Log Mining Noc Metrasat Bogor Untuk Manajemen Bandwidth Dan Evaluasi Karyawan.

34 

Teks penuh

(1)

LOG MINING NOC METRASAT BOGOR UNTUK MANAJEMEN

BANDWIDTH DAN EVALUASI KARYAWAN

ARIEF KURNIAWAN

DEPARTEMEN ILMU KOMPUTER

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

(2)
(3)

PERNYATAAN MENGENAI SKRIPSI DAN

SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA

Dengan ini saya menyatakan bahwa skripsi berjudul Log Mining NOC Metrasat Bogor untuk Manajemen Bandwidth dan Evaluasi Karyawan adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apapun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor.

(4)

ABSTRAK

ARIEF KURNIAWAN. Log Mining NOC Metrasat Bogor untuk Manajemen Bandwidth dan Evaluasi Karyawan. Dibimbing oleh HERU SUKOCO.

Ruang network operation center (NOC) Metrasat Bogor merupakan pusat pemantauan jaringan Metrasat. Fungsi ruang NOC ialah memantau seluruh jaringan dalam bisnis Metrasat, melakukan pemeliharaan jaringan, dan berkomunikasi dengan pelanggan via pertemuan langsung ataupun online. Untuk mengetahui penggunaan jaringan pada ruang NOC sudah optimal, perlu dilakukan pengamatan pada seluruh paket jaringan yang digunakan. Dengan menggunakan aplikasi network packet analyzer yaitu Wireshark, penggunaan jaringan tersebut dapat diketahui lalu dijadikan masukan untuk proses data mining menggunakan algoritme clustering k-means. Hasil dari clustering tersebut dianalisis untuk menghasilkan suatu model yang dapat digunakan sebagai acuan manajemen bandwidth pada ruang NOC dan sebagai bahan evaluasi kinerja karyawan apakah sudah optimal sebagaimana fungsinya. Penelitian ini menunjukkan bahwa karakteristik pengguna dari setiap kategori pengguna sesuai dengan tugas pokoknya. Pengalokasian bandwidth untuk operational division sebesar 55%, mobile user sebesar 30%, dan operational monitoring sebesar 15%.

Kata kunci: analisis jaringan, clustering, data mining, k-means, manajemen bandwidth, Wireshark.

The network operation center (NOC) room at Metrasat Bogor is a central of network monitoring. The function of NOC room is monitoring the entire network in Metrasat business, performing network maintenance, and communicating with customers via offline or online meetings. In order to determine whether the network usage is optimal, an observation needs to be done on the entire network traffic that is used. By using a network packet analyzer application, Wireshark, we can determine network usage and use it as an input for data mining using k-means clustering algorithm. The result of clustering is analyzed to produce a model that can be used as a reference for the network bandwidth management in the NOC room and performance evaluation for optimal function. This study showed that the characteristics of each category users according to their main tasks. The allocation of bandwidth is for operational division at 55%, mobile users at 30%, and operational monitoring at 15%.

(5)

Skripsi

sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer

pada

Departemen Ilmu Komputer

LOG MINING NOC METRASAT BOGOR UNTUK MANAJEMEN

BANDWIDTH DAN EVALUASI KARYAWAN

ARIEF KURNIAWAN

DEPARTEMEN ILMU KOMPUTER

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

(6)

Penguji:

1 Dr Ir Sri Wahjuni, MT

(7)

Judul Skripsi : Log Mining NOC Metrasat Bogor untuk Manajemen Bandwidth dan Evaluasi Karyawan

Nama : Arief Kurniawan

NIM : G64124012

Disetujui oleh

DrEng Heru Sukoco, SSi MT Pembimbing

Diketahui oleh

Dr Ir Agus Buono, MSi MKom Ketua Departemen

(8)

PRAKATA

Puji dan syukur penulis panjatkan kepada Allah subhanahu wa ta’ala atas segala karunia-Nya sehingga karya ilmiah ini berhasil diselesaikan. Tema yang dipilih dalam penelitian yang dilaksanakan dengan judul Log Mining NOC Metrasat Bogor untuk Manajemen Bandwidth dan Evaluasi Karyawan.

Penulis mengucapkan terima kepada:

1 Mama, Papa, dan Kakak yang telah memberikan doa serta dukungan moral sehingga karya ilmiah ini dapat terselesaikan.

2 Bapak DrEng Heru Sukoco, SSi MT selaku pembimbing, Ibu Dr Ir Sri Wahjuni, MT, dan Bapak Auriza Rahmad Akbar, SKomp MKom selaku penguji yang telah memberikan banyak saran pada karya ilmiah ini.

3 Bapak Nugroho Wibisono selaku Manager VSAT IP dan Datacom di Metrasat, dan Bapak Imam Santoso selaku Senior Engineer Datacom yang telah membantu dalam pengambilan data.

4 Teman-teman Ilkom Alih Jenis Angkatan 7 atas segala bantuan yang diberikan. Semoga karya ilmiah ini bermanfaat.

(9)

DAFTAR ISI

Ruang Lingkup Penelitian 2

METODE 2

Analisis Lingkungan Jaringan 3

Pengkarakterisasian Beban Kerja 3

Pengamatan dan Pengambilan Paket Jaringan 3

Pengolahan Paket Jaringan 4

Analisis Paket Jaringan 5

Perancangan Manajemen Bandwidth 5

Evaluasi Kinerja Karyawan 6

HASIL DAN PEMBAHASAN 6

Analisis Lingkungan Jaringan 6

Pengkarakterisasian Beban Kerja 7

Pengamatan dan Pengambilan Paket Jaringan 8

Pengolahan Paket Jaringan 8

Analisis Paket Jaringan 10

Perancangan Manajemen Bandwidth 13

Evaluasi Kinerja Karyawan 14

SIMPULAN DAN SARAN 14

Simpulan 14

Saran 14

DAFTAR PUSTAKA 15

(10)

DAFTAR TABEL

1 Perangkat lunak di ruang NOC 7

2 Pengalamatan IP 7

3 Lingkungan pengembangan 7

4 Protokol aplikasi yang digunakan 8

5 Kategori protokol aplikasi 9

6 Kategori pengguna 9

7 Anggota cluster 10

8 Jumlah koneksi seluruh cluster 13

DAFTAR GAMBAR

1 Metode penelitian 2

2 Cisco SPAN (Cisco Systems 2003) 4

3 Topologi jaringan Metrasat 6

4 Penempatan sniffer pada switch 8

5 Sum of squared error 10

6 Penggunaan aplikasi web 11

7 Penggunaan aplikasi web secure 11

8 Penggunaan aplikasi monitoring 11

9 Penggunaan aplikasi mail 12

10 Penggunaan aplikasi remote access 12

11 Penggunaan aplikasi messaging 12

12 Model HTB 13

DAFTAR LAMPIRAN

1 Kriteria HTTP 17

2 Kriteria filter pada Wireshark 17

3 Lalu lintas paket jaringan 18

4 Pengambilan paket jaringan menggunakan Wireshark 19

5 Hasil pengambilan paket jaringan 20

6 Hasil filtering 21

(11)

PENDAHULUAN

Latar Belakang

Jaringan komputer merupakan sekumpulan komputer yang saling terkoneksi

melalui suatu medium bisa berupa kabel (wire) atau berupa sinyal elektromagnetik

(wireless) dan network devices (hub, switch, router, dan lain-lain). Melalui jaringan komputer, pengguna bisa saling berhubungan dan menemukan berbagai informasi. Meningkatnya kebutuhan akan informasi mendorong peningkatan teknologi komunikasi data jaringan komputer, yang dituntut memberikan kemudahan akses dan kecepatan untuk mendapatkan informasi.

Indonesia adalah negara kepulauan di Asia Tenggara yang memiliki 13 487 pulau besar dan kecil, sekitar 6000 di antaranya tidak berpenghuni. Dengan kondisi ini, banyak pihak yang memerlukan suatu media komunikasi yang dapat mengatasi

keadaan tersebut. Media komunikasi menggunakan satelit yaitu very small aperture

terminal (VSAT) dapat mengatasi keadaan tersebut.

Metrasat merupakan salah satu perusahaan penyedia layanan VSAT. Sampai

tahun 2014, Metrasat sudah memiliki remote lebih dari empat belas ribu titik yang

tersebar di seluruh Indonesia dan terus bertambah (Metrasat 2015). Sebagian besar pelanggan Metrasat merupakan perusahaan–perusahaan besar yang bergerak di bidang perbankan, pertambangan, perkebunan, dinas pemerintahan, dan lain lain. Untuk melakukan pemeliharaan jaringan yang disediakan kepada semua pelanggan,

divisi operation and maintenance (OM) Metrasat memiliki ruang network

operations center (NOC) yang bertempat di Kota Bogor. Berikut fungsi-fungsi dari ruang NOC:

- pemantauan seluruh jaringan dalam bisnis Metrasat, - pemeliharaan jaringan,

- komunikasi dengan pelanggan via meeting langsung ataupun online.

Dengan fungsi-fungsi tersebut, ruang NOC harus memiliki jaringan yang

menunjang. Maka diperlukan kebijakan manajemen bandwidth agar penggunaan

jaringan dapat optimal dan kinerja para karyawan harus dievaluasi apakah sudah benar sesuai dengan tugas pokok dan fungsinya.

Untuk menganalisis penggunaan layanan suatu jaringan internet dapat berdasarkan pada protokol–protokol aplikasi. Aplikasi Wireshark dapat digunakan

untuk meng-capture dan menganalisis suatu jaringan. Hasil dari analisis tersebut

dapat digunakan untuk memperoleh tingkat utilisasi kinerja (Sianipar 2012). Data

mining dengan algoritme clustering menggunakan metode k-means dapat

mengetahui karakteristik pengguna jaringan berdasar cluster yang diperoleh, dan

hasilnya dapat dijadikan rekomendasi model kebijakan manajemen bandwidth

(Pariwono 2014).

Perumusan Masalah

Perumusan masalah pada penelitian ini adalah bagaimana memperoleh pengetahuan tentang karakteristik penggunaan jaringan pada ruang NOC Metrasat Bogor. Pengetahuan tersebut nantinya digunakan untuk merancang model

(12)

2

Tujuan Penelitian

Tujuan dari penelitian ini adalah: 1 Mengetahui karakteristik pengguna.

2 Melakukan clustering menggunakan algoritme k-means pada paket jaringan yang diperoleh dari aplikasi Wireshark.

3 Merekomendasikan model kebijakan manajemen bandwidth.

4 Mengevaluasi kinerja karyawan apakah sudah sesuai dengan tugas pokok dan fungsinya.

Manfaat Penelitian

Hasil dari penelitian ini diharapkan dapat memberikan gambaran tentang karakteristik penggunaan jaringan oleh karyawan di ruang NOC Metrasat Bogor, sehingga dapat dijadikan bahan pertimbangan dalam perancangan manajemen

bandwidth dan sebagai bahan evaluasi kinerja karyawan apakah sudah sesuai dengan tugas pokok dan fungsinya masing-masing.

Ruang Lingkup Penelitian

Ruang lingkup pada penelitian ini adalah:

1 Penelitian dilakukan pada jaringan ruang NOC Metrasat Bogor.

2 Data yang digunakan adalah paket jaringan yang diperoleh menggunakan aplikasi Wireshark.

3 Identifikasi pengguna dilakukan berdasarkan alamat IP.

4 Clustering menggunakan k-means dilakukan berdasarkan pada sesi koneksi. 5 Perancangan kebijakan dilakukan berdasarkan hasil analisis clustering. 6 Evaluasi kinerja karyawan berdasarkan hasil analisis clustering.

METODE

Penelitian ini dilakukan melalui beberapa tahapan proses. Pada Gambar 1 menunjukkan tahapan yang dilakukan dalam penelitian ini.

(13)

3

Analisis Lingkungan Jaringan

Untuk dapat memperoleh kinerja jaringan yang representatif, maka diperlukan pengetahuan mengenai lingkungan jaringan ruang NOC Metrasat Bogor. Pengetahuan yang diperlukan meliputi:

1 Topologi jaringan dan perangkat keras yang menyusun jaringan tersebut. 2 Perangkat lunak yang digunakan oleh pengguna.

3 Konektivitas jaringan yang meliputi teknologi jaringan yang digunakan dan segmen-segmen LAN.

Hal ini penting karena dapat digunakan sebagai dasar analisis paket jaringan, identifikasi segmen alamat IP, dan penempatan perangkat yang dijadikan tolak ukur (measurement meter).

Pengkarakterisasian Beban Kerja

Menurut Menasce dan Almeida (2002) pengkarakterisasian beban kerja adalah suatu proses yang secara rinci mendeskripsikan beban kerja dari suatu sistem secara keseluruhan. Beban kerja ini selanjutnya dapat didekomposisi menjadi komponen-komponen kerja yang lebih kecil.

Karateristik beban kerja dibagi menjadi:

1 Parameter intensitas beban kerja yang menyediakan suatu pengukuran beban kerja pada sistem.

2 Parameter permintaan service pada beban kerja yaitu menspesifikasikan total waktu service yang dibutuhkan oleh komponen utama pada masing-masing sumber daya.

Pengamatan dan Pengambilan Paket Jaringan

Pada tahap ini dilakukan pengamatan selama satu minggu dengan lama satu jam setiap harinya pada jaringan ruang NOC untuk menentukan kapan waktu pada

jaringan tersebut mengalami busy hour. Berdasarkan dokumen ITU-T E.600, busy

hour adalah suatu waktu yang berkelanjutan selama satu jam penuh dalam interval

yang memiliki jumlah paket jaringan paling besar.

Penentuan busy hour didapatkan dengan metode average daily peak hour

(ADPH). ADPH adalah metode pengukuran paket jaringan yang menentukan jam

tersibuk yang berbeda-beda untuk setiap harinya (different time for different days),

lalu dirata-ratakan selama periode pengamatan. Untuk menentukan busy hour dapat

menggunakan Persamaan 1 (ITU-T E.600),

∝ADPH= N1 ∑max∆∝n(∆)

N

n=1

(1)

Keterangan:

- ∝ADPHadalah rata-rata jam tersibuk tiap harinya.

- N adalah jumlah hari selama pengamatan dilakukan (contoh N=30)

- ∝ ∆ adalah jumlah rata-rata paket jaringan yang diukur selama selang satu jam pada hari ke-n.

(14)

4

Pengambilan paket jaringan selama satu bulan dilakukan pada hari kerja, karena saat hari kerja jumlah paket data yang digunakan paling besar. Pengambilan

paket jaringan tersebut dilakukan menggunakan switched port analyzer (SPAN),

aliran data jaringan pada perangkat Cisco Catalyst akan disalin ke komputer yang

sudah dipasang aplikasi network analyzer. SPAN digunakan untuk menyalin paket

jaringan yang mengalir dari suatu port ke port yang lain (Cisco Systems 2003).

Pada Gambar 2 menunjukkan seluruh paket jaringan pada port 4 (sumber)

di-mirror ke port 8 (tujuan). Sebuah network analyzer pada port 8 menerima semua

paket jaringan dari port 4 tanpa secara fisik terpasang pada port 8.

Gambar 2 Cisco SPAN (Cisco Systems 2003)

Aplikasi network analyzer yang digunakan pada penelitian ini adalah

Wireshark. Wireshark merupakan aplikasi penganalisis paket jaringan (network

packet analyzer) yang dapat mengambil paket jaringan dan melihat serinci mungkin

paket jaringan tersebut (Lamping et al. 2014).

Pengolahan Paket Jaringan

Praproses

Sebelum paket jaringan dapat digunakan sebagai masukan untuk algoritme

data mining, terlebih dahulu dilakukan proposes. Praposes dilakuakan untuk membersihkan data yang tidak diperlukan dan membuat data tersebut siap

digunakan pada algoritme data mining. Praposes yang dilakukan terdiri atas

beberapa tahapan:

1 Penentukan protokol aplikasi: tahap ini dilakukan penentuan protokol-protokol aplikasi yang digunakan pada jaringan ruang NOC Bogor. Protokol aplikasi dipilih merupakan protokol aplikasi yang menunjang kinerja operasional Metrasat.

2 Pembersihan data: tahap ini dilakukan pembersihan data memanfaatkan fitur filtering dari Wireshark, kriteria filtering sendiri diambil dari protokol-protokol yang didapatkan dari tahapan sebelumnya. Khusus aplikasi web yang menggunakan protokol HTTP, kriteria pembersihan datanya berdasarkan pada Lampiran 1. String kriteria filtering pada Wireshark dapat dilihat pada Lampiran 2.

3 Kategorisasi protokol aplikasi: tahap ini dilakukan kategorisasi terhadap protokol aplikasi yang ditentukan pada tahap sebelumnya, pengkategorisasi protokol didapatkan dari keterkaitan fungsi antar protokol.

(15)

5 5 Parsing paket jaringan: tahap ini dilakukan parsing paket jaringan hasil filtering pada tahap 2. Paket-paket jaringan tersebut dirubah menjadi sesi koneksi. Suatu paket dianggap sama sesinya dengan paket lain apabila jarak waktu antar paket tersebut kurang dari 10 menit (Chitraa dan Thamani 2012). Sesi koneksi aplikasi monitoring (SNMP) berdurasi antara 10 menit sampai dengan 20 menit, dan untuk sesi koneksi aplikasi lainnya berdurasi antara 5 sampai dengan 15 menit. Hasil yang diperoleh dari parsing ini adalah fail CSV yang berisi kategori pengguna dan kategori protokol aplikasi.

Setelah tahapan praproes selesai maka akan diperoleh sebuah fail yang berisi sesi-sesi koneksi pada seluruh pengambilan data. Format dari fail hasil praproses adalah kategori pengguna dan kategori protokol aplikasi.

Data mining

Tahapan selanjutnya adalah menerapkan data yang diperoleh pada tahapan

sebelumnya pada algoritme clustering k-means. Clustering dengan algoritme

k-means dilakukan memanfaatkan perangkat lunak Weka 3.6. Algoritme k-k-means adalah sebagai berikut (Han dan Kamber 2006):

1 Tentukan jumlah cluster yang diinginkan (jumlah k) beserta dengan titik pusat cluster (centroid)

2 Lakukan perulangan (3-4):

3 Masukan objek ke cluster dengan centroid terdekat.

4 Perbaharui nilai centroid setiap cluster berdasarkan rata-rata setiap objek pada cluster tersebut.

5 Lakukan sampai tidak ada perubahan

Perhitungan jarak antara objek dan titik pusat cluster untuk data non-numerik dapat menggunakan Hamming distance dan Levenshtein distance. Hamming distance mengukur jarak antara dua string yang ukurannya sama dengan

membandingkan simbol-simbol yang terdapat pada kedua string pada posisi yang

sama. Levenshtein distance mengukur jarak antara dua string yang ukurannya tidak

sama dengan menghitung jumlah pengoperasian yang perlu dilakukan untuk

mengubah string yang satu menjadi string yang kedua yang diperbandingkan.

Pengoperasian yang dilakukan termasuk operasi insert, delete, dan substitusi

Analisis Paket Jaringan

Pada tahapan ini dilakukan analisis terhadap setiap cluster yang didapat pada

tahapan sebelumnya. Analisis ini dilakukan untuk melihat karakteristik cluster.

Cluster akan dikelompokkan sesuai dengan kategori protokol aplikasi yang digunakan. Hasil analisis ini dijadikan sebagai dasar dalam menentukan

rekomendasi kebijakan manajemen bandwidth dan bahan evaluasi kinerja

karyawan.

Perancangan Manajemen Bandwidth

Pada tahapan ini dilakukan perancangan kebijakan manajemen bandwidth

dengan menggunakan algoritme hierarchical token bucket (HTB). HTB

direpresentasikan dalam bentuk hirarki (Brown 2006). Hirarki HTB terdiri atas root,

inner class, dan leaf. Pembatasan traffic (shaping) terjadi pada leaf class,

(16)

6

Pembagian bandwidth pada leaf class menggunakan Persamaan 2 (Pariwono 2014).

persentase claster n

∑persentase interior dari claster n × alokasi bandwidth interior class (2)

Evaluasi Kinerja Karyawan

Pada tahapan ini dilakukan evaluasi terhadap kinerja karyawan dengan berdasar pada tugas pokok dan fungsi karyawan yang terdapat pada pengkarakterisasian beban kerja. Pada setiap cluster hasil dari proses data mining akan dievaluasi apakah sudah sesuai dari tugas pokoknya. Selain karyawan, evaluasi juga dilakukan kepada monitoringtools yang berfungsi untuk memantau jaringan Metrasat secara keseluruhan.

HASIL DAN PEMBAHASAN

Analisis Lingkungan Jaringan

Data dokumentasi infrastruktur jaringan Metrasat Bogor didapatkan dari staf IT jaringan Metrasat Bogor, data tersebut digunakan untuk membantu memahami paket jaringan yang diperoleh. Pada Gambar 3 memperlihatkan topologi dari jaringan Metrasat.

Gambar 3 Topologi jaringan Metrasat

Jenis jaringan pada ruang NOC terdiri atas wired dan wireless. Pada jaringan

(17)

7

karyawan dan 7 buah PC monitoring dengan 17 layar yang dihidupkan terus

menerus sebagai pemantau jaringan. Pada jaringan wireless disediakan 2 SSID

yaitu RUANGNOC untuk para karyawan dan TAMU untuk para tamu.

Daftar perangkat lunak yang digunakan pada laptop karyawan, PC client, dan

PC monitoring di ruang NOC dapat dilihat pada Tabel 1 dan untuk pengalamatan IP dapat dilihat pada Tabel 2.

Tabel 1 Perangkat lunak di ruang NOC

Jenis Nama

Sistem Operasi Windows 7, Windows 8, Windows Server, CentOS

Web Browser Internet Explorer, Google Chrome, Mozilla Firefox

Messanging Yahoo Messanger, LINE

Email Mozilla Thunderbird, Ms Outlook

Montoring SNMP Traffic Grapher (STG), PRTG Network Monitor

Tabel 2 Pengalamatan IP

Alamat IP Jenis perangkat

10.80.253.0/24 Server dan PC monitoring

10.99.226.0/24 PC client dan laptop karyawan yang menggunakan Wifi

RUANGNOC

10.95.225.0/24 Laptop karyawan yang menggunakan Wifi TAMU

Lingkungan Pengembangan

Penelitian ini diimplementasikan menggunakan spesifikasi perangkat keras dan perangkat lunak yang dapat dilihat pada Tabel 3.

Tabel 3 Lingkungan pengembangan Perangkat keras laptop Perangkat lunak

- Prosesor Intel Core i3 - RAM 8 GB

Pengkarakteristikan beban kerja pada penelitian ini meliputi: 1 Komposisi protokol jaringan yang digunakan.

2 Algoritme data mining menggunakan teknik clustering pada penggunaan jaringan berdasarkan sesi koneksi.

3 Pemodelan rancangan manajemen bandwidth yang berdasarkan hasil dari algoritme data mining.

(18)

8

Pengamatan dan Pengambilan Paket Jaringan

Pada tahapan ini diketahui bahwa terdapat jaringan ruang NOC terhubung

dengan jaringan internal Metrasat menggunakan sebuah router. Pada sisi jaringan

ruang NOC, router tersebut terhubung dengan switch Catalyst Cisco. Pada Gambar

4, port 1 pada switch ruang NOC terhubung dengan router ruang NOC. Pada port

1 ditanamkan konfigurasi SPAN agar setiap paket data yang mengalir pada port

tersebut disalin ke port 15 yang sudah disambungkan ke PC dan terpasang aplikasi

Wireshark untuk meng-capture setiap paket jaringan.

Gambar 4 Penempatan sniffer pada switch

Dilakukan pengamatan pada satu minggu (5 hari kerja) sebelum pengambilan paket jaringan. Dengan menggunakan metode ADPH didapatkan selang waktu untuk pengambilan paket jaringan yaitu pada jam 10:00-11:00. Grafik lalu lintas paket jaringan hasil pengamatan dapat dilihat pada Lampiran 3.

Pada tanggal 7 November 2014 sampai 15 Desember 2014, dilakukan pengambilan paket jaringan sebanyak 24 kali yang disimpan pada fail Wireshark yang berformat .pcapng. Langkah-langkah pengambilan paket jaringan menggunakan Wireshark dapat dilihat pada Lampiran 4. Pengambilan paket jaringan hanya diambil antara hari senin sampai jumat karena kegiatan operasional paling sibuk pada hari-hari tersebut. Pada Lampiran 5 memperlihatkan hasil pengambilan paket jaringan.

Pengolahan Paket Jaringan

Praproses

1 Penentuan protokol aplikasi: sesuai fungsi dari ruang NOC, maka protokol aplikasi yang digunakan ditunjukkan pada Tabel 4.

Tabel 4 Protokol aplikasi yang digunakan

Fungsi Protokol aplikasi

Pusat monitoring HTTP, HTTPS, DNS, SNMP

Pemeliharaan jaringan HTTP, HTTPS, DNS, Telnet, FTP, SSH, VNC, RPC, DCERPC, YMSG

Komunikasi dengan pelanggan HTTPS, DNS, POP, SMTP, YMSG

(19)

comma-9 separated values (CSV). Pada Lampiran 6 memperlihatkan hasil filtering menggunakan Wireshark.

3 Penentuan kategori protokol aplikasi: protokol-protokol aplikasi hasil dari filtering kemudian dikelompokan ke dalam kategori yang saling berkaitan fungsinya. Pengelompokan kategori protokol aplikasinya dapat dilihat pada Tabel 5.

Tabel 5 Kategori protokol aplikasi Kategori aplikasi Protokol aplikasi

Web HTTP, DNS

4 Penentuan kategori pengguna: sesuai dengan dokumentasi jaringan pada ruang NOC, pengalamatan IP terbagi 3 alamat IP. Kategori pengguna yang berdasarkan pada 3 alamat IP tersebut dapat dilihat pada Tabel 6.

Tabel 6 Kategori pengguna

Kategori pengguna Alamat IP

Operational monitoring (OM) 10.80.253.0/24

Operational divison (OD) 10.99.226.0/24

Mobile user (MU) 10.95.225.0/24

5 Parsing paket jaringan: seluruh fail CSV hasil dari tahap 2 di-parsing dengan mengimplementasikan ketegori protokol aplikasi dari tahap 3 dan kategori pengguna dari tahap 4 menggunakan PHP untuk menentukan sesi koneksi tiap pengguna.

Hasil dari praposes adalah sebuah fail CSV yang berisikan ketegori pengguna dan kategori protokol aplikasi per sesi koneksi. Fail CSV tersebut berukuran 1.29 MB dengan jumlah baris sebanyak 48 078.

Data Mining

Pada tahapan data mining dilakukan clustering memanfaatkan aplikasi Weka

dengan fail CSV hasil pra proses sebagai data masukkanannya. Algoritme

clustering yang digunakan adalah simple k-means dengan distance function

menggunakan Euclidean distance untuk data numerik dan Hamming distance untuk

data kategorik (Dong dan Bailey 2013). Penentuan jumlah cluster dilakukan dengan

memperhatikan nilai sum of squared error (SSE). Hasil yang ideal adalah dengan

jumlah k yang sekecil mungkin didapatkan SSE yang sekecil mungkin. Semakin

kecil nilai k maka cluster yang dianalisis akan semakin sedikit, sedangkan nilai SSE

menandakan kedekatan setiap objek ke centroid pada cluster masing-masing.

Semakin kecil nilai SSE maka semakin mirip setiap objek pada cluster tersebut.

Langkah-langkah data mining clustering menggunakan algoritme k-means

(20)

10

Perbandingan jumlah k dengan nilai SSE ditunjukan pada Gambar 5.

Gambar 5 Sum of squared error

Anggota dari setiap cluster ditunjukan pada Tabel 7. Pada algoritme k-means

nilai centroid merupakan nilai rata-rata dari setiap cluster.

Tabel 7 Anggota cluster

Cluster Kategori pengguna Kategori aplikasi 0 Operational divison Web

1 Operational divison Web secure 2 Mobile user Web secure, mail 3 Operational divison Messaging 4 Operational monitoring Web 5 Operational divison Monitoring 6 Operational monitoring Monitoring 7 Operational divison Remote access

8 Mobile user Web

9 Mobile user Messaging 10 Operational monitoring Web secure 11 Operational monitoring Remote access 12 Mobile user Monitoring 13 Mobile user Remote access 14 Operational divison Mail

Analisis Paket Jaringan

Hasil dari proses data mining menggunakan teknik clustering algoritme

k-means menunjukkan untuk penggunaan aplikasi web paling banyak pada cluster 0

sebesar 13 976 sesi koneksi pada pengguna operational division. Jumlah

penggunaannya jauh melebihi kategori pengguna lainnya pada cluster 4 dan cluster

8. Hal ini terjadi karena kebanyakan tools yang berbasis protokol HTTP digunakan

sebagai aktifitas bekerja oleh operational division. Gambar 6 menunjukkan

penggunaan aplikasi web.

(21)

11

Gambar 6 Penggunaan aplikasi web

Pada penggunaan aplikasi websecure, jumlah pengguna paling banyak pada

cluster 1 yaitu operational division dibandingan kategori pengguna lainnya pada

cluster 2 dan cluster 10. Jumlah sesi koneksi yang terdapat pada cluster 10 sedikit

sekali, hanya sebanyak 215 sesi koneksi. Hal ini menunjukkan operational

monitoring yang terdapat pada cluster 10 kurang menggunakan aplikasi ini.

Aplikasi websecure ini biasa digunakan untuk email yang berbasis HTTPS ataupun

media sosial sebagai hiburan saat waktu luang oleh para karyawan. Gambar 7

menunjukkan penggunaan aplikasi websecure.

Gambar 7 Penggunaan aplikasi web secure

Penggunaan aplikasi Monitoring yang paling banyak pada cluster 6 yaitu

ketegori pengguna operational monitoring sebanyak 578 sesi koneksi dan cluster 5

oleh operational division sebanyak 224 sesi konaksi. Hal ini menunjukkan

pengguna operationalmonitoring menjalanan fungsinya dengan baik dan karyawan

juga melakukan aktifitas monitoring pada jaringan. Kategori pengguna mobile user

yang terdapat pada cluster 12 juga menggunakan aplikasi ini untuk me-monitori

perangkat mereka yang berada di luar jaringan Metrasat. Gambar 8 menunjukkan

penggunaan aplikasi monitoring.

Gambar 8 Penggunaan aplikasi monitoring

Pada penggunaan aplikasi mail yang paling banyak pada cluster 14 yaitu

(22)

12

user hanya menunjukkan nilai 9 sesi koneksi. Hal ini tidak bisa menunjukkan

bahwa penggunaan aplikasi mail pada pengguna operational division lebih besar

pada mobile user karena aktifitas penggunaan email juga bisa dilakukan dengan

aplikasi berbasis web. Gambar 9 menunjukkan penggunaan aplikasi mail.

Gambar 9 Penggunaan aplikasi mail

Pada penggunaan aplikasi remote access yang paling banyak pada cluster 7

yaitu operational division sebesar 499 sesi koneksi. Hal ini menunjukkan bahwa

operational division menjalankan tugasnya dengan baik yaitu memelihara jaringan.

Selain operational division yang menggunakan aplikasi remoteaccess, mobileuser

yang terdapat pada cluster 13 juga menggunakan aplikasi ini untuk me-remote

perangkat mereka yang berada di luar jaringan Metrasat, walaupun jumlahnya hanya sedikit yaitu 66 sesi koneksi. Gambar 10 menunjukkan penggunaan aplikasi

remote access.

Gambar 10 Penggunaan aplikasi remote access

Pada penggunaan aplikasi messaging paling banyak pada cluster 3 yaitu

operational division sebesar 1730 sesi koneksi. Hal ini terjadi karena aplikasi ini digunakan setiap hari untuk berkomunikasi dengan pelanggan juga dengan sesama

karyawam. Jumlah sesi koneksi pada cluster 9 yaitu mobile user cukup banyak yaitu

sebesar 280 sesi koneksi, hal ini menunjukkan bahwa mobile user juga

menggunakan aplikasi ini. Namun, operational monitoring tidak menggunakan

aplikasi ini, karena PC pada operational monitoring tidak digunakan oleh karyawan.

Gambar 11 menunjukkan penggunaan aplikasi messaging.

Gambar 11 Penggunaan aplikasi messaging

(23)

13

Perancangan Manajemen Bandwidth

Perancangan manajemen bandwidth menggunakan model hirarki HTB pada

paket jaringan ditunjukan pada Gambar 12. Berdasarkan jumlah sesi koneksi tiap

kategori pengguna dari seluruh cluster maka perancangan ini dibagi dalam 3 kelas

interior. Kelas A berisi dari pengguna kategori operational division yang jumlah

sesi koneksinya lebih paling banyak yaitu 33 306. Kelas B berisi dari pengguna

kategori mobile user yang jumlah sesi koneksinya 11 716. Kelas C berisi dari

pengguna operational monitoring yang jumlah sesi koneksinya 3 042. Alokasi

bandwidth untuk kelas A sebesar 55%, kelas B sebesar 30%, dan kelas C sebesar 15%. Penentuan besarnya alokasi ditentukan dari jumlah sesi koneksi dan kebijakan

dari Metrasat. Pembagian bandwidth pada leaf class dilakukan berdasarkan pada

persentase dari jumlah sesi koneksi setiap cluster yang ditunjukan pada Tabel 8

dengan Persamaan 2.

Tabel 8 Jumlah koneksi seluruh cluster

Cluster Kategori pengguna Kategori aplikasi Jumlah sesi Persentase 0 Operational divison Web 13976 29.07

1 Operational divison Web secure 16851 35.05

2 Mobile user Web secure, mail 7436 15.47

3 Operational divison Messaging 1730 3.60

4 Operational monitoring Web 2106 4.38

5 Operational divison Monitoring 224 0.46

6 Operational monitoring Monitoring 578 1.20

7 Operational divison Remote access 499 1.04

8 Mobile user Web 3772 7.85

9 Mobile user Messaging 279 0.58

10 Operational monitoring Web secure 215 0.45

11 Operational monitoring Remote access 174 0.30

12 Mobile user Monitoring 168 0.35

13 Mobile user Remote access 66 0.14

14 Operational divison Mail 29 0.06

(24)

14

Evaluasi Kinerja Karyawan

Hasil dari tahap analisis paket jaringan menunjukkan karakterstik dari pengguna. Pada pengguna karyawan yang terdapat pada kategori pengguna operational division menjalankan tugas pokok dengan fungsinya dengan baik, hal ini terlihat dari penggunaan aplikasi web, mail, remote access, dan messaging menunjukkan nilai penggunaan yang tinggi dibandingkan dengan pengguna kategori lainnya. Hasil yang baik juga terlihat pada penggunaan aplikasi monitoring yang menunjukkan kategori pengguna operational monitoring menjalankan tugas pokok dan fungsinya dengan baik. Dalam hal ini PC monitoring digunakan sebagai tools oleh para karyanan untuk memantau jaringan Metrasat. Pada kategori mobile user pemakaian bandwidth lebih besar dibandingkan operational monitoring, hal ini terlihat dari penggunaan aplikasi web, web secure, mail, dan messaging yang cukup besar.

SIMPULAN DAN SARAN

Simpulan

Pada penelitian ini telah dilakukan clustering terhadap paket jaringan. Hasil clustering menunjukkan bahwa karakteristik pengguna dari setiap kategori pengguna sesuai dengan tugas pokoknya masing–masing. Kategori pengguna operational division menunjukkan nilai penggunaan aplikasi web, mail, remote access, dan messaging yang tinggi. Kategori pengguna operational monitoring menunjukkan nilai penggunaan aplikasi monitoring yang tinggi. Hal ini dapat dijadikan dasar evaluasi bahwa kinerja karyawan Metrasat sudah tepat dan optimal sesuai dengan tugas pokoknya. Berdasarkan hasil clustering maka telah dibuat perancangan model pembagian bandwidth dibagi menjadi 3 kelas yaitu, Kelas A untuk operational division sebesar 55%, Kelas B untuk mobile user sebesar 30%, dan Kelas C untuk operational monitoring sebesar 15%. Perancangan ini akan diterapkan pada router NOC.

Saran

(25)

15

DAFTAR PUSTAKA

Brown MA. 2006. Traffic control howto [internet]. [diunduh 2015 Mei 20]. Tersedia pada: http://linux-ip.net/articles/Traffic-Control-HOWTO/.

Chitraa V, Thanamani AS. 2012. An enhanced clustering technique for web usage mining. IJERT. 1(4):1-5.

Cisco Systems. 2003. Catalyst 2940 switch software configuration guide [internet]. [diunduh 2015 Mei 20]. Tersedia pada: http://www.cisco.com/c/ en/us/td/docs/switches/lan/catalyst2940/software/release/12-1_19_ea1/ configuration/guide/2940scg_1/swspan.html

Dong G, Bailey J. 2013. Contrast Data Mining: Concepts, Algorithms, and Applications. Florida (US): CRC Press.

Han J, Kamber M. 2011. Data Mining: Concept and Techiques. Edisi kedua. San Diego (US): Morgan-Kauffman.

Lamping U, Sharpe R, Warnicke E. 2014. Wireshark user’s guide for wireshark 1.99 [internet]. [diunduh 2015 Mei 20]. Tersedia pada: https://www. wireshark.org/docs/wsug_html_chunked.

Menasce D, Almeida V. 2002. Capacity Planning for Web Service. New Jersey (US): Prentice Hall.

Metrasat. 2015. Milestone of Metrasat [internet]. [diunduh 2015 Agu 20]. Tersedia pada: http://metrasat.co.id/id/aboutus/milestone/.

Pariwono EG. 2014. Web log mining menggunakan k-means pada server proxy untuk perancangan manajemen bandwidth IPB [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Sathiyamoorthi V, Bashkaran M. 2011. Data preprocessing techiques for pre-fetching and caching web data through proxy server. IJCSN. 11(11):92-98. Sianipar H. 2012. Analisis penggunaan layanan jaringan internet IPB [skripsi].

(26)
(27)

17

LAMPIRAN

Lampiran 1 Kriteria HTTP Field Kriteria

URL akhiran .gif, .jpeg, jpg .css, .png, .js, iklan, malware, tracking cookie

Type image/gif, text/javascript, application/xml, image/png, text/css, image/jpeg, text/xml, application/x-shockwave-flash, application/javascript/, application/pdf, application/x-gzip, text/chat, application/zip, audio/mpeg, application/msword, application/x-rpm, application/vnd.ms-powerpoint, application/x-tar, application/x-cap, application/xml-dtd, application/ocsp-request, application/ocsp-response

Method selain GET dan POST

HTTPCode selain kode HTTP 2xx (success)

Lampiran 2 Kriteria filter pada Wireshark

(28)

18

Lampiran 3 Lalu lintas paket jaringan

(29)

19 Lampiran 4 Pengambilan paket jaringan menggunakan Wireshark

a Buka aplikasi Wireshark.

b Pada menu Capture, pilih Interface, pilih Network Connection yg akan di-capture, lalu klik Start

c Berikut tampilan saat proses capturing sedang dilakukan

(30)

20

(31)

21 Lampiran 6 Hasil filtering

Pengambilan ke-

(32)

22

Lampiran 7 Clustering menggunakan WEKA a.Buka aplikasi WEKA, lalu klik Explorer

b.Untuk memasukan fail CSV, klik Open File, ubah File of type menjadi CSV data files (*.csv), pilih fail yang akan dimasukan lalu klik Open.

(33)

23 Lampiran 7 lanjutan

(34)

24

RIWAYAT HIDUP

Figur

Gambar 1  Metode penelitian
Gambar 1 Metode penelitian . View in document p.12
Gambar 3  Topologi jaringan Metrasat
Gambar 3 Topologi jaringan Metrasat . View in document p.16
Gambar 5  Sum of squared error
Gambar 5 Sum of squared error . View in document p.20
Tabel 7  Anggota cluster
Tabel 7 Anggota cluster . View in document p.20
Gambar 6 Penggunaan aplikasi web
Gambar 6 Penggunaan aplikasi web . View in document p.21
Gambar 11 Penggunaan aplikasi messaging
Gambar 11 Penggunaan aplikasi messaging . View in document p.22
Tabel 8 Jumlah koneksi seluruh cluster
Tabel 8 Jumlah koneksi seluruh cluster . View in document p.23
Gambar 12 Model HTB
Gambar 12 Model HTB . View in document p.23

Referensi

Memperbarui...

Related subjects : Manajemen Bandwidth