• Tidak ada hasil yang ditemukan

Carbon nanofiber assisted micro electro discharge machining of reaction-bonded silicon carbide.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Carbon nanofiber assisted micro electro discharge machining of reaction-bonded silicon carbide."

Copied!
12
0
0

Teks penuh

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Materials

Processing

Technology

j o u r n a l ho m e p age : w w w . e l s e v i e r . c o m / l o c a t e / j m a t p r o t e c

Carbon

nanofiber

assisted

micro

electro

discharge

machining

of

reaction-bonded

silicon

carbide

Pay

Jun

Liew

a,c

,

Jiwang

Yan

b,∗

,

Tsunemoto

Kuriyagawa

a

aDepartmentofMechanicalSystemsandDesign,TohokuUniversity,AramakiAoba6-6-01,Aoba-ku,Sendai980-8579,Japan

bDepartmentofMechanicalEngineering,FacultyofScienceandTechnology,KeioUniversity,Hiyoshi3-14-1,Kohoku-ku,Yokohama223-8522,Japan

cManufacturingProcessDepartment,FacultyofManufacturingEngineering,UniversitiTeknikalMalaysiaMelaka,HangTuahJaya,76100DurianTunggal,Melaka,Malaysia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4July2012

Receivedinrevisedform26January2013 Accepted3February2013

Available online 11 February 2013

Keywords:

Microelectrodischargemachining Carbonnanofiber

Reaction-bondedsiliconcarbide Ultra-hardceramics

Microfabrication

a

b

s

t

r

a

c

t

Carbonnanofiberassistedmicroelectrodischargemachiningwasproposedandexperimentswere per-formedonreaction-bondedsiliconcarbide.Thechangesinelectrodischargingbehavior,materialremoval rate,electrodewearratio,electrodegeometry,sparkgap,surfacefinish,surfacetopographyandsurface damagewithcarbonnanofiberconcentrationwereexamined.Ithasbeenfoundthattheadditionof carbonnanofibernotonlyimprovestheelectrodischargefrequency,materialremovalrate,discharge gap,butalsoreducestheelectrodewearandelectrodetipconcavity.Bidirectionalmaterialmigrations betweentheelectrodeandtheworkpiecesurfaceweredetected,andthemigrationbehaviorwasstrongly suppressedbycarbonnanofiberaddition.Adhesionofcarbonnanofiberstotheworkpiecesurfaceoccurs, whichcontributestotheimprovementofelectrodischargemachinability.Thesefindingsprovide pos-sibilityforhigh-efficiencyprecisionmanufacturingofmicrostructuresonultra-hardceramicmaterials.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Micromachiningofadvancedengineeringceramicsiscurrently gaining interests from multidisciplinary researchers. Reaction-bonded silicon carbide (RB-SiC) is one of the most promising engineeringceramics.Ithasexcellentproperties,suchashigh ther-mochemicalstability,low density,highstiffness, highhardness, highthermalconductivityandlowactivation.RB-SiCisfabricated byinfiltratingmeltedsiliconintoagreenbodyconsistingofcarbon (C)andSiCpowders,followedbyreactionandsinteringprocess atabout1700KtoformnewSiCgrains.Inthisway,averydense materialstructurecanbeproduced(Suyamaetal.,2003).

Duetoits highhardness,RB-SiCis extremely difficulttobe machined.Manyeffortshavebeenmadebypreviousresearchers onabrasivemachiningofRB-SiC.Forexample,Tametal.(2007)

investigatedthelappingandpolishingofRB-SiCusingvariouskinds of abrasives. Klocke and Zunke (2009) foundthat the material removalmechanismsofsiliconbasedceramicsdependstronglyon workpiecematerialproperties,polishingagentsaswellas machin-ingparameters.Generallyspeaking,abrasivemachiningprocesses produce a fine surface finish, but the material removal rate is low.Diamondcuttingof RB-SiCwasrecentlyattemptedbyYan

etal.(2009),whichcouldproduceahighmaterialremovalrate.

∗Correspondingauthor.Tel.:+81455661445;fax:+81455661495. E-mailaddress:yan@mech.keio.ac.jp(J.Yan).

However,tool-wearstillremainstobeaprobleminitsindustrial applications.

Electrodischargemachining(EDM)isanalternativemethodto machinehardceramicsmaterials.Acomparativestudyofthe die-sinkingEDMofthreedifferentceramicmaterialswascarriedoutby

PuertasandLuis(2004).Clijstersetal.(2010)manufactured

com-plexpartsonSiSiCmaterialsusingEDM.However,mostceramics arenotsufficientlyconductive,whichisa majorproblemwhen applyingEDMtoceramicsmaterials.Konigetal.(1998)indicated thattheupperlimitofelectricalresistivityforaceramicworkpiece tobemachinedbyEDMis100cm.AspureSiChasafarhigher electricalresistivity(∼105cm),itisimpossibletobemachined

directlybyEDM.ForRB-SiC,duetothepresenceoffreeSi (nor-mallypoly-crystalline)andothersmall-amountadditivesintheSiC bulk,theelectricalconductivitycanbeimprovedtosomeextent

(Wilhelmetal.,1999).Eventhough,theconductivityofRB-SiCis

stillverypoorifcomparedtootherconductivematerials.Hence, theEDMmachiningefficiencyofRB-SiCisextremelylowandthe EDMprocessisunstable.

In order to improve the EDM machinability of materials, a numberofresearchersattemptedaddingconductivepowdersinto dielectricfluids.Forexample,Yeoetal.(2007)added45–55 nm-sizedSiCpowdersintodielectricandfoundthatthesurfacecraters becamesmallerthanthoseproducedinpowderfreedielectricfluid.

Chowetal.(2008)addedSiCpowdersintopurewaterasdielectric

fluidintheEDMoftitaniumalloy,andconfirmedtheimprovement insurfacequalityandmaterialremovalrate.Gunawanetal.(2009)

0924-0136/$–seefrontmatter© 2013 Elsevier B.V. All rights reserved.

(2)

Fig.1.Schematicmodelfor(a)conventionalEDMand(b)carbonnanofiberassistedmicroEDM.

addedmolybdenumdisulfide(MoS2)powdersandimprovedthe materialremovalrateandsurfaceroughnessofCu,brassandCu–W workpiecematerials.Gunawanetal.(2011)alsotriedsuspending nanographite powder in dielectric fluid withthe combination ofultrasonicvibration.Theyfoundthatthemachiningtimewas reducedupto35%.PowderassistedEDMwasalsoappliedtothe EDMofceramicmaterials.Jahanetal.(2010a,b)studiedtheeffect ofaddinggraphite,aluminumandnon-conductivealumina pow-dersinEDMoftungstencarbide ceramics.Theyfoundthatthe graphitepowder provided a smoothsurface and thealuminum powderresultedinhighersparkgapandhighermaterialremoval rate,whereasthealuminapowderhadlittleeffectontheEDM per-formance.Nevertheless,forlow-conductivityorinsulatingceramic materials,itwasdifficulttoobtaingoodmachiningperformanceby powderaddition.Forexample,Tanietal.(2002)usedAl,Gr,Si,Ni, ZrB2 powderstoassisttheEDMofinsulatingSi3N4ceramicsand foundthateventhoughtheremovalratewasincreased,thesurface

roughnesswasbarelyimproved.Thiswasduetothegenerationof longpulsedischargeintheEDMprocess.

(3)

Table1

Propertiesofworkpiecematerial(RB-SiC).

Properties Values

Si/SiCvolumeratio(%/%) 12/88

Density(g/cm3) 3.12

Softeningtemperature(◦C) 1375

YoungmodulusE(GPa) 407

BendingstrengthRT(MPa) 780

Thermalexpansioncoefficient(10−6K–1) 3.23

Thermalconductivity(W/mK) 143

Porosity(%) <0.1

workpiecesurfaceroughness,surfacetopographyandsurface dam-agewereinvestigatedexperimentally.

2. Experimentalmethods

2.1. Machinetool

AmicroEDMmachine,PanasonicMG-ED82W,wasusedinthe experiments.ThisEDMmachinehasaresistor–capacitor(RC) cir-cuitforelectro-discharge.Theelectricalcapacitanceisdetermined bycondensersC1–C4,thecapacitiesofwhichare3300pF,220pF, 100pFand10pF,respectively.Themachine enablesboth micro wireEDMandmicrodiesinkingmachining.Themaximumtravel rangesofthemachinetablesare200mminXdirection,50mmin Ydirection,and50mminZdirection,withasteppingresolutionof 0.1␮m.

2.2. Electrode

Tungstenrodswith300␮mdiameterswereusedastool elec-trodes. Beforethe EDMof RB-SiC, thetool electrode tips were dressedbyusingwireelectrodischargegrinding(WEDG)inorder toimprovetheirformaccuracy.Electrodedressingwasalso per-formedaftereachEDMcyclebecausethetipelectrode,especially thecorner,willwear.IntheWEDG,abrasswire(diameter100␮m) withpositiveelectrodepolaritywasusedtomachinethetool elec-trodewhichwasrotatedata rotationspeedof3000rpmbythe machinespindle.UsingtheWEDGfabricatedelectrodes,machining testsofmicrocavitieswereperformedonRB-SiCusingdiesinking EDM,wherenegativeelectrodepolaritywasused.

2.3. Workpiece

TheworkpiecematerialusedintheexperimentswasRB-SiC (JapanFineCeramicsCo.,Ltd.).Theas-receivedsampleswere cylin-derswitha diameterof 30mm and a thicknessof 10mm. The volumeratioofresidualSibondis12%,andtheaveragesizeofthe 6H–SiCgrainsislessthan1␮m.Sometypicalmaterialproperties ofthesampleareshowninTable1.

Theelectricalresistivityofthesampleis1453cm.To com-paretheEDMmachinability,a fewpreliminaryEDMtestswere performedontheRB-SiCworkpieceand stainlesssteelSUS304.

Fig.2showsmeasurementresultsofelectricalcurrentsintheEDM ofSUS304andRB-SiC,respectively.Theexperimentwasperformed usingatungstenelectrodewithadiameterof47␮matavoltage of80Vandacondenserof100pFthatissuggestedbythemicro EDMmachinemanufacturer,andtheelectricalcurrent measure-mentwasperformedusingTektronixTDS2024Bwithcurrentprobe CT-2.ItisclearthatforSUS304,thepulseisverysharpwithapulse widthof25nsandapeakelectricalcurrentof0.9A.Incontrast,for RB-SiCthepulsewidthis220nsandthepeakelectricalcurrentis only0.1A.Thisdistinctdifferenceinelectricalcurrentpulseshape indicatesthattheEDMmachinabilityofRB-SiCisfarlowerthanthe stainlesssteel.

Fig.2. ElectricalcurrentwaveformsinEDMof(a)SUS304and(b)RB-SiC.

2.4. Carbonnanofiber

Carbonnanofibersusedinthis studyare150nmindiameter and6–8␮minlength.Fig.3showsascanningelectronmicroscope (SEM)micrographofthecarbonnanofibers.Differentfiber concen-trationsrangingfrom0to0.28g/Lwereused.Thedielectricfluid usedwashydrocarbondielectricoilCASTY-LUBEEDS,whichhas ahighflashpoint. Inorder topreparethemixeddielectric,the requiredamountsofcarbonnanofibersanddielectricfluidwere measuredseparately beforebeingmixedtogetherand homoge-nized in a mixer for 20min. This is toensure that the carbon nanofibersareuniformlydispersedinthedielectricfluid.

(4)

Table2

Experimentalconditions.

Workpiecematerial RB-SiC

Electrodematerial Tungsten

Polarity Positive(workpiece)

Negative(toolelectrode)

Rotationalspeed 3000rpm

Voltage 110V

Condensercapacitance 3300pF

Feedrate 3␮m/s

Dielectricfluid EDMoilCASTY-LUBEEDS

Additive Carbonnanofibers

Concentration 0–0.28g/L

Machiningtime 5min

Cavitydepth 20␮m

2.5. Machiningconditions

Table2showstheexperimentalconditions.Forcomparison,two

typesofEDMtestswerecarriedoutunderdifferentfiber concen-trations:(1)time-controlling method,whereeach trialrunwas performedfordurationof5min,and(2)depth-controllingmethod, wherediesinkingmicroEDMtestswereperformeduntiladepth of20␮m.Normally,depth-controllingmethodisusedforrough machining(shapegenerating)andtime-controllingmethodisused forfinemachining(surfacefinishing).

2.6. Measurementandevaluation

Surfaceroughnessoftheworkpieceandcross-sectionalprofile ofelectrodetipaftertheEDMtestsweremeasuredusingalaser probeprofilometerNH-3SP(MitakaKoukiCo.Ltd.).The measure-mentofsurfaceroughnesswasperformedacrossthecenterofthe microcavityalongtheradialdirection,andtheevaluationlength was100␮m.Themachinedsurfaceofthemicrocavitieswerethen examinedusingascanningelectronmicroscope(SEM)andenergy dispersiveX-ray(EDX).Anopticalmicroscopewasusedtomeasure thedimensionoftheelectrodeandthesizeofthecavityaftereach experiment.

3. Resultsanddiscussion

3.1. Electrodischargebehavior

Todirectlyexaminetheeffectofcarbonnanofiberadditionon electrodischargebehavior,ahighspeedcamerasystemwasusedto observetheEDMregion.Fig.4showshighspeedcameraimagesof sparkgenerationduringmicroEDMwithoutcarbonnanofiber addi-tionandwithcarbonnanofiberaddition(concentration0.06g/L), respectively.It is clearthatthespark regionin Fig.4(b) is dis-tinctlybiggerthanthatof(a),indicatingthatelectrodischargehas beensignificantlyactivatedby carbonnanofiber addition.Next, thedischargevoltagewaveformswereobservedusingan oscil-loscopeTexioDCS9515.Fig.5showsthevoltagewaveformsfor microEDMwithoutcarbonnanofiber additionandwithcarbon nanofiberaddition (concentration0.06g/L),respectively. During thesameperiodoftime(1000␮s),thepulsenumberofdischarge voltagein Fig.5(b) is 37, whilethat in Fig.5(a)is only 2.This resultdemonstratesagainthatduetothecarbonnanofiber addi-tion,theelectrodischargecharacteristicsinEDMofRB-SiChave beengreatlyimproved.ItshouldbenotedthatinFig.5(b),a mul-tipledischargingeffect(severaldischargingpathsaregenerated withinonesingleinputpulse)wasobservedwithinasingleinput pulse,indicatingthatthedischargingenergyhasbeendispersedby thefiberaddition.

Fig.4.HighspeedcameraobservationofsparkgenerationduringmicroEDM:(a) withoutand(b)withcarbonnanofiberaddition.

3.2. Materialremovalrate

Materialremovalrate(MRR)wascalculatedasthevolumeof materialremovedfromworkpieceoveraperiodoftime.Thelaser probeprofilometerNH-3SPwasusedtoscanacrossthemachined area, as shown in Fig.6,and thevolume of material removed wasobtainedbyanalyzingthethree-dimensionalsurface topog-raphy.

(5)

0 10 20 30 40 50

0 100 200 300 400 500 600 700 800 900 1000

Discha rg e v o ltag e (V) Time (μs) (a) 0 10 20 30 40 50

0 100 200 300 400 500 600 700 800 900 1000

Discharg e v o ltag e (V) Time (μs) (b)

Fig.5.DischargevoltagewaveformduringmicroEDM:(a)withoutand(b)with carbonnanofiberaddition.

Fig.6.Three-dimensionaltopographyofamachinedcavityforthemeasurementof volumeofmaterialremovedfromworkpiece.

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

0 0.05 0.1 0.15 0.2 0.25 0.3

m m ( et ar l a v o me r l ai re t a M 3/m in)

Concentration of carbon nanofibers (g/L) d = 20µm t= 5 min

Fig.7.Effectofcarbonnanofibersconcentrationonmaterialremovalrate.

0

20

40

60

80

100

120

140

0

0.05

0.1

0.15

0.2

0.25

0.3

Electrode wear rate (%)

Concentration of carbon

nanofibers (g/L)

t= 5 min d = 20 µm

Fig.8. Effectofcarbonnanofibersconcentrationonelectrodewearrate.

of discharge will be increased and the EDM machinability has beenimproved byadding carbon nanofibers intothe dielectric fluid.

Itshouldbenotedthatthereisanoptimumrangeforcarbon nanofiberconcentration.InFig.7,forfiberconcentrationshigher than 0.17g/L, the MRRtends toreduce (forthe depth control-lingmachining)orkeepalmostconstant(forthetime-controlling machining).ThistrendisconsistentwiththatreportedbyJahan

etal.(2010a).Atanexcessivelyhighconcentrationofpowder(in

thiscase,carbonnanofibers)additive,thedepositedpowders can-notbe removedeasilyfromthemachininggapand causedthe secondarysparking.Thissecondarysparkingmakesthemachining unstableandincreasesthemachiningtime,leadingtothereduction ofMRR.

3.3. Electrodewearratio

Electrodewearratio(EWR)isdefinedastheratioofvolume of material removed fromelectrode tothe volume of material removedfromtheworkpieceatthesametimespan.Thechange ofEWRversuscarbonnanofiberconcentrationisdepictedinFig.8. Under thetime-controlling condition,theEWRdropped signifi-cantlywhen thecarbon nanofiberswere added,and then keep constantwhenfurtherincreasingtheconcentrationofthecarbon nanofibers.AsknownfromParamjitetal.(2010),EWRishighwhen usingpuredielectricfluid becauseofthat theionsproducedby theionizationofdielectricfluidhitthetoolelectrodewithhigh momentumandhighenergy,whichcausesrapiderosionofthe toolelectrode.Theadditionofcarbonnanofibersintothedielectric fluidmighthavepreventedtheionizationphenomenon.

It is noticedthat under thedepth-controlling condition,the changeofEWRwasnotsosignificant.Thismightbebecauseof thatthemachiningtimeforaconstantdepthof20␮mwasshorter ifcompared totime-controlling condition(5min) when carbon nanofiberswereadded.Inthiscase,morematerialswereremoved fromtheworkpiecethanfromtheelectrode.However,whenno carbon nanofibers were added, even though a longer machin-ingtimewastaken,shortcircuitandtoolelectrodebackfeeding occurredfrequently,causingdecreaseinthefrequencyofdischarge and resultinglower erosionoftool electrode. Thus, there is no significantdifferentofEWRwithandwithoutcarbonnanofibers additionunderthedepth-controllingcondition.

Next, tool electrode geometry after EDM was investigated.

(6)

Fig.9. SEMmicrographoftungstenelectrodetipatmachiningdepthof20␮m:(a) withoutand(b)with0.02g/Land(c)0.10g/Lcarbonnanofibers.

cross-sectional profileofelectrode tipmeasuredbylaser probe profilometerNH-3SPisshowninFig.10.Besidesthecornerwear andendwear,holewearoccurredinthecenteroftungstentip, forming a concave shape (Fig. 9(a)). Interestingly, the concave shapebecameinsignificant,i.e.,theelectrodetipbecameflat,when carbonnanofiberswereaddedinthedielectricfluid(Fig.9(c)).In thesparking gap,thestagnationof debrisoccursintensively in thecenterofthemicrocavity,wherethedebrisparticles inter-actwiththetoolelectrode(EkmekciandSayar,2013),causingthe concavitiesinthecenteroftooltip.Withouttheadditionof car-bonnanofibers,thepileddebrisdensityistypicallyhigherthanthe onewithcarbonnanofibersaddition,causingbiggerconcavityon

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004

0 50 100 150 200 250 300

P

rofile of

cr

oss sectiom

(µm

)

Distance (µm)

0.02 g/l 0.10 g/l No CNFs

Fig.10.Comparisonofcrosssectionalprofilesoftungstenelectrodetipaftermicro EDMunderdepthcontrollingcondition.

thetooltip.Increasingcarbonnanofibersconcentrationishelpful forpreventingtheconcavityformation,whereeffectiveflushing takesplaceduetothebiggersparkinggap,andinturn,betterform accuracycanbeobtained.

3.4. Sparkgap

Spark gap wasobtained bymeasuring thediameters of the microcavitiesandtheelectrodesaftereachmachiningtest.The diametersofmicrocavitiesobtainedundertime-controllingand depth-controllingconditionsrangedfrom332␮mto350␮m,and from337␮mto353␮m,respectively.Fig.11illustratestheeffect of carbon nanofiberconcentrationon spark gap.It isseen that the spark gap increases with the increase of fiber concentra-tion.Theadditionofcarbonnanofiberimprovesthebreakdown strengthofdielectricandcausestheinsulatingstrengthof dielec-tricfluidtoreduce(TzengandChen,2005).Asaresult,abigger spark gap will be maintained, and the debris will be flushed out moreeasily ifcompareto theresultsunderpuredielectric fluid.

When nocarbon nanofibers were added, the discharge gap betweentheelectrodeandworkpieceisextremelysmall,sothatthe debriscouldnotberemovedeffectivelyfromthegap,thusshort cir-cuittakesplacebetweentheelectrodeandworkpiece.Whenshort circuitoccurs,theelectrodewillimmediatelymoveinthereverse

12

17

22

27

32

0

0.05

0.1

0.15

0.2

0.25

0.3

Spark gap

m

)

Concentratio

n of carbon nanofiber

s (g/L)

d = 20µm t= 5 min

(7)

directionofthefeedtomaintainabiggergap(Takashietal.,2008). ThebackfeedingactionwillcausealowMRR.Whenthecarbon nanofiberswereaddedintothedielectricfluid,however,the insu-latingstrengthofdielectricfluidwillbereduced,whichresultsin abiggerdischargegapbetweenthetoolelectrodeandthe work-piece.Inthiscase,debriswillbeeffectivelyremovedfromthegap andshortcircuitwillbeprevented.

3.5. Surfaceroughness

Theeffect of carbon nanofiber concentration onthe surface roughnessofthemachinedsurfaceisshowninFig.12.Underthe time-controllingcondition,thesurfaceroughnesstendstodecrease sharplyat a fiber concentrationof 0.02g/L, and then increases graduallyasfiberconcentrationincreasesfurther.Underthe depth-controllingconditions,thesurfaceroughnessdecreaseswithfiber concentrationuntil0.1g/L,andasfiberconcentrationincreases fur-ther,thesurfaceroughnesstendstoincreaseagain.

Asdemonstrated byParamjitetal. (2010),addinga suitable amountofpowderswillleadtouniformdispersionofdischarge energyinalldirectionsandcauseadecreaseincratersize,thus surfacefinishwillbeimproved.Ata veryhighconcentrationof powderadditive,however,thedielectricmightloseitsabilityto distributeuniformlythepowdermaterials.Therefore,thecarbon nanofibersmayaccumulatetogether,bridgingthedischargegap

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.05

0.1

0.15

0.2

0.25

0.3

Surface roughness (

μ

m

)

Concentration of carbon nanofibers (g/L)

t= 5 min d = 20µm

Fig.12.Effectofcarbonnanofibersconcentrationonsurfaceroughness.

andresultinginarcingandshortcircuitingmorefrequently.This effect will finally increase the surface roughness (Jahan et al.,

2010a).Inthepresentexperiments,theoptimumcarbonnanofiber

concentrationisaround0.02g/Lunderthetime-controlling condi-tions,and0.06–0.1g/Lunderthedepth-controllingconditions.

(8)

Fig.14. Comparisonofmachinedsurfaceatmachiningdepthof20␮m:(a)withoutand(b)with0.06g/Lcarbonnanofibers.

3.6. Surfacetopography

Fig.13showsSEMmicrographsofthemachinedmicrocavities obtainedwithandwithoutcarbonnanofiberaddition,respectively, underthetime-controlling conditions.Theleft micrographsare low-magnificationviewsandtherightonesarehigh-magnification viewsof thecenter regionsof theleftones.It is clearthatthe machinedsurfacewithcarbonnanofibersadditive(Fig.13(b))is smoothercomparedtotheoneobtainedwithpuredielectricfluid (Fig.13(a)).Withoutthecarbonnanofibersadditive,thematerials ofRB-SiCwereremovedaslargeflakes,leadingtoverylargecraters (10␮m level); while with carbon nanofiber addition, the sur-facecratersareextremelysmall(␮mlevel).Forcomparison,SEM micrographs of the machined micro cavities under the depth-controllingconditionsareshowninFig.14.Similarly,themachined surfacewithfiberadditiveisapparentlysmoother(Fig.14(b))if comparedtotheoneobtainedwithpuredielectricfluid(Fig.14(a)). Asmentioned inSection3.4,withcarbonnanofiber additive inthedielectricfluid,thesparkinggaphasbeenincreased; con-sequentlythedebriscausingsecondarydischargecanbeflushed outfromthegapmoreeasily.Theadhesionofresolidifieddebris onthemachinedsurfaceisreduced,which resultsabetter sur-facetopography.Furthermore,thedischargedistributionbecomes moreuniform,henceuniformlysmallcraterswereproducedonthe machinedsurface(Jahanetal.,2010b).Ifnocarbonnanofiberswere

used,however,thedischargingprocessisunstable,andmaterial isremovedthroughspalling,inwhichsurfacelayersofthe work-piecematerialarefracturedaslargeflakesbythermalshocks.This isdistinctlydifferentfromnormalsparkerosionwhichinvolves melting,dissociation andevaporationofmaterial(Truemanand

Huddleston,2000).Thisresultstronglydemonstratesthatadding

carbonnanofibersinthedielectricfluidishelpfulforimprovingthe surfacefinishofRB-SiC.

Inaddition,itcanbeseenfromFigs.13and14thatcone-shape protrusionswereformedinthecenterofthemicrocavities.This ispresumablybecauseofthedebriswerenotdrawnoutfromthe centerregionandsecondelectricdischargesoccurred.However, thecone-shapeprotrusionswhencarbonnanofibersweremixed inthedielectricfluidweresmallerthanthosewhenpuredielectric fluidwasused.Thesparkinggapinthecarbonnanofibersmixed dielectricfluidisbigger,sothestagnationofdebrisinthecenter ofthemicrocavityisreduced.Theseresultsaresymmetrywith theconcavitythatwasformedinthecenteroftheelectrodetip,as explainedinSection3.3.

(9)

Fig.15.SEMmicrographofmachinedsurface,showingtheexistenceofmicrocracks andmicroporesaftermachiningtimeof5min:(a)withoutand(b)with0.02g/Land (c)0.14g/Lcarbonnanofibers.

cratersproducedwithpuredielectricfluid(Fig.15(a)).Moreover, itisnoteworthythatbyusinghighercarbonnanofiber concentra-tion,suchas0.14g/LasdemonstratedinFig.15(c),thesizeand densityofthemicroporesarebiggercomparedtotheoneobtained withlowercarbonnanofiberconcentration,0.02g/Lasshownin

Fig.15(b). Similartrend wasconfirmed in theresults obtained underthedepth-controllingconditions.

AccordingtoLeeetal.(1988)andLauwersetal.(2004),the for-mationofmicroporesisassociatedwiththeejectionofentrapped gasfromtheredepositedmaterial,andthemicrocracksareformed asaresultofthehighcontractionstressthatexceedstheultimate strengthofthespecimensurface(Ekmekcietal.,2009;Leeetal., 1988).However,carefulexaminationsonthemicrostructurethat produced byhigher carbon nanofiber concentration(Fig.15(c)) revealedthatmicroporesizeisabout5–8timesbiggerthanthe one obtainedwithlower carbon nanofiber concentrations.This phenomenonindicatesthatthemechanismofmicropore forma-tion onRB-SiC ceramic athigh carbon nanofiberconcentration maybedifferentfromthatofthemicroEDMofconductivemetals. Thatis,besidestheejectionofgases,thepreferentialremovalof Sibinderfromtheworkpiecesurfacemayleadtotheformation of micropores. Since the Si matrix, in conjunction with sinter-ingagents,possessesahigherelectricalconductivitythantheSiC grains,itwillbepreferentiallyremovedbymeltingand

vaporiza-tion(Konig etal.,1998)inducedby higherdischargedensityat

highcarbonnanofibersconcentration.Thiseffectwillleave micro-poresonthemachinedsurface,andinturn,increasethesurface roughness.Therefore,optimizingtheamountofcarbonnanofiberis importantforimprovingsurfaceroughnessandpreventingsurface damage.

3.7. Materialmigrationphenomena

Fig.16showsSEMmicrographandanEDXspectrumofamicro cavitymachinedbymicroEDMwithcarbonnanofiberaddition. Forcomparison,theresultsformicroEDMwithoutfiberaddition areshowninFig.17.InFigs.16(b)and17(b),itcanbeseenthat besidestheparentmaterialsofRB-SiC,suchasCandSi(Ois pre-sumablyfromtheatmosphere),theelectrodematerial tungsten (W)hasbeendetectedonthemachinedworkpiecesurface.This resultindicatesthatthereisamigrationofmaterialfromthe elec-trodetothemachinedsurface,asreportedbySoniandChakraverti

(1996).Inaddition,comparingFigs.16(b)and17(b),itis

notewor-thythatthetungstenmaterialtransferfromtheelectrodetothe workpieceinpuredielectricfluidishigherthantheoneobtained incarbonnanofibermixedfluid.Thisfactdemonstratedthatadding carbonnanofibersindielectricfluidatasuitableconcentrationis helpfulforpreventingmaterialmigration,andinturn,reducestool electrodewear.

Fig.18(a)shows SEMmicrographofatungstenelectrodetip aftermicroEDM,andFig.18(b)showsitsEDXspectrumanalysis results.TheelementChasbeendetectedontheelectrodetipas indicatedinFig.18(a),indicatingthatduringEDMthecarbon ele-mentfromthenanofibers,dielectricoilortheworkpiecematerial hasalsobeenpartiallytransferredtotheelectrodesurface.From thisfact,onecansaythatthematerialmigrationbetweentool elec-trodeandworkpieceisabidirectionalphenomenon.Inaddition, sinceSielementwasnotfoundonthetoolsurface,itis presum-ablethatmaterialmigrationfromtheworkpiecetotheelectrodeis insignificantcomparedtothatfromcarbonnanofibersordielectric oiltoelectrode.

Fig. 19 presents high magnification SEM micrographs (left: 10000×;right:50000×)ofmachinedRB-SiCsurfaceatcarbon

nanofiberconcentrationsof0.14g/Land0.24g/L,respectively.It was found that a few carbon nanofibers have been deposited onto the workpiece surface after the EDM process. Similarly,

Ekmekciand Ersoz (2012) alsoreported that cubic shapedSiC

(10)

Fig.16.(a)SEMmicrographand(b)EDXspectrumanalysisofamachinedcavityatcarbonnanofiberconcentrationof0.28g/L.

morefibers aredeposited. Thefiberadhesiontotheworkpiece wassostrongthat theycouldnot beremovedeven the work-piece was washed in acetone using an ultrasonic cleaner. The adheredcarbonnanofibersmaysignificantlyimprovetheelectrical

conductivity of the workpiece surface, which might help to improve the EDM machinability of this material. The material migrationphenomenonwillbefurtherinvestigatedinourfuture work.

Fig.17.(a)SEMmicrographand(b)EDXspectrumanalysisofamachinedcavitywithoutcarbonnanofiber.

(11)

Fig.19. SEMmicrographsofmachinedsurfacesaftermachiningfor5minatdifferentcarbonnanofibersconcentrations:(a)0.14g/Land(b)0.24g/L.

4. Conclusions

CarbonnanofiberassistedmicroEDMofRB-SiCwasproposed. Theeffectofcarbonnanofiberadditionontheelectrodischarge behavior,material removalrate,electrode wearratio,electrode geometry,sparkgap,surfaceroughness,surfacetopography,and surfacedamagewasinvestigated.Themajorconclusionsare sum-marizedasfollows:

1.Addingcarbon nanofibersintothe dielectricfluid can signif-icantlyimprovetheelectrodischargefrequency,and inturn, improvethematerialremovalrateandsparkgap.

2.The EWR drops significantly with the increase of carbon nanofiberconcentration,especiallyunderthetime-controlling conditions.

3.Increasingcarbonnanofiberconcentrationishelpfultoprevent tooltipconcavityformation,andinturn,improvesformaccuracy ofmicrocavity.

4.Without carbon nanofiber addition, theRB-SiC material was removedbyspallingoflargeflakes,causinglargesurfacecraters. Withfiberaddition,however,thecratersizecouldbe dramati-callyreduced.

5.Surfacefinishcanbeimprovedbyaddingcarbonnanofibersin thedielectricfluid.Thelowestsurfaceroughnesswasachieved atafiberconcentrationof0.02–0.1g/L.

6.ThemechanismofmicroporeformationonRB-SiCathigh car-bonnanofiber concentrationinvolvespreferentialremoval of siliconbinder,apartfromtheejectionofgasesinEDMofmetal materials.

7.Carbonnanofiberswerepartiallyadheredtotheworkpiece sur-face,especiallywhenahighconcentrationofcarbonnanofibers wasused.

8.Thereisabidirectionalmaterialmigration betweenthe elec-trodeandtheworkpiecesurface.Addingcarbonnanofibersin thedielectricfluidatasuitableconcentrationishelpfulfor pre-ventingthematerialmigration.

References

Chow,H.M.,Yang,L.D.,Lin,C.T.,Chen,Y.F.,2008.TheuseofSiCpowderinwateras dielectricformicro-slitEDMmachining.JournalofMaterialsProcessing Tech-nology195,160–170.

Clijsters,S.,Liu,K.,Reynaerts,D.,Lauwers,B.,2010.EDMtechnologyand strat-egydevelopmentforthemanufacturingofcomplexpartsinSiSiC.Journalof MaterialsProcessingTechnology210,631–641.

Ekmekci,B.,Sayar,A.,2013.Debrisandconsequencesinmicroelectricdischarge machiningofmicroholes.InternationalJournalofMachineToolsand Manufac-ture65,58–67.

Ekmekci,B.,Sayar,A.,Opoz,T.T.,Erden,A.,2009.Geometryandsurfacedamagein microelectricaldischargemachiningofmicro-holes.JournalofMicromechanics andMicroengineering19,105030.

(12)

Gunawan,S.P.,Mahardika,M.,Hamdi,M.,Wong,Y.S.,Mitsui,K.,2009.Effectof micro-powdersuspensionandultrasonicvibrationofdielectricfluidin micro-EDMprocesses–Taguchiapproach.InternationalJournalofMachineToolsand Manufacture49,1035–1041.

Gunawan,S.P.,Muslim, M.,Hamdi,M.,Wong,Y.S., Mitsui,K.,2011. Accuracy improvementinnanographitepowdersuspendeddielectricfluidformicro elec-tricaldischargemachiningprocesses.TheInternationalJournalofAdvanced ManufacturingTechnology56,143–149.

Jahan,M.,Rahman,M.,Wong,Y.,2010a.Modelling andexperimental investi-gationonthe effectofnanopowder mixeddielectricin micro electrodis-charge machining of tungsten carbide. Proceedings of the Institution of Mechanical Engineers, PartB: Journal EngineeringManufacture 224 (11), 1725–1739.

Jahan,M.,Rahman,M.,Wong,Y.,2010b.Studyonthenano-powder-mixed sink-ingandmillingmicro-EDMofWC–Co.TheInternationalJournalofAdvanced ManufacturingTechnology53,167–180.

Klocke,F.,Zunke,R.,2009.Removalmechanisms inpolishingofsiliconbased advancedceramics.AnnalsoftheCIRP58(1),491–494.

Konig,W.,Dauw,D.,Levy,G.,Panten,U.,1998.EDM-futurestepstowardsthe machiningofceramics.AnnalsoftheCIRP37(2),623–631.

Lauwers,B.,Kruth,J.P.,Liu,W.,Eeraerts,W.,Schacht,B.,Bleys,P.,2004.Investigation ofmaterialremovalmechanisminEDMofcompositeceramicmaterials.Journal ofMaterialsProcessingTechnology149,347–352.

Lee,L.C.,Lim,L.C.,Narayanan,V.,Venkatesh,V.C.,1988.Quantificationofsurface damageoftoolsteelsafterEDM.InternationalJournalofMachineToolsand Manufacture28(4),359–372.

Paramjit, S., Anil,K., Naveen,B., Vijay,K., 2010. Some experimental investi-gation onaluminium powder mixed EDM on machining performanceof hastelloysteel.InternationalJournalofAdvancedEngineeringTechnology1/2, 28–45.

Puertas,I.,Luis,C.J.,2004.Astudyontheelectricaldischargemachiningof conduc-tiveceramics.JournalofMaterialsProcessingTechnology153/154,1033–1038. Soni,J.S.,Chakraverti,G.,1996.Experimentalinvestigationonmigrationofmaterial duringEDMofdiesteel(T215Cr12).JournalofMaterialsProcessingTechnology 56,439–451.

Suyama,S.,Kameda,T.,Itoh,Y.,2003.Developmentofhigh-strength reaction-sinteredsiliconcarbide.DiamondandRelatedMaterials12,1201–1204. Takashi,E.,Takayuki,T.,Kimiyuki,M.,2008.StudyofvibrationassistedmicroEDM

–theeffectofvibrationonmachiningtimeandstabilityofdischarge.Precision Engineering32,269–277.

Tani,T.,Fukuzawa,Y.,Nambu,K.,Mori,N.,2002.MachiningphenomenainEDM ofinsulatingceramicswithpowdermixedoil.JournaloftheJapanSocietyof ElectricalMachiningEngineers36(81),39–46.

Tam,H.Y.,Cheng,H.B.,Wang,Y.W.,2007.Removalrateandsurfaceroughnessin thelappingandpolishingofRB-SiCopticalcomponents.JournalofMaterials ProcessingTechnology192/193,276–280.

Trueman,C.S.,Huddleston,J.,2000.MaterialremovalbyspallingduringEDMof ceramics.JournalofEuropeanCeramicSociety20,1629–1635.

Tzeng,Y.F.,Chen,F.C.,2005.Investigationintosomesurfacecharacteristicsof electri-caldischargemachinedSKD-11usingpowder-suspensiondielectricoil.Journal ofMaterialsProcessingTechnology170,385–391.

Wilhelm,M.,Kornfeld,M.,Wruss,W.,1999.DevelopmentofSiC–Sicompositeswith fine-grainedSiCmicrostructures.JournaloftheEuropeanCeramicSociety19, 2155–2163.

Yan,J.,Zhang,Z.,Kuriyagawa,T.,2009.Mechanismformaterialremovalindiamond turningofreaction-bondedsiliconcarbide.InternationalJournalofMachine ToolsandManufacture49,366–374.

Gambar

Fig. 1. Schematic model for (a) conventional EDM and (b) carbon nanofiber assisted micro EDM.
Table 1
Table 2
Fig. 8. Effect of carbon nanofibers concentration on electrode wear rate.
+7

Referensi

Dokumen terkait

Berdasarkan observasi yang peneliti lakukan kemampuan berbahasa anak masih sangat rendah sehingga peneliti melakukan penelitian tindakan kelas dengan mengambil judul

Berdasarkan data hasil penelitian tindakan kelas tersebut, maka hipotesis yang menyatakan “Diduga dengan menggunakan kegiatan percobaan benda cair dapat meningkatkan

Berdasarkan latar belakang yang dikemukakan di atas, maka peneliti ingin melakukan Penelitian Tindakan Kelas (PTK) yang berjudul “Penerapan Pendekatan Bermain untuk

Hal yang menjadi kajian dalam perencanaan ini adalah bagaimana merencanakan dimensi portal yang aman secara struktur, serta menghitung kebutuhan material yang

dan patuh terhadap regulasi negara yang direpresentasikan melalui tambang korporasi PT Timah, tetapi AT bersama warga menolak kehadiran smelter besar, dan AT

[r]

Percobaan kedua pada penelitian tahun kedua untuk pencegahan gugur buah menggunakan zat pengatur tumbuh (ZPT) (A) dengan waktu pemberian (W) saat pendewasaan

udara yang tidak dapat masuk kembali ke dalam labu erlenmeyer karena adanya uap. cairan yang