• Tidak ada hasil yang ditemukan

The Effects Of Alumina On The Dense Calcium Phosphate Synthesized From Eggshell Waste.

N/A
N/A
Protected

Academic year: 2017

Membagikan "The Effects Of Alumina On The Dense Calcium Phosphate Synthesized From Eggshell Waste."

Copied!
24
0
0

Teks penuh

(1)

Faculty of Manufacturing Engineering

THE EFFECTS OF ALUMINA ON THE DENSE CALCIUM

PHOSPHATE SYNTHESIZED FROM EGGSHELL WASTE

Fatimah Binti Misran

Master of Science in Manufacturing Engineering

(2)

THE EFFECTS OF ALUMINA ON THE DENSE CALCIUM PHOSPHATE SYNTHESIZED FROM EGGSHELL WASTE

FATIMAH BINTI MISRAN

A thesis submitted

in fulfilment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

(3)

DECLARATION

I declare that this thesis entitled “The Effects of Alumina on The Dense Calcium Phosphate Synthesized from Eggshell Waste” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ………...

Name : ……….……..

(4)

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master in Manufacturing Engineering (Materials).

Signature : ………...

Supervisor’s Name : ……….……..

(5)

DEDICATION

(6)

ABSTRACT

(7)

ABSTRAK

Sisa kulit telur telah diproses dan digunakan sebagai bahan pemula untuk sintesis fosfat kalsium (CaP) seperti hydroxyapatite (HA) dan fosfat trikalsium (TCP). Kaedah sintesis secara hidroterma dan mekano-kimia telah digunakan untuk mensintesis hidroksiapatit dan serbuk komposit bioseramik hidroksiapatit-alumina dengan mikrostruktur ultrahalus daripada kedua-dua sisa kulit telur dan pelopor kalsium berkimia untuk membangunkan bioseramik dengan peningkatan sifat mekanik untuk aplikasi perubatan. Meskipun bersifat penarik, bioaktif dan serasi secara biologi, penggunaan CaP adalah terhad kerana kekurangan dari segi kebolehan daya pemprosessan dan kekuatan mekanikal bahan tersebut. Bagi menguatkan matriks CaP,

alumina (Al2O3) yang bersifat nanokristalin dengan pertambahan 15wt.% dan 35wt.%

dicampurkan. CaP dalam komponen yang padat telah disediakan melalui kaedah tekanan ekapaksi dan disinter melaui kaedah pensinteran tanpa tekanan pada atmosfera udara yang pelbagai suhu pembakarannya. Kesan jenis sumber kalsium, keadaan pH semasa sintesis,

penampahan kandungan Al2O3 dan suhu pensinteran terhadap pola fasa dan sifat-sifat mekanik

bioseramik yang disediakan dinilai. Kehadiran fasa-fas HA dan Al2O3 dalam serbuk sinstesis

telah dikenal pasti melalui analisa XRD, FT-IR dan TGA. Namun begitu, fasa perubahan utama yang dikesan dalam komponen padat selepas pensinderan dijalankan ialah TCP. Penilaian terhadap FESEM dan EDX menunjukkan morfologi rod bersaiz nano yang berbentuk sfera konsisten dengan analisa unsur sepadan pada serbuk yang telah disintesiskan. Analisis terhadap SEM digunakan untuk memperhatikan pola morfologi dan ketumpatan komponen bioseramik. Ujian ketumpatan, keliangan, pemampatan, keanjalan, kekerasan mikro dan keliatan patah digunakan untuk memantau ciri-ciri fizikal dan mekanikal. Analisis statistik menggunakan MINITAB juga digunakan untuk merumuskan penilaian mekanikal. Ciri-ciri utama mekanikal dicapai oleh bioseramik padat yang telah disintesis daripada sisa kulit telur sebagai pelopor kalsium pada kondisi pH 9 dan selepas disinter pada suhu 1250 °C. Bagi

mencapai ciri-ciri mekanikal yang lebih baik hanya kuantiti Al2O3 yang kecil diperlukan.

Bacaan tertinggi bagi kekerasan Vickers dan keliangan padat telah diperolehi oleh sampel ES-9-15A-1250 yang disintesis dengan kondisi alkali, 15wt% kandungan alumina dan setelah

disinter pada suhu 1250 °C adalah masing-masing bernilai 4.76 GPa dan 4.12 MPam1/2. Suhu

(8)

ACKNOWLEDGEMENTS

In the name of Allah, the Most Merciful, the Most Compassionate

AlhamdulillahiRabbil’alamin, praises be to Allah SWT, the exclusive Owner of the utmost Glory. As a Muslim, we should express our gratefulness for each and every one of His mercies. He is the absolute Inventor and Designer of everything and nothing can be accomplished without His permission. I hope that this study is blessed with His Guidance and Compassion. Nothing I strive for, except His Pleasures. Peace and blessings are to our beloved prophet, Muhammad (peace be upon him), who has shown us the right path to achieve Allah’s pleasures and rahmah. On a personal note, it gives me great pleasure to record my gratitude to every individual who had assisted and motivated me to struggle to complete this study. First, I would like to mention my supervisors, Assoc. Prof. Dr. Azizah Binti Shaaban and Mrs. Toibah Binti Abdul Rahim for their continuous concern and support. Thank you for every suggestion both of you have made and for every knowledge both of you have shared with me.

Last but not least, my heartiest thanks to the members of my family and in-laws. To my loving husband, Mohd. Farid Bin Ismail, what could I do without your love, care and support. A special appreciation goes to my beloved mother, Dr. Salbiah Binti Seliman who always reminded me on the importance of finishing my work. To my children, Muhammad Al-Fateh and Farihah Mardhiyyah, your cries, kisses and sincere faces have helped me to dissolve my boredom and tiredness in doing this research. To my mother in-law, Siti Hajar Binti Abdul Aziz, I appreciate every technical and spiritual support you gave me. Finally, I wish to thank the lecturers and members of the staff of the Faculty of Manufacturing Engineering, my course seniors and all my colleagues for all the assistance offered to me in order to complete this research.

(9)

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES ix

LIST OF APPENDICES xiv

LIST OF ABBREVIATIONS xv

LIST OF SYMBOLS xviii

LIST OF PUBLICATIONS xix

CHAPTER

1. INTRODUCTION ... 1

1.0 Research Background ... 1

1.1 Problem Statement ... 3

1.2 Research Objectives ... 4

1.3 Scope of Research ... 5

1.4 Thesis Organization ... 5

2. LITERATURE REVIEW ... 7

2.0 Introduction ... 7

2.1 Eggshell Contents ... 7

2.1.1 Eggshell Waste ... 9

2.1.2 Utilization of Eggshells ... 10

2.1.3 Processing of Eggshells ... 12

2.2 Bio-Ceramic Materials ... 13

2.2.1 Biomaterial Classifications ... 13

2.2.2 Calcium Phosphates ... 15

2.2.3 HA and TCP Ceramics ... 18

(10)

2.3 Processing of Calcium Phosphates ... 22

2.3.1 Potentials of Hydrothermal Synthesis ... 25

2.3.2 Hydrothermal Process Parameters ... 25

2.3.3 Powder Characteristics and Forms ... 26

2.4 Dense Calcium Phosphate-based Ceramics ... 27

2.4.1 Load-Bearing Properties ... 28

2.4.2 Reinforced Calcium Phosphate Composites ... 30

2.4.3 Calcium Phosphate-Alumina Systems ... 33

2.4.4 Preparation Methods of Dense Ceramics ... 36

3. METHODOLOGY ... 39

3.0 Introduction ... 39

3.1 Starting Materials ... 40

3.2 Powder Preparation ... 41

3.2.1 Preparation of Eggshell-based Calcium Oxide ... 41

3.2.2 Hydrothermal Synthesis Method ... 42

3.2.3 Mechanochemical Process ... 45

3.3 Design of Experiment ... 47

3.4 Dense CaP-Al2O3 Preparation ... 50

3.4.1 Uniaxial Pressing ... 50

3.4.2 Sintering ... 51

3.5 Material Characterization ... 54

3.5.1 X-ray Diffraction ... 54

3.5.2 Fourier Transformed Infrared Spectroscopy ... 57

3.5.3 Thermal Analysis ... 58

3.5.4 Scanning Electron Microscopy... 58

3.6 Physical and Mechanical Characterization ... 59

3.6.1 Bulk Density ... 60

3.6.2 Apparent Porosity ... 61

3.6.3 Compressive Strength ... 61

3.6.4 Microhardness ... 62

3.6.5 Fracture Toughness ... 64

(11)

4.0 Introduction ... 65

4.1 Characteristics of CaP-Al2O3 Powders ... 65

4.1.1 Preparation of CaP from Eggshells ... 65

4.1.1.1 Thermal Analysis by TG/DTA and DSC ... 66

4.1.1.2 Phase Analysis by XRD ... 72

4.1.1.3 Chemical Analysis by FT-IR... 76

4.1.1.4 Microstructural Analysis by Electron Microscopy ... 80

4.1.2 Synthesis of CaP-Al2O3 Powders ... 89

4.2 Design Analysis of Dense CaP-Al2O3 Pellets ... 101

4.2.1 Plots of Main Effects ... 102

4.2.2 Contour Plots of Mechanical Properties ... 102

4.3 Characterization of CaP-Al2O3 Pellets ... 106

4.3.1 Phase Analysis ... 108

4.3.2 Chemical Analysis ... 115

4.3.3 Microstructural Analysis ... 116

4.5 Physical and Mechanical Properties of CaP-Al2O3 Pellets ... 127

4.5.1 Physical Properties ... 127

4.5.2 Mechanical Strength ... 136

4.5.3 Hardness ... 140

5. CONCLUSIONS AND RECOMMENDATIONS ... 146

5.0 Conclusions ... 146

5.1 Recommendations for Future Research ... 147

REFERENCES ... 149

APPENDIX A ... 172

APPENDIX B ... 186

APPENDIX C ... 189

APPENDIX D ... 192

(12)

LIST OF TABLES

TABLE TITLE PAGE

2.1 Chemical Compositions of the Calcium Phosphate Family 17

2.2 Methods to Generate CaP Powders 24

2.3 Properties of Ceramic Powders 26

2.4 Load-Bearing Properties of Bone Components 29

2.5 Effects of Several CaP Compositional Substitutions 31

2.6 Mechanical Properties of Alumina 34

3.1 Chemical specification of CaO from R&M Chemicals 41

3.2 Ratio of Al2O3 to CaP Powders 46

3.3 Preparation Parameters of The Synthesized CaP Powder Samples 47 3.4 Design of Experiment to Develop CaP-Al2O3 Dense Ceramics 49 3.5 Varied Parameters of The Developed CaP-Al2O3 Dense Ceramics 53 3.6 X-Ray Diffraction Reference Code Numbers of The Phases

Analysed 55

4.1 Changes in Thermal Analysis of CaP powders with Increasing

Temperatures and Probable Phenomena 70

4.2 Crystallization Temperature from DSC Curves 71

4.3 Crystallite Sizes and Degree of Crystallinity of CaP Powders 76 4.4 The Chemical Identification Groups of CaP Structures 77 4.5 Calculated Degree of Crystallinity (Xc) and Relative Intensity

Ratio (RIR) HA to Alumina of The Prepared CaP-ES Samples 92 4.6 Calculated Degree of Crystallinity (Xc) and Relative Intensity

Ratio (RIR) HA to Alumina of The Prepared CaP-CH Samples 94 4.7 Plots of Mean Effects for (1) Degree of Crystallinity, (2)

Crystallite Size and (3) Ca/P Ratio Corresponding to Parameters (a) CaO, (b) pH Levels, (c) Alumina Additions and (d) Sintering Temperature

103

(13)

4.11 SEM Images of CaP-CH-5 Samples with 5000 X Magnification 124 A-1 Various Experimental Methodologies Used for Synthesizing CaP

Powders through Hydrothermal Method 176

A-2 HA Reinforced Composites with Mechanical Properties 181 A-3 Dense CaP-Al2O3 Ceramics with Their Processing Methods and

Mechanical Properties 183

(14)

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 (a) Main Components of Chicken’s Eggs (b) Chicken Eggshells 8 2.2 Relative Reactivity of the Three Generations of Bio-Ceramic

Materials 15

2.3 (a) Detailed Structure of HA Crystals (b) The Unit Cells of HA Projected along C Axis (c) Structural Sketch of HA Crystal of Hexagonal Spaced Group Links

19

2.4 Compact and Spoungy Parts of Bone 21

2.5 Hierarcial Structure of Dense Bone with Scale Magnifications 22 2.6 Current CaP Synthetic (a) CellyardTM HA Dense Pellet and

Scaffold, (b) 3D Implant Scaffold (c) Granulated Bone Graft Fillers, GranuMAS® and (d) CaP Bone Cement

27

2.7 Schematic Diagram of CA Formation, (a) Ca2+ from HA Diffuse into Alumina (b) Ca-Deficient HA becomes TCP when Ca/P Ration Reaches 1.5 and (c) Formation of TCP and CA at The Interface

36

2.8 Illustrations of Sintering Phenomena of Ceramic Materials at Three Stages (a) Particles Before Sintering (b) Neck Formation During Sintering and (c) Pores Disappear After Sintering

38

3.1 Chart of Research Methodology 40

3.2 Graph of Heat Treatments during Calcination of Eggshells 42

3.3 Hydrothermal Process to Synthesize CaP 43

3.4 Graph of Heat Treatment during Calcination of CaP Powders 44 3.5 Flowchart of Hydrothermal Synthesis to Produce CaP Powder 45 3.6 (a) Polyethylene Bottle and Ball Milling Machine used to Mix CaP

and Alumina (b) Cross Sectional Schematic Diagram of Ball Milling Mixing Process

46

3.7 Flow Chart of Dense CaP-Al2O3 Ceramic Development 50 3.8 (a) Uniaxial Pressing Machine with 13 mm Diameter Pellet Mould

(b) Pressed Dense Ceramic Pellet Measured by Digital Calliper 51 3.9 Schematic Drawings of Pressing Process with Stages (a) Powder

(15)

3.10 Sintering Profile of CaP-Al2O3 Dense Ceramics 52 3.11 (a) PANalytical XRD Equipment (b) Schematic Diagram of XRD

Diffratometer 55

3.12 (a) Single Reflection ATR Accessory (b) Schematic Diagram of

FTIR-ATR Reflection System 58

3.13 Sputter Gold Coated Dense Pellet 59

3.14 (a) Universal Testing Machine and Compression Test Apparatus

(b) Schematic Operation of Compression Test 62 3.15 Schematic Diagram of Vicker’s Hardness Indentation Test 63 3.16 (a) Indentation Diagonal Measurements of Sample, d1 (b)

Schematic Image of Measuring Vicker’s Indentation; c1, c2 – Crack Length and d1, d2 – Diagonal Length of Vickers’s Indentation

64

4.1 Processed Eggshells, (a) Cleaned Eggshells, (b) Powdered Eggshells and (c) Calcined Eggshells at 1000°C Producing CaO Powder

66

4.2 TG/DTA Curve for Eggshell (CaCO3) 67

4.3 TGA/DSC Data Curves of Eggshell-Derived CaP Samples (a)

Synthesized at pH 5 and (b) Synthesized at pH 9 69 4.4 TG/DSC Data Curves of Chemical-Derived CaP Samples (a)

Synthesized at pH 5 and (b) Synthesized at pH 9 72 4.5 XRD Patterns Showing Conversion of CaCO3 to CaO (a)

CaCO3-ES, (b) CaO-CaCO3-ES, (c) CaP-ES-5 and (d) CaP-ES-9 74 4.6 XRD Patterns Showing Conversion of Chemical-Based CaO to

HA (a) CaO-CH, (b) CaP-CH-5 and (c) CaP-CH-9 75 4.7 FT-IR Spectra of The Synthesized CaP-ES Samples at (a) pH 5

and (b) pH 9 78

4.8 FT-IR Spectra of Synthesized CaP-CH Samples at (a) pH 5 and (b)

pH 9 79

4.9 SEM-EDX Micrograph of The As-refined CaCO3 Powder From Eggshells at 500 X Magnification Showing (a) Shell and (b) Outer Membrane

82

4.10 SEM Image of CaO Powder From Eggshells at (a) 500 X and (b)

3000 X Magnification and (c) the EDX Analysis (CaO-ES) 83 4.11 SEM-EDX Analysis of Commersial CaO Powder (a) at 500 X

Magnification and (b) the EDX Analysis (CaO-CH) 84 4.12 FESEM Image of Synthesized Eggshell-Derived CaP Powders at

(a) pH 5 and 50k X Magnification with (b) Aspect Ratio of CaP-ES-5 Crystals

85

4.13 FESEM Image of Synthesized Eggshell-Derived CaP Powders at (a) pH 9 and 50k X Magnification with (b) Aspect Ratio of CaP-ES-9 Crystals

(16)

4.14 FESEM Image of Synthesized Eggshell-Derived CaP Powders (a)

CaP-ES- 5, Ca/P = 1.55 (b) CaP-ES-9, Ca/P = 1.48 87 4.15 FESEM Images of Synthesized CaP Powders of (a)

Chemical-based CaO, CaP-CH-9 with 50k X Magnification and (b) Aspect Ratio for CaP-CH-9 Crystals

89

4.16 XRD Patterns of The Synthesized CaP-ES at Two Level pH with

Increasing Alumina; 0wt.%, 15wt.% and 35wt.% Additons 91 4.17 XRD Patterns of The Synthesized CaP-CH at Two pH Level with

Increasing Alumina; 0wt.%, 15wt.% and 35wt.% Additions 93

4.18 IR Spectrum of As-Received Alumina Powder 95

4.19 FT-IR Spectra of Prepared CaP-ES Sample Powders with Alumina

Additions 97

4.20 FT-IR Spectra of Prepared CaP-CH Sample Powders with

Alumina Additions 98

4.21 FESEM Images at Two Magnifications of Prepared CaP Samples with Increasing Alumina Additions (a) 0wt.% (10k), (b) 0wt.% (50k), (c) 15wt.% (10k), (d) 15wt.% (50k), (e) 35wt.% (10k) and (f) 35wt.% (50k)

99

4.22 EDX with SEM Images at 10k X Magnification View for Samples

(a) CaP-ES-5-35A and (b) CaP-ES-9-35A 101

4.23 Countour Plots of The Mechanical Properties Anlayzed as A Function of Alumina Additions and Sintering Temperature, (a) Density, (b) Porosity, (c) Compressive Strength, (d) Elasticity, (e) Vickers Harness and (f) Fracture Toughness

107

4.24 Sintered CaP Pellet with Lighter White Colour (The Left Pellet) 108 4.25 XRD Patterns of CaP-ES-9 Samples ( , α-TCP; , CaO; ,

Calcium Aluminates) 111

4.26 XRD Patterns of CaP-ES-5 Samples ( , α-TCP; , CaO; ,

Calcium Aluminates) 112

4.27 XRD Patterns of CaP-CH-9 Samples ( , α-TCP; , CaO; ,

Calcium Aluminates) 113

4.28 XRD Patterns of CaP-CH-5 Samples ( , α-TCP; , CaO; ,

Calcium Aluminates) 114

4.29 FT-IR Spectrum of CaP-ES Samples with Increasing Alumina

Additions and Sintering Temperature 117

4.30 FT-IR Spectrum of CaP-CH Samples with Increasing Alumina

Additions and Sintering Temperature 118

4.31 SEM-EDX Micrograph of Sample CaP-ES-5-15A 120

4.32 SEM Images of Densification Behavior of Sample CaP-ES-9-15 at Increasing Sintering Temperature (a) 900°C (b) 1050°C and (c) 1250°C

(17)

4.33 SEM Images of Densification Behavior of Sample CaP-CH-9-15 at Increasing Sintering Temperature (a) 900°C (b) 1050°C and (c) 1250°C

126

4.34 Bulk Density for ES-Derived CaP Dense Ceramics, (a) ES-9-0A, (b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f) ES-5-35A

129

4.35 Bulk Density for CH-Derived CaP Dense Ceramics, (a) CH-9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f) CH-5-35A

129

4.36 SEM-EDX Analysis on Sample ES-9-15A-1250 (Density, 3.04

g/cm3) 130

4.37 SEM-EDX Analysis on Sample ES-5-35A-1250 (Density, 2.28

g/cm3) 131

4.38 SEM-EDX Analysis on Sample CH-9-0A-1250 (Density, 3.26

g/cm3) 132

4.39 SEM-EDX Analysis on Sample CH-9-15A-1250 (Density, 2.07

g/cm3) 133

4.40 Porosity for ES-derived CaP Dense Ceramics, (a) ES-9-0A, (b) 9-15A, (c) 9-35A, (d) 5-0A, (e) 5-15A and (f) ES-5-35A

135

4.41 Porosity for CH-derived CaP Dense Ceramics, (a) CH-9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f) CH-5-35A

135

4.42 Compression Strength of derived CaP Dense Ceramics, (a) ES-9-0A, (b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f) ES-5-35A

138

4.43 Compression Strength of CH-derived CaP Dense Ceramics, (a) CH-9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) 0A, (e) CH-5-15A and (f) CH-5-35A

138

4.44 Elastic Modulus of ES-derived CaP Dense Ceramics, (a) ES-9-0A, (b) ES-9-15A, (c) ES-9-35A, (d) ES-5-0A, (e) ES-5-15A and (f) ES-5-35A

139

4.45 Elastic Modulus of CH-derived CaP Dense Ceramics, (a) CH-9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-CH-9-0A, (e) CH-5-15A and (f) CH-5-35A

139

4.46 HV values of ES-derived CaP Dense Ceramics, (a) ES-9-0A, (b) 9-15A, (c) 9-35A, (d) 5-0A, (e) 5-15A and (f) ES-5-35A

141

4.47 HV values of CH-derived CaP Dense Ceramics, (a) CH-9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f) CH-5-35A

141

4.48 Vickers’s Micrograph Indentation Impression Image of A Polished

(18)

900°C (10X Magnification) and (c) Before and (d) After

Indentation of Sample Sintered at 1250°C (50 X Magnification) 4.49 Fracture Toughness of ES-derived CaP Dense Ceramics, (a)

ES-9-0A, (b) ES-9-15A, (c) ES-9-35A, (d) ES-5-ES-9-0A, (e) ES-5-15A and (f) ES-5-35A

145

4.50 Fracture Toughness of derived CaP Dense Ceramics, (a) CH-9-0A, (b) CH-9-15A, (c) CH-9-35A, (d) CH-5-0A, (e) CH-5-15A and (f) CH-5-35A

145

A-1 Ternary Phase Diagram of CaO-P2O5-H2O System Showing The Stability Reagions of CaP Phases – SHAp, Stoichiometric HA; DCP, Dicalcium Phosphate; DCPD, Dicalcium Phosphate Dihydrate and CDHA, Calcium deficient HA

172

A-2 Anhydrous Phase Diagram of CaO-P2O5 Binary System at

(19)

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Literature Searches 172

B Joint Committee on Powder Diffraction Standards (JCPDS) for Hydroxyapatite

186

C Joint Committee on Powder Diffraction Standards (JCPDS) for Alumina

189

D Experimental Results 192

(20)

LIST OF ABBREVIATIONS

BCP - Bi-phasic calcium phosphate

CaP - Calcium phosphate

CH - Commercial chemical

ES - Eggshells

CDHA - Calcium-deficient hydroxyapatite

FA - Fluorapatite

HA - Hydroxyapatite

TCP - Tri-calcium phosphate

(NH4)2HPO4 - Di-ammonium hydrogen phosphate

Al2O3 - Alumina

Ca(NO3)2 - Calcium nitrate Ca(OH)2 - Calcium hydroxide CaCO3 - Calcium carbonate

CaO - Calcium oxide

CaTiO3 - Calcium titanate CH3COOH - Acetic acid

CO2 - Carbon dioxide

CO3 - Carbonate

HPO4 - Hydrogen phosphate

MgO - Magnesium oxide

NH4H2PO4 - Ammonium di-hydrogen phosphate

NH4OH - Ammonium solution

(21)

PO43- - Phosphate ion

Ca/P - Calcium to phosphate ion molar ratio RIR - Relative intensity ratio

FWHM - Full width at half maximum TC - Crystallization temperature TG - Glass transition temperature

TM - Melting temperature

XC - Degree of crystallization

XS - Crystallite size

E - Elasticity

FS - Flexural strength

HV - Vickers’s hardness

KIC - Fracture toughness indentation

TS - Tensile Strength

ATR - Attenuated Total Refractance DSC - Differential Scanning Calorimetry EDX - Energy Dispersive X-Ray

FESEM - Field Emission Scanning Electron Microscopy FT-IR - Fourier Transformed Infrared

SEM - Scanning Electron Microscopy

TG/DTA - Thermo-gravinomety and Differential Thermal Analyser

XRD - X-Ray Diffraction

MINITAB - Minitab Statistical Software

(22)

3D - Three dimensions

NA - Not available

(23)

LIST OF SYMBOLS

% - Percentage

a Rupture Strength

Å - Angstrom

Dia. - Diameter

h - Hour

K - Scherer’s constant = 0.94

min - Minute

L Length

n - Order of reflection

º - Degree

ºC/min - Degree Celsius per minute

pH - Measurement of the acidity or basicity rpm - Revolution per minute

kgf - Kilogram force

T - Temperature

V - Valley between peaks

wt. % - Weight percentage

X - Times magnification

α - Alpha crystal polymorph

β - Beta crystal polymorph

θ - Angle of diffraction

(24)

LIST OF PUBLICATIONS

YEAR JOURNALS

2013 Misran, F., Shaaban, A., and Rahim, T. A., 2013. Synthesis and Characterization of Hydroxyapatite-Alumina Powders from Waste Egg Shells. Sains Malaysiana. (In Review).

Fatimah, M., Azizah, S., Seliman, S. and Rahim, T. A., 2013. Calcium Phosphate From Waste Animal Bones - Phase Identification Analysis. International Journal of Mechanical and Materials Engineering. (In Review).

CONFERENCE PAPERS

2012 Rahim, T. A, Hamid, R. A, Misran, F., Mahamood, M. A., Shamsuri, S. R., 2012. Preparation of Porous Hydroxyapatite from Animal Bones via Polymeric Sponge Method. In: Faculty of Manufacturing Engineering UTeM, Proceedings of International Conference on Design and Concurrent Engineering, Melaka, Malaysia, 15-16 October 2012. Penerbit UTeM. Toibah, A. R., Fatimah, M., Siti-Sainillah, S., Mohammad-Ikmal, M., Mazlin-Aida, M. and Shaaban, A., 2012. Calcium Phosphate Ceramics Prepared from Natural Waste Materials. In: Faculty of Industrial Science and Technology UMP, Proceedings of International Conference of Nanotechnology, Pahang, Malaysia, 30 May – 1 June 2012

Fatimah, M., Shaaban, A., Toibah, A. R. and Seliman, S., 2012. Overview: Process Parameters for Hydrothermal Synthesis of Hydroxyapatite. In: Faculty of Mechanical Engineering UTeM, Proceedings of the 3rd

International Conference on Engineering and ICT, Melaka, Malaysia, 4-6 April 2012. Penerbit UTeM.

2011 Fatimah, M., Shaaban, A., Toibah, A. R. and Seliman, S., 2011. Hydroxyapatite-alumina Powder Synthesized through Hydrothermal Method. In: AKEPT, Proceedings of the 1st Annual Young Research

Conference, Kuala Lumpur, Malaysia, 19-20 December 2011. AWARDS

Referensi

Dokumen terkait

Cambang ( lanjutan ) Kabupaten Tanjung Jabung Timur Tahun Anggaran 2014, untuk Paket Pekerjaan tersebut diatas telah dilaksanakan Pembukaan Penawaran pada Tanggal 09 Juni 2014,

Penyedia Jasa yang lulus atau masuk dalam Daftar Pendek Konsultan di atas adalah Penyedia jasa yang mempunyai nilai Kualifikasi 4 (empat) terbaik berdasarkan penilaian Kualifikasi dan

setiap personil De Oemar Bakrie dalam lagu longlife keroncong serta keunikan yang.. terdapat didalam lagu

KREATIVITAS ORKES KERONCONG MODERN DE OEMAR BAKRIE DALAM LAGU LONGLIFE KERONCONG.. Universitas Pendidikan Indonesia | repository.upi.edu

kepada Abul-Qasim (Rasulullah shallallaahu ‘alaihi wasallam). Dengan demikian, tidak sepatutnya bagi seorang muslim untuk mendahului untuk berpuasa sebelum bulan Ramadlan, sehari

Catatan : Agar membawa dokumen perusahaan asli sesuai dalam isian kualifikasi serta menyerahkan rekaman/copy-nyaM. Demikian undangan dari kami dan atas perhatiannya

keliling dalam mengerjakan soal” sehingga subyek SIS dapat menjelaskan rencana – rencananya dalam merencanakan pemecahan masalah, merencanakan dengan menggunakan konsep

[r]