• Tidak ada hasil yang ditemukan

Metode pengindeksan geometric hashing untuk content based image retrieval

N/A
N/A
Protected

Academic year: 2017

Membagikan "Metode pengindeksan geometric hashing untuk content based image retrieval"

Copied!
1
0
0

Teks penuh

(1)

Jurnal Ilmu Komputer     Vol 5. No 2 Tahun 2007   

METODE PENGINDEKSAN GEOMETRIC HASHING UNTUK CONTENT

BASED IMAGE RETRIEVAL

Eden Firmansyah, Yeni Herdiyeni, Firman Ardiansyah

ABSTRACT

This research proposes implementation and evaluation of geometric hashing for content based image retrieval as indexing method. Content based image retrieval (CBIR) is the application of computer vision to the image retrieval problem, that is, the problem of searching for digital images in databases. Content based image retrieval, uses the visual content of an image such as color, shape and texture to represent and index the image. The goal of most computer vision research is system should be able to recognize object in an image that are partially occluded or have undergone geometric transformations. Geometric hashing is an indexing method that recognized objects will invariant to geometric transformation (such as translation, rotation, and scaling). This research uses interest points to indicate the local features of an image and represent the shape of object in image. Thus, small region around interest points are selected as image patch for measure the color properties as feature vector. This research uses shape and color as visual features.

Referensi

Dokumen terkait

There are some feature extraction methods that combine texture, color, and shape feature based on co-occurrence matrices, namely Texton Co-occurrence Matrix [9], Multi-

Perbandingan Content Based Image Retrieval dengan Fitur Warna Menggunakan Metode Colour Histogram dan Fitur Tekstur Menggunakan Metode Grey Level Co-Occurence

Kata kunci : Citra, Temu Balik, Content Based Image Retrieval (CBIR), Speeded-Up Robust Features (SURF), Euclidean Distance. Universitas

terkait CBIR dengan SURF masih sedikit, maka penulis mengangkat judul skripsi ini dengan nama “Implementasi Content Based Image Retrieval menggunakan Speeded-Up

Aplikasi Content-Based Image Retrieval untuk melakukan image retrieval Tanaman Hias Anthurium dapat dibuat menggunakan pre-trained model CNN yaitu VGG16 dengan

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v20i1.19759  118 Network and layer experiment using convolutional neural network for content based image retrieval work Fachruddin1,

Content Based Image Retrieval CBIR merupakan teknik pencarian gambar dari database gambar yang besar dengan cara melakukan analisis fitur dari gambar.. Untuk meningkatkan kemampuan

Stafylopatis, "Relevance feedback for content-based image retrieval using support vector machines and feature selection," Artificial Neural Networks – ICANN 2009, Springer, vol.. Zheng,