIC, R2, dan RMSEnya. Perbandingan dari ketiga model tersebut dapat dilihat pada Tabel 10. Tabel 10 Nilai kebaikan model spasial

SAR SEM GSM

AIC 168.39 166.51 168.11

R2 80.19% 83.21% 84.85%

RMSE 1.169 1.076 1.022

Model dikatakan lebih baik dibandingkan yang lainnya jika nilai AIC lebih kecil, R2 lebih besar, dan RMSE lebih kecil. Walaupun nilai R2 pada GSM lebih besar dari SAR dan SEM, namun perbedaannya tidak besar. Ini menunjukkan bahwa ada salah satu peubah dari peubah ketergantungan spasial yang dimasukkan secara bersamaan ke dalam model tidak memberikan kontribusi yang besar terhadap model. Pada Tabel 8, model GSM menunjukkan bahwa peubah ketergantungan lag spasial tidak signifikan. Model SEM memiliki nilai AIC yang lebih kecil dibandingkan dengan model SAR maupun GSM, artinya model SEM lebih baik digunakan dalam memodelkan banyaknya kejahatan di DKI Jakarta.

Interpretasi Faktor yang Berpengaruh

Berdasarkan persamaan model SEM yang terbentuk, maka interpretasi koefisien yang berpengaruh adalah nilai koefisien x3 sebesar 1.394, artinya rata-rata banyaknya kejahatan di kecamatan yang memiliki tempat prostitusi lebih tinggi 1.394 dari kecamatan yang tidak memiliki tempat prostitusi. Suatu wilayah yang terdapat tempat prostitusi akan meningkatkan banyaknya kejahatan di wilayah tersebut. Penggusuran tempat prostitusi dapat

menjadi salah satu cara untuk menekan angka banyaknya kejahatan di wilayah tersebut.

Koefisien x6 sebesar 0.010, artinya setiap kenaikkan rasio industri terhadap banyaknya kelurahan satu satuan akan meningkatkan banyaknya kejahatan sebesar 0.010 satuan. Hal ini dapat dilihat bahwa wilayah dengan banyak industri memiliki aktifitas yang tinggi dan kompleks. Selain itu, pendapatan di wilayah tersebut juga akan meningkat. Dampaknya adalah wilayah yang seperti ini cenderung menjadi target kejahatan. Sehingga semakin banyak industri tumbuh dan berkembang di wilayah tertentu maka wilayah tersebut akan meningkatkan resiko kejahatan. Pengamanan yang lebih ketat dan kewaspadaan yang tinggi dapat menjadi cara untuk menekan angka banyaknya kejahatan di wilayah tersebut.

Nilai koefisien x8 adalah 15.698, artinya setiap kenaikkan persentase jamkesda satu persen akan menaikkan banyaknya kejahatan sebesar 15.698 poin. Semakin banyak masyarakat penerima jamkesda di suatu wilayah maka mencerminkan persentase masyarakat kurang mampu di wilayah tersebut tinggi. Hal ini dapat meningkatkan banyaknya kejahatan karena apapun dapat mereka lakukan untuk bertahan hidup di ibukota. Pemerintah daerah harus bisa mengangkat wilayah yang seperti ini dari jurang kemiskinan untuk menekan angka banyaknya kejahatan di wilayah tersebut.

Koefisien x10 sebesar 0.014, artinya setiap penaikkan rasio restoran satu satuan akan menaikkan banyaknya kejahatan sebesar 0.014 satuan. Semakin banyak restoran tumbuh dan berkembang di wilayah tertentu maka wilayah tersebut akan meningkatkan resiko kejahatan. Hal ini dapat dilihat bahwa wilayah tersebut memiliki aktifitas yang tinggi dan kompleks. Selain itu, pendapatan di wilayah tersebut juga akan meningkat. Dampaknya adalah wilayah yang seperti ini cenderung menjadi target kejahatan. Pengamanan yang lebih ketat dan kewaspadaan yang tinggi dapat menjadi cara untuk menekan angka banyaknya kejahatan di wilayah tersebut.

(22)

KESIMPULAN DAN SARAN Kesimpulan

Wilayah yang termasuk kedalam hotspot atau wilayah Tinggi-Rendah adalah kecamatan Cilincing, Koja, Sawah Besar, Tamansari dan Tanjung Priok. Hal ini menunjukkan bahwa wilayah tersebut memiliki banyaknya kejahatan yang tinggi namun dikelilingi oleh wilayah yang memiliki banyaknya kejahatan yang rendah. Wilayah tersebut bisa menjadikan wilayah disekitarnya menjadi wilayah yang rawan akan tindak pidana. Penentuan faktor-faktor yang mempengaruhi banyaknya kejahatan di Jakarta tahun 2011 lebih baik dimodelkan dengan model SEM, dengan memasukkan ketergantungan spasial dalam sisaan ke dalam model. Faktor-faktor yang mempengaruhi banyaknya kejahatan di DKI Jakarta adalah keberadaan tempat prostitusi, rasio industri terhadap banyaknya kelurahan, persentase penerima jamkesda, rasio restoran terhadap banyaknya kelurahan dan rasio tempat berkumpulnya anak jalanan terhadap banyaknya kelurahan. Tamansari dan Tanjung Priok adalah daerah yang tersebar berbeda dengan yang lainnya di plot kehomogenan ragam sisaan pada model SEM, yang ternyata dua daerah tersebut merupakan daerah yang termasuk ke dalam hotspot.

Saran

Penelitian ini memiliki keterbatasan pada asumsi kehomogenan ragam sisaan model regresi spasial yang disebabkan oleh adanya pencilan atau daerah hotspot. Penelitian selanjutnya dapat dikaji tentang regresi spasial yang kekar terhadap adanya pencilan atau daerah hotspot menggunakan pendekatan analisis regresi spasial kekar.

DAFTAR PUSTAKA

Anselin L. 1988. Spatial Econometrics : Methods and Models. Dordrecht : Academic Publisher.

Anselin L. 1995. Local Indicators of Spatial Association. Research Paper 9331 Regional Research Institute West Virginia.

Anselin L. 1999. Spatial Econometrics. Dallas: Bruton Center.

Anselin L, Cohen J, Cook D, Goor W, and Tita G. 2000. Spatial Analyses of Crime. Measurement and Analysis of Crime and Justice, 4 (220).

Arbia G. 2006. Statistical Foundations and Application to Regional Convergence. Berlin: Springer-Verlag.

[BPS] Badan Pusat Statistik. 2009. Statistik Perkiraan Urbanisasi Penduduk Kota-kota di Indonesia. Jakarta: Badan Pusat Statistik.

Chatterjee S, Hadi AS. 2006. Regression Analysis by Example. New Jersey: John Wiley & Sons, Inc.

Hidayatunnismah. 2003. Analisis Korespondensi Beberapa Kejadian Tindak Kriminal (studi kasus: wilayah kotamadya Bogor) [Skripsi]. Bogor : Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor.

Humas Polda Metro Jaya. 2010. Jumpa Pers Akhir Tahun 2010 Polda Metropolitan Jakarta Raya. [terhubung berkala]. http://humaspoldametrojaya.blogspot.co m/2010/12/jumpa-pers-akhir-tahun-2010-polda.html [22 Oktober 2012].

Silk J. 1979. Statistical Concept in Geography. London : George Allen & Unwin.

Susanto I.S. 2010. Statistik Kriminal Sebagai Konstruksi Sosial. Yogyakarta : Genta Publishing.

Ward MD, Gleditsch KS. 2008. Spatial Regrression Models. United States: Sage Publications, Inc.

(23)
(24)

Lampiran 1 Peubah penjelas yang digunakan dalam analisis

Jenis Peubah Skala Keterangan

Keragaman suku dan agama

x1 Penduduk berasal lebih dari satu etnis

Nominal Ya atau tidak

Tempat Hiburan x2 Lokasi diskotik Nominal Ada atau tidak

x3 Lokasi prostitusi/tempat mangkal PSK

Ada atau tidak Keamanan x4 Agen yang beroperasi mencari

TKW

Nominal Ada atau tidak Jenis Kelamin x5 Rasio jenis kelamin laki-laki

terhadap perempuan

Rasio

Laki-laki/perempuan

Ekonomi dan Kependudukan

x6 Rasio jumlah industri skala kecil dan rumah tangga terhadap banyaknya kelurahan.

Rasio Unit/kelurahan

x7 Rasio jumlah sekolah terhadap banyaknya kelurahan

Rasio Unit/kelurahan x8 Persentase warga penerima

JAMKESDA

Rasio %

x9 Rasio jumlah hotel terhadap banyaknya kelurahan

Rasio Unit/kelurahan x10 Rasio jumlah restoran terhadap

banyaknya kelurahan

Rasio Unit/kelurahan x11 Rasio jumlah pasar tradisional

terhadap banyaknya kelurahan

Rasio Pasar/kelurahan x12 Rasio jumlah tempat

berkumpulnya anak jalanan terhadap banyaknya kelurahan

Rasio Tempat/kelurahan

x13 Rasio jumlah organisasi kemasyarakatan terhadap banyaknya kelurahan

(25)

17

Lampiran 2 Perhitungan bobot setiap tindak pidana

a. Pembobotan dengan proporsi dari masing-masing tindak pidana

dengan adalah tindak pidana ke-i pada kecamatan ke-j, i adalah tindak pidana ke-i dan j adalah kecamatan ke-j.

b. Pembobotan dengan simpangan baku dari masing-masing tindak pidana ∑ ( ̅)

dengan adalah tindak pidana ke-i pada kecamatan ke-j, i adalah tindak pidana ke-i dan j adalah kecamatan ke-j, ̅ adalah rataan tindak pidana ke-i.

c. Pembobotan dengan Komponen Utama

Pada penelitian ini menggunakan persentase keragaman kumulatifnya sebesar 75%.

Akar ciri 3.425 2.194 1.429 1.173 0.828 0.743 0.425 0.344 0.191 0.139 0.108

Proporsi 0.311 0.199 0.13 0.107 0.075 0.068 0.039 0.031 0.017 0.013 0.01

Kumulatif 0.311 0.511 0.641 0.747 0.823 0.89 0.929 0.96 0.977 0.99 1

Peubah KU1 KU2 KU3 KU4 KU5 KU6 KU7 KU8 KU9 KU10 KU11

Pembunuhan 0.174 -0.14 -0.333 -0.477 0.473 -0.542 0.213 0.014 0.016 -0.007 -0.22

Anirat 0.443 0.159 -0.122 -0.085 -0.143 0.202 0.204 0.644 -0.224 0.434 0.022

Curat 0.434 0.189 0.289 -0.024 0.017 -0.299 -0.095 0.148 0.418 -0.279 0.564

Curas 0.303 -0.154 0.053 0.363 0.646 0.31 -0.257 0.16 -0.179 -0.3 -0.148

Curanmor 0.308 0.179 0.574 0.043 -0.192 -0.26 -0.032 -0.102 -0.056 0.018 -0.65

Kebakaran 0.008 -0.24 -0.225 0.669 -0.228 -0.509 0.23 0.155 -0.195 -0.131 0.032

Perjudian 0.297 0.338 -0.277 0.271 0.077 0.255 0.522 -0.417 0.345 0.012 -0.108

Pemerasan 0.027 0.619 -0.118 -0.049 0.053 -0.141 -0.102 -0.244 -0.661 -0.155 0.213

Pemerkosaan 0.321 -0.13 -0.429 -0.229 -0.483 0.165 -0.264 -0.012 0.014 -0.522 -0.201

Kenakalan

Remaja -0.196 0.451 -0.345 0.214 0.07 -0.183 -0.514 0.231 0.375 0.192 -0.244

Narkotika 0.411 -0.297 -0.12 0.095 -0.039 -0.088 -0.409 -0.465 -0.067 0.541 0.174

√( ) ( ) ( )

dengan adalah akar ciri, banyaknya komponen utama yang digunakan, adalah peubah respon ke dan adalah peubah yang sudah dibakukan. Bobot masing-masing peubah mencerminkan besarnya keragaman peubah asal yang dijelaskan oleh komponen utama yang terpilih.

(26)

Lampiran 3 Perbandingan kebaikan model pembobotan a. Diagram kotak garis

KU

b. Plot kenormalan data banyaknya kejahatan

120

Pembobot dengan simpangan baku

12 c. Uji kenormalan dengan Kolmogorov-Smirnov

Metode Pembobot Nilai-p

Proporsi < 0.010

Simpangan baku > 0.150

(27)

19

Lampiran 4 Indeks Moran Lokal

Kecamatan Ii E(Ii) Var(Ii) Z(Ii) Pr(z > 0)

Cakung -0.09375 -0.02439 0.2244 -0.1464 5.58E-01

Cempaka Putih 0.02161 -0.02439 0.1748 0.1099 4.56E-01

Cengkareng 0.14965 -0.02439 0.1748 0.4161 3.39E-01

Cilandak 0.93257 -0.02439 0.1748 2.2882 1.11E-02* Cilincing 0.95226 -0.02439 0.3071 1.7623 3.90E-02*

Cipayung 0.86139 -0.02439 0.3071 1.5984 5.50E-02

Ciracas 0.86081 -0.02439 0.3071 1.5973 5.51E-02

Duren Sawit -0.01778 -0.02439 0.2244 0.0139 4.94E-01

Gambir 0.37515 -0.02439 0.1005 1.2601 1.04E-01

Grogol Petamburan 0.30279 -0.02439 0.1418 0.8687 1.92E-01

Jagakarsa 1.82138 -0.02439 0.3071 3.3307 4.33E-04*

Jatinegara -0.00486 -0.02439 0.1418 0.0518 4.79E-01

Johar Baru -0.22825 -0.02439 0.3071 -0.3678 6.44E-01

Kalideres 0.37467 -0.02439 0.4723 0.5806 2.81E-01

Kebayoran Baru -0.10690 -0.02439 0.1748 -0.1972 5.78E-01

Kebayoran Lama 0.14868 -0.02439 0.1182 0.5033 3.07E-01

Kebon Jeruk -0.00823 -0.02439 0.1418 0.0429 4.83E-01

Kelapa Gading 0.05421 -0.02439 0.1418 0.2087 4.17E-01

Kemayoran 0.71343 -0.02439 0.1005 2.3271 9.98E-03*

Kembangan -0.02876 -0.02439 0.2244 -0.0092 5.04E-01

Koja 2.04524 -0.02439 0.3071 3.7346 9.40E-05*

Kramatjati 0.01115 -0.02439 0.1005 0.1121 4.55E-01

Makasar 0.43873 -0.02439 0.2244 0.9775 1.64E-01

Mampang Prapatan 1.10741 -0.02439 0.1418 3.0051 1.33E-03*

Matraman -0.03088 -0.02439 0.1418 -0.0172 5.07E-01

Menteng 0.00822 -0.02439 0.1418 0.0865 4.65E-01

Pademangan 0.43933 -0.02439 0.1418 1.2313 1.09E-01

Palmerah -0.16741 -0.02439 0.1748 -0.3420 6.34E-01

Pancoran 0.79770 -0.02439 0.2244 1.7351 4.14E-02* Pasar Minggu 1.42521 -0.02439 0.1418 3.8490 5.93E-05* Pasar Rebo 1.22922 -0.02439 0.2240 2.6459 4.07E-03*

Penjaringan 0.45782 -0.02439 0.1418 1.2803 1.00E-01

Pesanggrahan 0.48903 -0.02439 0.3071 0.9264 1.77E-01

Pulo Gadung 0.42043 -0.02439 0.1005 1.4029 8.03E-02

Sawah Besar 1.10118 -0.02439 0.1748 2.6914 3.56E-03*

Senen -0.00123 -0.02439 0.1182 0.0673 4.73E-01

Setiabudi 0.19776 -0.02439 0.1748 0.5312 2.98E-01

Tamansari 1.46766 -0.02439 0.1748 3.5678 1.80E-04*

Tambora 0.61394 -0.02439 0.1748 1.5263 6.35E-02

Tanah Abang -0.01650 -0.02439 0.1418 0.0209 4.92E-01

Tanjung Priok 1.81863 -0.02439 0.1748 4.4070 5.24E-06*

Tebet 0.13297 -0.02439 0.1182 0.4576 3.24E-01

(28)

Lampiran 5 Korelasi antar peubah penjelas bertipe rasio

Lampiran 6 Pemeriksaan asumsi regresi klasik secara eksplorasi

(29)

21

Lampiran 7 Pemeriksaan asumsi model regresi kekar secara eksplorasi

12 Lampiran 8 Pemeriksaan asumsi model SAR secara eksplorasi

(30)

Lampiran 9 Pemeriksaan asumsi model SEM secara eksplorasi

Lampiran 10 Pemeriksaan asumsi model GSM secara eksplorasi

11

Gambar

Gambar 1 Penghitungan matriks pembobot spasial dengan langkah ratu
Gambar 2  Kuadran plot pencaran moran
Tabel 2  Nilai statistik jumlah tindak pidana
Gambar  5   Plot pencaran moran banyaknya
+4

Referensi

Dokumen terkait

Banyaknya penelitian terdahulu yang meneliti pengaruh penghasilan (beban) pajak tangguhan (deffered tax) dan karaterisitk perusahaan serta pentingnya kualitas laba

Ada beberapa perubahan dan rutinitas baru yang terjadi setelah menjalankan proses yang cukup panjang dalam perancangan Ruang Edukasi Sebagai Inisiasi Awal Pemberdayaan Kampung

Pada saat lama rata-rata waktu polis lebih panjang dari perencanaan horizon T maka sangat sedikit pemegang polis meninggalkan asuransi dengan premi berapapun yang

dalam penelitian ini adalah skor total nilai setiap siswa dari hasil pretest dan. postes, serta persentase yang diperoleh dari angket motivasi (skala

Berdasarkan hasil penelitian diketahui bahwa: 1) tingkat kesenjangan antara motif dan kepuasan pendengar radio Gapura Klewer 107,7 FM Surakarta dilihat dari aspek

Jenis peneitian ini adalah PTK (Penelitian Tindakan Kelas). Penelitian ini dilaksanakan dua kali siklus dan dua kali pertemuan setiap siklusnya. Metode pengumpulan

Subbagian Tata Usaha sebagaimana dimaksud dalam Pasal 75. huruf b mempunyai tugas melakukan

Bagi peserta lelang yang merasa keberatan atas Penetapan Pemenang Lelang tersebut diatas diberi kesempatan untuk mengajukan sanggahan secara Online melalui portal