• Tidak ada hasil yang ditemukan

Perancangan Antena Helix 1,9 GHZ Untuk Aplikasi WCDMA Menggunakan Simulator Ansoft HFSS v10

N/A
N/A
Protected

Academic year: 2016

Membagikan "Perancangan Antena Helix 1,9 GHZ Untuk Aplikasi WCDMA Menggunakan Simulator Ansoft HFSS v10"

Copied!
88
0
0

Teks penuh

(1)

TUGAS AKHIR

PERANCANGANANTENA HELIX 1,9 GHZ UNTUK

APLIKASI WCDMA MENGGUNAKANSIMULATOR ANSOFT

HFSS v.10

Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan Pendidikan Sarjana (S-1) padaDepartemen Teknik Elektro

Oleh :

070402027

ROY FADLI SIREGAR

DEPARTEMEN TEKNIK ELEKTRO

FAKULTAS TEKNIK

(2)

PERANCANGAN ANTENA HELIX 1,9 GHZ UNTUK

APLIKASI WCDMA MENGGUNAKANSIMULATOR ANSOFT

HFSS v.10

Oleh :

070402027

ROY FADLI SIREGAR

Disetujui oleh:

Pembimbing,

Ir. ARMAN SANI, MT

NIP. 19631128 0199103 1003

Diketahui oleh:

Ketua Departemen Teknik Elektro FT USU,

NIP. 19540531 198601 1002

Ir. SURYA TARMIZI KASIM, M.Si

DEPARTEMEN TEKNIK ELEKTRO

FAKULTAS TEKNIK

(3)

ABSTRAK

Antena adalah suatu alat yang digunakan untuk memancarkan gelombang elektromagnetik ataumenerima gelombang elektromagnetik. Penerimaan dengan menggunakan antena akan memperkuat perolehan sinyal sesuai dengan

kemampuan antena itu sendiri.Ketidakstabilan sinyal yang sering terjadi pada jaringanWideband Code Division Multiple Access (WCDMA) menjadikan kebutuhan akanantena tambahan untuk mengatasinya. Salah satu alternatif nya adalah dengan menggunakan antena Helix.

Tujuan dari Tugas Akhir ini adalah merancang sebuah antena Helix yang

dapat digunakan untuk aplikasi WCDMA.Antena Helix yang dihasilkan bekerja pada mode axial yang diharapkan memiliki pola radiasi yang sifatnya unidirectional.

(4)

KATA PENGANTAR

Segala puji syukur penulis haturkan kehadirat Allah S.W.T yang telah memberikan kemampuan dan ketabahan dalam menghadapi segala cobaan,

halangan, dan rintangan dalam menyelesaikan Tugas Akhir ini, serta shalawat beriring salam penulis hadiahkan kepada junjungan Nabi Muhammad S.A.W.

Tugas Akhir ini penulis persembahkan kepada yang teristimewa yaitu ayahanda H. AlinastiSiregardan ibunda Hj. Zulfatmah Batubara, serta kakanda, adinda tercinta yang merupakan bagian dari hidup penulis yang senantiasa

mendukung dan mendoakan dari sejak penulis lahir hingga sekarang.

Tugas Akhir ini merupakan bagian dari kurikulum yang harus diselesaikan

untuk memenuhi persyaratan menyelesaikan pendidikan Sarjana Strata Satu di Departemen Teknik Elektro, Fakultas Teknik, Universitas Sumatera Utara. Adapun judul Tugas Akhir ini adalah :

PERANCANGAN ANTENA HELIX 1,9 GHZ UNTUK APLIKASI WCDMA MENGGUNAKAN SIMULATOR ANSOFT HFSS v10

Selama penulis menjalani pendidikan di kampus hingga diselesaikannya Tugas Akhir ini, penulis banyak menerima bantuan, bimbingan, dan dukungan dari berbagai pihak. Untuk itu dalam kesempatan ini penulis mengucapkan terima

kasih kepada:

1. Bapak Ir. ArmanSani, MT selaku dosen Pembimbing Tugas Akhir, atas

(5)

2. Bapak Ir. Surya TarmiziKasim, M.Sidan Bapak Rachmad Fauzi ST, MT

selaku Ketua dan Sekretaris Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera Utara.

3. Seluruh staf pengajar yang telah memberi bekal ilmu kepada penulis dan

seluruh pegawai Departemen Teknik Elektro, Fakultas Teknik, Universitas Sumatera Utara atas segala bantuannya.

4. Keluarga Besar Laboratorium Sistem Komunikasi Radio FT USU.

5. RinaMelatiDalimunthe yang berperan dalam memotivasi penulis, memberi masukan, dan selalu memberi dukungan, terimakasih atas doa dan

perhatiannya sehingga penulis dapat menyelesaikan Tugas Akhir ini. 6. Sahabat-sahabat terbaik di Elektro: Arief, Hirzi, Fitri, Nikman, Aprial,

Dian, Shobirin, Fajar, Ridho, IsanSafirza, Arynda, Selvi, Fernandi, Dion, Ridwan, Komeng, Ichan, Frans dan segenap angkatan ‘07, semoga silaturahmi kita terus terjaga.

7. Senior dan junior : Bang Gifari, Kak Ami, Bang Reza, Bang Rudi, Bang Riki, Rumi, Habibi, Dina, Siska, Pindo, Ihsan, Nisa, serta semua senior,

junior dan seluruh Praktikan Ekstensi 2011 yang telah membantu selama proses penulisan Tugas Akhir ini.

8. Keluarga Besar Ikatan Mahasiswa Teknik Elektro dan semua pengurus

IMTE 2011 – 2012.

9. Keluarga Besar MME-GS yang telah memberikan banyak sekali

pembelajaran.

(6)

Penulis menyadari bahwa Tugas Akhir ini masih banyak kekurangan baik

dari segi materi maupun penyajiannya. Oleh karena itu saran dan kritik dengan tujuan menyempurnakan dan mengembangkan kajian dalam bidang ini sangat penulis harapkan.

Akhir kata penulis berserah diri pada Allah SWT, semoga Tugas Akhir ini bermanfaat bagi pembaca sekalian terutama bagi penulis sendiri.

Medan, Januari 2012

Penulis

(7)

DAFTAR ISI

2.2 Gelombang Elektromagnetik... 7

(8)

2.4.6 BandwidthAntena ... 15

2.9 Wideband Code Division Multiple Access (WCDMA) ... 28

2.9.1 Arsitektur Jaringan WCDMA ... 28

2.9.2 Mekanisme Kerja WCDMA ... 32

2.9.3 Keunggulan Teknologi WCDMA ... 34

III. SIMULATOR HFSS ... 38

3.1 Umum ... 38

3.2 Instalasi Ansoft HFSS ... 40

3.3 Cara Kerja Ansoft HFSS ... 41

3.4 Perancangan Dasar Model pada Ansoft HFSS ... 43

3.4.1 Inisialisasi Model ... 44

3.4.2 Mensimulasikan Hasil Rancangan ... 47

(9)

IV. PERANCANGAN ANTENA HELIX UNTUK APLIKASI

WIDEBAND CODE DIVISION MULTIPLE ACCES ... 48

4.1 Umum ... 48

4.2 Perancangan Antena ... 48

4.2.1 Perhitungan Parameter Antena ... 50

4.3 Perancangan Model Antena Helix ... 52

4.4 Perancangan Saluran Pencatu(Excitation) ... 58

4.5 Perancangan Ruang Batasan (Boundaries) ... 59

4.6 Arahan Pancaran (Radiation) ... 60

4.7 Analisis Model ... 61

4.8 Menampilkan Hasil Simulasi ... 62

4.9 Mengubah-ubah Jumlah Lilitan ... 66

V. KESIMPULAN DAN SARAN ... 71

5.1 Kesimpulan ... 71

5.2 Saran ... 71

(10)

DAFTAR GAMBAR

Gambar 2.1 Antena Sebagai Pengirim dan Penerima ... 8

Gambar 2.2 Pola Radiasi Antena Directional ... 11

Gambar 2.13 Bentuk Dasar Antena Helix dan Hubungan Antara D, S, C, L ... 23

Gambar 2.14 Antena Helix dengan Ground Plane ... 25

Gambar 2.15 Arsitektur Jaringan WCDMA ... 29

Gambar 2.16 Alur Evolusi Dari Sistem Generasi ke-2 dan Ke-3 ... 33

Gambar 3.1 Tampilan Ansoft HFSS ... 40

Gambar 3.2 Tampilan Awal Ansoft HFSS... 41

Gambar 3.3 Diagram Alir yang Menunjukkan Cara Pencarian Solusi Simulator Ansoft HFSS ... 42

(11)

Gambar 3.5 Bentuk yang Muncul Setelah Menekan Bidang Balok pada

Ansoft HFSS ... 44

Gambar 3.6 Property Window yang keluar setelah Model dibuat ... 44

Gambar 3.7 Property Window dengan tab attribute ... 45

Gambar 3.8 Project Manager Window Pada Ansoft HFSS... 46

Gambar 3.9 Salah satu aplikasi dari Ansoft HFSS yaitu Antena Horn ... 47

Gambar 4.1 Diagram Alir Perancangan Antena Helix ... 49

Gambar 4.2 Pengaturan tab attribute dan tab command pada Ansoft HFSS ... 53

Gambar 4.3 Hasil Perancangan Model Inner dan Outter ... 55

Gambar 4.4 Hasil Perancangan Model Ground Plane ... 56

Gambar 4.5 Hasil Perancangan Model Antena Helix ... 57

Gambar 4.6 Penentuan Letak Saluran Catu ... 58

Gambar 4.7 Pembuatan Saluran Catu pada Outter ... 59

Gambar 4.8 Peletakan Boundaries pada Ansoft HFSS ... 60

Gambar 4.9 Grafik VSWR pada Simulasi Awal ... 64

Gambar 4.10 Gain Hasil Simulasi Awal ... 65

Gambar 4.11 Pola Radiasi Hasil Simulasi Awal ... 63

Gambar 4.12 Grafik VSWR Hasil Simulasi... 67

Gambar 4.13 Gain Hasil Simulasi ... 68

(12)

DAFTAR TABEL

Tabel 2.1 Perbandingan Parameter 2G GSM dengan 3G WCDMA ... 34

Tabel 4.1 Data Gain Yang Diperoleh Dari Hasil Simulasi ... 64

Tabel 4.2 Karakteristik Perubahan Jumlah Lilitan ... 66

(13)

ABSTRAK

Antena adalah suatu alat yang digunakan untuk memancarkan gelombang elektromagnetik ataumenerima gelombang elektromagnetik. Penerimaan dengan menggunakan antena akan memperkuat perolehan sinyal sesuai dengan

kemampuan antena itu sendiri.Ketidakstabilan sinyal yang sering terjadi pada jaringanWideband Code Division Multiple Access (WCDMA) menjadikan kebutuhan akanantena tambahan untuk mengatasinya. Salah satu alternatif nya adalah dengan menggunakan antena Helix.

Tujuan dari Tugas Akhir ini adalah merancang sebuah antena Helix yang

dapat digunakan untuk aplikasi WCDMA.Antena Helix yang dihasilkan bekerja pada mode axial yang diharapkan memiliki pola radiasi yang sifatnya unidirectional.

(14)

BAB I PENDAHULUAN

I.1 Latar Belakang

Antena merupakan salah satu elemen penting didalam terselenggaranya hubungan komunikasi nirkabel antara dua useratau lebih yang ingin berkomunikasi. Peranan antena sendiri tidak lepas dari perkembangan teknologi informasi, karena kini penggunaan antena tidak hanya terbatas pada komunikasi suara saja, tetap sudah terintegrasi dengan komunikasi data. Perkembangan komunikasi data beberapa tahun belakangan yang kian pesat membutuhkan perkembangan perangkat fisik yang mampu menjadi jembatan komunikasi antara satu perangkat komunikasi dengan yang lainnya. Perkembangan itu akhirnya memunculkan konsepWideband Code Division Multiple Access (WCDMA), sebuah jaringan yang mengunakan kode pada metode pengkanalannya.

WCDMA merupakan teknik multiple access yang berdasarkan spektral tersebar, dimana sinyal informasi disebar pada pita frekuensi yang lebih besar daripada lebar pita sinyal aslinya (informasi). Sistem WCDMA hanya

memerlukan satu channel frekuensi radio untuk semua pemakainya, masing-masing pemakai diberi kode yang membedakan antara pengguna satu dengan

yang lain. Skema metode akses yang digunakan untuk penyebaran sinyal WCDMA adalah direct sequence dimanacode sequence digunakan secara langsung untuk memodulasi sinyal radio yang dipancarkan dengan menggunakan

(15)

dilakukan adalah memperkuat penerimaan sinyal dengan memasang antena bantu

dengan gain yang cukup besar.

Antena Helix adalah pilihan yang tepat dengan penguatan yang cukup besar.Antena Helix mempunyai struktur geometri yang mirip dengan pegas,

dengan jarak antar lilitan, diameter lilitan dan jumlah lilitan yang diatur sedemikian rupa sehingga dapat memenuhi kebutuhan.Dengan struktur geometri

yang sedemikian rupa, pembuatan antena Helix dirasakan sederhana dan dapat dijadikan alternatif antena.

I.2 Rumusan Masalah

Yang menjadi rumusan masalah dalam Tugas Akhir ini adalah :

1. Apa yang dimaksud dengan antena Helix ?

2. Bagaimana spesifikasi antena Helix yang diperbolehkan untuk perangkat

WCDMA ?

3. Bagaimana merancang antena Helix yang dapat bekerja pada frekuensi 1.9 GHz ?

I.3 Tujuan Penulisan

(16)

I.4 Batasan Masalah

Untuk memudahkan pembahasan dalam tulisan ini, maka dibuat pembatasan masalah sebagai berikut :

1. Hanya membahas WCDMA secara umum.

2. Parameter yang dibahas hanya meliputi VSWR, gain, pola radiasi dan beamwidth.

3. Perancangan dilakukan dengan menggunakan simulator Ansoft HFSS versi 10.0.

4. Pengukuran parameter antena dilakukan dengan menggunakan

perangkat lunak Ansoft HFSS versi 10.0. 5. Perancangan tidak sampai ke tahap pabrikasi.

I.5 Metode Penulisan

Metodologi penulisan yang digunakan oleh penulis pada penulisan Tugas Akhir ini adalah :

1. Studi literatur

Yaitu dengan membaca teori-teori yang berkaitan dengan topik tugas akhir ini dari buku-buku referensi baik yang dimiliki oleh penulis atau di perpustakaan

dan juga dari artikel-artikel, jurnal, internet dan lain-lain. 2. Perhitungan

Melakukan perhitungan secara analitik dengan menggunakan perumusan

(17)

3. Perancangan dan Analisis

Dari hasil perhitungan analitik dengan menggunakan perumusan ilmiah kemudian dilakukan perancangan antena dengan menggunakan softwareAnsoft HFSS versi 10.0.

I.6 Sistematika Penulisan

Untuk memberikan gambaran mengenai Tugas Akhir ini secara singkat, maka penulis menyusun sistematika penulisan sebagai berikut :

BAB I PENDAHULUAN

Bab ini merupakan pendahuluan yang berisikan tentang latar

belakang masalah, rumusan masalah, tujuan penulisan, batasan masalah, metodologi penulisan, dan sistematika penulisan dari

Tugas Akhir ini.

BAB II TEORI DASAR

Bab ini berisi penjelasan tentang antena secara umum dan penjelasan mengenai antena Helix dan WCDMA secara khusus.

BAB III SIMULATOR ANSOFT HFSS

(18)

BAB IV PERANCANGAN ANTENA HELIX UNTUK APLIKASI

WIDEBAND CODE DIVISION MULTIPLE ACCESS

(WCDMA )

Bab ini membahas mengenai perancangan antena Helix untuk

aplikasi WCDMA dan membandingkan hasil yang dicapai melalui perumusan ilmiah dengan hasil yang dicapai dengan menggunakan

software Ansoft HFSS versi 10.0.serta mengetahui kinerja dari antena tersebut.

BAB V KESIMPULAN DAN SARAN

Bab ini berisi kesimpulan dan saran dari hasil pembahasan Tugas

Akhir.

(19)

TEORI DASAR

2.1 Umum

Pada tahun 1600,William Gilbert dari Inggris yang membuat eksperimen

sistematis pertama tentang fenomena listrik dan medan magnet. Gilbert jugalah yang pertama menyatakan bahwa bumi sendiri adalah sebuah magnet yang sangat

besar. Beberapa penemu juga ikut memberikan andil yang besar pada proses penemuan antena seperti Benjamin Franklin (Amerika serikat, 1750), Charles Augustinde coulomb (Prancis), Karl Fried Gauss (Jerman), Alessandro Volta

(Italia,1800), Michael Faraday (Inggris,1831) dan James C. Maxwell (1873), walaupun penemuan Maxwell sangat penting bagi pengetahuan elektromagnetik

modern, tetapi banyakscientistpada masanya yang meragukan kebenaran teorinya tersebut. Memerlukan lebih dari satu dekade hingga teori Maxwell diperhatikan kembali oleh Heinrich Rudolf Hertz (Jerman).

Ketertarikan Hertz pada gelombang dihargai, dan pada tahun 1886, sebagai salah seorang profesorpada Technical Institute in Karlshure, dia mengumpulkan alat yang akan menyempurnakan sistem radio denganend loaded

dipole sebagai antena pengirim danresonant square lop sebagai antena penerima. Selama dua tahun, dia memperluas percobaannya dan mulai mendemonstrasikan

refleksi, refraksi dan polarisasi, yang menunjukkan bahwa selain perbedaan panjang gelombang, gelombang radio adalah sama dengan cahaya yaitu sama-

(20)

Walaupun Hertz sering disebut sebagai ‘bapak radio’,namun selama

hampir satu dekade, penemuannya hanya tertinggal di laboratorium,keingintahuanGuglielmo Marconi (yang pada saat itu berusia 20 tahun)yang melihat majalah tentang eksperimen Hertz, apakah gelombang Hertz

itu bisa digunakan untuk mengirimkan pesan. Dia menjadi terobsesi dan melakukan penelitian dirumahnya.Dia mengulang eksperimen Hertz dan berhasil.

Setelah itu ia mencobanya dengan antena yang lebih besar untuk jarak yang lebih jauh. Pada tahun 1901, iamengumumkan kepada dunia bahwa ia telah menerima sinyal radio di Newfoundland, Canada, yang dikirimkan dari seberang samudera

atlantik dari sebuah stasiun yang telah dibangun nya dari Cornwall, Inggris [1].

2.2 Gelombang Elektromagnetik

Gelombang elektromagnetik adalah gelombang yang mempunyai sifat listrik dan sifat magnet secara bersamaan.Gelombang radio merupakan bagian

dari gelombang elektromagnetik pada spectrum frekuensi radio.

Gelombang dikarakteristikkan oleh panjang gelombang dan frekuensi.

Panjang gelombang (λ) memiliki hubungan dengan frekuensi (ƒ) dan kecepatan (ν) yang ditunjukkan pada Persamaan 2.1[2]:

(2.1)

Kecepatan (ν) bergantung pada medium. Ketika medium rambat adalah hampa

udara (free space), maka [2]:

(21)

2.3 Pengertian Antena

Antena adalah perangkat media transmisi wireless (nirkabel) yang memanfaatkan udara atau ruang bebas sebagai media penghantar. Antena mempunyai fungsi untuk merubah energi elektromagnetik terbimbing menjadi

gelombang elektromagnetik ruang bebas (gelombang mikro) yang merupakan fungsi antena sebagai transmitter(Tx). Energi listrik dari transmitter dikonversi menjadi gelombang elektromagnetik dan oleh sebuah antena yang kemudian gelombang tersebut dipancarkan menuju udara bebas.Pada receiver(Rx) akhir gelombang elektromagnetik dikonversi menjadi energi listrik dengan

menggunakan antena.Gambar 2.1 menunjukkan antena sebagai pengirim dan penerima.

Gambar 2.1 Antena Sebagai Pengirim dan Penerima

2.4 Parameter – Parameter Antena

Parameter-parameter antena digunakan untuk menguji atau mengukur performa antena yang akan digunakan. Berikut penjelasan beberapa parameter antena yang sering digunakan yaitu direktivitas antena, gain antena, pola radiasi antena, polarisasi antena, beamwidth antena, bandwidth antena, impedansi antena

Antena Antena

Tx Rx

(22)

2.4.1 Direktivitas Antena

Direktivitas, pengarahan dari sebuah antena adalah perbandingan kerapatan daya maksimum terhadap daya rata-rata yang menembus seluruh kulit

bola yang diamati pada medan jauh. Nilai D diperoleh melalui persamaan [3] :

2.3)

2.4.2 Gain Antena

Gain (directive gain) adalah karakter antena yang terkait dengan kemampuan antena mengarahkan

arah tertentu. Gain bukanlah kuantitas yang dapat diukur dalam satuan fisis pada umumnya seperti watt, ohm, atau lainnya, melainkan suatu bentuk perbandingan. Oleh karena itu, satuan yang digunakan untuk gain adalah

Gain dari sebuah antena adalah kualitas nyala yang besarnya lebih kecil daripada penguatan antena tersebut yang dapat dinyatakan dengan [5] :

Gain = G = k. D (2.4) Dimana :

k = efisiensi antena, 0 ≤ k ≤1

Gain antena dapat diperoleh dengan mengukur power pada main lobe dan membandingkan power-nya dengan power pada antena referensi. Gain antena diukur dalam satuan decibel.Decibel dapat ditetapkan dengan dua cara yaitu [6] :

a. Ketika mengacu pada pengukuran daya (power)

(23)

b. Ketika mengacu pada pengukuran tegangan (volt)

(2.6)

Gain antena biasanya diukur relatif pada : 1) dBi (relatif pada radioatorisotropic) 2) dBd (relatif pada radioatordipole)

Hubungan antara dBi dan dBd adalah sebagai berikut [6] :

0 dBd = 2,15dBi (2.7)

Umumnya dBi digunakan untuk mengukur gain sebuah antena.

Gain dapat dihitung dengan membandingkan kerapatan daya maksimum antena yang diukur dengan antena referensi yang diketahui gainnya. Maka dapat dituliskan pada persamaan [3]:

(2.8)

Atau jika dihitung dalam nilai logaritmik dirumuskan oleh persamaan [3] :

Gt (dB) = (Pt(dBm) – Ps(dBm)) + Gs(dB) (2.9) Dimana :

Gt = Gain total antena.

Pt = Nilai level sinyal maksimum yang diterima antena terukur (dBm). Ps = Nilai level sinyal maksimum yang diterima antena referensi (dBm).

(24)

2.4.3 Pola Radiasi Antena

Pola radiasi antena pada umumnya terdiri dari sebuah lobeutama (main lobe) dan beberapa lobekecil (minor lobe).Lobeutama merupakan gambaran kualitas antena yang menunjukkan energi yang tersalurkan sesuai dengan yang diinginkan

(Gambar 2.2).Diagram arah sebenarnya tiga dimensi, tetapi biasa digambarkan sebagai dua dimensi, yaitu dua penampangnyasaja yang saling tegak lurus

berpotongan pada porosmain lobe[1].

Gambar 2.2Pola Radiasi Antena Directional

2.4.4 Polarisasi Antena

Polarisasi antena merupakan orientasi perambatan radiasi gelombang

elektromagnetik yang dipancarkan oleh suatu antena di mana arah elemen antena terhadap permukaan bumi sebagai referensi arah. Dalam jaringan wireless, polarisasi dipilih dan digunakan untuk mengoptimalkan penerimaan sinyal yang

diinginkan dan mengurangi derau dan interferensi dari sinyal yang tidak diinginkan.

(25)

a. Polarisasi Linier

Polarisasi linier terdiri dari polarisasi vertikal dan polarisasi horisontal. Arah dari polarisasi ditentukan oleh arah dari medan listrik. Polarisasi linier, artinya, dengan berjalannya waktu arah dari medan listrik tidak berubah, hanya

orientasinya saja.

Gambar 2.3 menunjukkan sebuah gelombang yang memiliki polarisasi

linier yangvertikal.Medan listrik terletak secara vertikal. Di gambar, arah medan listrik selalu menunjuk ke arah sumbu x positif atau negatif dan arah medan magnet-nya selalu ke sumbu y positif atau negatif. Polarisasi linier yang

horisontal merupakan kebalikan dari vertikal.Medan listrik terletak horisontal (arah sumbu y) [7].

Gambar 2.3 Polarisasi Linier

b. Polarisasi Eliptis

Berbeda dengan polarisasi linier, pada gelombang yang mempunyai polarisasi eliptis, dengan berjalannya waktu dan perambatan, medan listrik dari

(26)

Pada kasus tertentu panjang sumbu utama dari penampang elips tersebut

sama, sehingga berbentuk lingkaran. Gambar 2.4 menunjukkan orientasi dari medan listrik yang terpolarisasieliptis [7].

Gambar 2.4 PolarisasiEliptis

c. Polarisasi Circular

Polarisasi circular pernah digunakan pada beberapa jaringan wireless. Dengan antena berpolarisasi circular, medan elektromagnetik berputar secara konstan terhadap antena [8]. Gambar 2.5 menunjukkan polarisasi circular.

Gambar 2.5 Polarisasi Circular

(27)

elektromagnetik pada right hand circular berputar searah jarum jam ketika meninggalkan antena. Medan elektromagnetik pada left hand circular berputar berlawanan arah jarum jam ketika meninggalkan antena.

2.4.5 BeamwidthAntena

Beamwidthadalah besarnya sudut berkas pancaran gelombang frekuensi radio utama (main lobe) yang dihitung pada titik 3 dB menurun dari puncak lobe utama [5]. Besarnya beamwidthadalah sebagai berikut [8] :

(2.10)

Dimana :

B = 3 dB beamwidth(derajat) = frekuensi (GHz)

d = diameter antena (m)

(28)

Gambar 2.6BeamwidthAntena

2.4.6 Bandwidth Antena

Bandwidth suatu antena didefinisikan sebagai rentang frekuensi dimana

kerja yang berhubungan dengan berapa karakteristik (seperti impedansi masukan, pola, beamwidth, polarisasi,gain, efisiensi,VSWR,return loss, axial ratio)memenuhi

spesifikasi standar [9].

Gambar 2.7 Rentang Frekuensi Yang MenjadiBandwidth

Dengan melihat Gambar 2.7 bandwidth dapat dicari dengan menggunakan

rumus berikut ini [8] :

(2.11)

(29)

band).Sedangkan untuk band yang lebar (broad band) biasanya digunakan definisi rasio antara batas frekuensi atas dengan frekuensi bawah.

2.4.7 Impedansi Antena

Impedansi antena didefinisikan sebagai perbandingan antara medan elektrik terhadap medan magnetik pada suatu titik [5]. Dengan kata lain pada

sepasang terminal maka impedansi antena bisa didefinisikan sebagai perbandingan antara tegangan terhadap arus pada terminal tersebut.

I

2.4.8 Voltage Standing Wave Ratio (VSWR)

Pada saat sinyal merambat ke arah tertentu dalam saluran transmisi, maka perbandingan antara tegangan dan arus sinyal dapat dipandang sebagai impedansi

karakteristik saluran. Akan tetapi setelah sinyal mencapai ujung saluran dimana beban berada, keadaan akan lain tergantung pada kondisi beban tersebut.

(30)

memantul dan kembali menuju ke sumbernya semula. Besarnya sinyal yang

dipantulkan kembali menuju sumber ini bergantung kepada bagaimana ketidaksamaan antara impedansi karakteristik saluran terhadap impedansi beban.

Perbandingan antara level tegangan yang datang menuju beban dan yang

kembali ke sumbernya disebut koefisien pantul atau koefisien refleksi yang dinyatakan dengan simbol Γ.

Harga koefisien pantul ini dapat bervariasi antara 0 sampai 1. Jika bernilai 0 artinya tidak ada pantulan dan jika bernilai 1 artinya sinyal yang datang ke beban seluruhnya dipantulkan kembali ke sumbernya. Hal ini dinyatakan dalam

persamaan [8] :

Hubungan antara koefisien refleksi, impedansi karakteristik dan impedansi beban dapat dituliskan [8] :

o

Pantulan daya pada saluran yang direpresentasikan dengan adanya

(31)

min max V V

VSWR= (2.15)

VSWR merupakan parameter yang menentukan kualitas dari transmisi

suatu sinyal dari sumber ke beban. Besar nilai VSWR yang ideal adalah 1, yang artinya dalam saluran tidak ada gelombang pantul atau semua daya yang diradiasikan antena pemancar diterima semua oleh antena penerima. Semakin

besar nilai VSWR menunjukkan daya yang dipantulkan semakin besar. Gambar 2.8 menunjukkan gambar VSWR. Hubungan VSWR dengan koefisien refleksi

dapat dituliskan [8] :

Γ

Gambar 2.8 Voltage Standing Wave Ratio

2.5 Antena Isotropis

Antena isotropis merupakan sumber titik yang memancarkan daya ke segala arah dengan intensitas yang sama, seperti permukaan bola. Karena itu dikatakan pola radiasi antena isotropis berbentuk bola. Antena ini tidak ada dalam

dunia nyata dan hanya digunakan sebagai dasar untuk merancang dan menganalisa struktur antena yang lebih kompleks. Gambar 2.9 menunjukkan

Amplitudo

(32)

Gambar 2.9 Antena Isotropis

2.6 AntenaDirectional

Berdasarkan direktivitasnya, antena directionaldibagi menjadi antena unidirectional dan antena omnidirectional. Antena unidirectional adalah antena yang memancarkan dan menerima sinyal hanya dari satu arah. Sedangkan antena omnidirectional adalah antena yang memancarkan dan menerima sinyal dari segala arah.

2.6.1 AntenaUnidirectional

Antena unidirectional memancarkan dan menerima sinyal hanya dari satu arah.Hal ini ditunjukkan dengan bentuk pola radiasinya yang terarah.Antena unidirectionalmempunyai kemampuan direktivitas yang lebih dibandingkan jenis-jenis antena lainnya. Kemampuan direktivitas ini membuat antena ini lebih banyak digunakan untuk koneksi jarak jauh. Dengan kemampuan direktivitas ini

(33)

sinyal lebih jauh. Umumnya antena unidirectionalmempunyai spesifikasi gain tinggi tetapi beamwidth kecil. Hal ini menguntungkan karena kecilnya beamwidth menyebabkan berkurangnya derau yang masuk ke dalam antena. Semakin kecil bidang tangkapan (aperture),semakin naik selektivitas antena terhadap sinyal wirelessyang berarti semakin sedikit derau yang ditangkap oleh antena tersebut. Beberapa macam antena unidirectionalantara lain antena Yagi-Uda, antena parabola, antenaHelix,antena log-periodic,dan lain-lain [1]. Gambar 2.10 memperlihatkan contoh antena unidirectional.

Gambar 2.10 Contoh Antena Unidirectional

2.6.2 AntenaOmnidirectional

Antena omnidirectional memancarkan dan menerima sinyal dari segala arah dengan daya yang sama. Untuk menghasilkan cakupan area yang luas, gain antena omnidirectional harus memfokuskan dayanya secara horizontal, dengan

mengabaikan pola pancaran ke atas dan ke bawah. Dengan demikian, keuntungan dari antena jenis ini adalah dapat melayani jumlah pengguna yang lebih banyak

(34)

pola radiasi antena omnidirectional digambarkan seperti bentuk

kuedonat(doughnut) dengan pusat berimpit.Kebanyakan antena ini mempunyai polarisasi vertikal, meskipun tersedia juga polarisasi horisontal. Antena omnidirectional dalam pengukuran sering digunakan sebagai pembanding terhadap

antena yang lebih kompleks contoh antena omnidirectional antara lain antena dipole, antena Brown, antena coaxial, antena super-turnstile, antena ground plane, antena collinear, antena slot wave guide, dan lain-lain [1]. Gambar 2.11 memperlihatkan beberapa contoh antena omnidirectional.

Gambar 2.11 Contoh AntenaOmnidirectional

2.7 Antena Helix

(35)

atau pegas dengan diameter lilitan serta jarak antar lilitan berukuran

tertentu.Antena Helix mempunyai bentuk geometri 3 dimensi.Dimensi dan bentuk antena Helix digambarkan oleh Gambar 2.12 [10].

Lengan Penopang

Tiang Penopang

pigtail

USB

Ground Plane

Llilitan Kabel Email Potongan Kuningan

Konektor SMA Female

Gambar 2.12 Model Antena Helix

Pada antena Helix dirancang, menggunakan kawat email yang dililitkan

pada pipa PVC (Polyvinyl Chloride) dan lempengankuningan sebagai ground plane, serta pigtail pada perpanjangan konektor SMA (Sub Miniature version A).

Pemilihan antena Helix sebagai antena bantu lebih dikarenakan

kemudahan dalam perancangan dan kemampuan antena ini untuk menguatkan sinyal juga terbilang sangat baik.

2.7.1 Bagian Dasar Antena Helix

(36)

lilitan serta jarak antar lilitan berukuran tertentu.Antena Helix mempunyai bentuk

geometri 3 dimensi seperti pada Gambar 2.13 memperlihatkan bentuk dasar dari sebuah Antena Helix dengan parameter-parameternya adalah sebagai berikut [9].

Gambar 2.13 Bentuk dasar antena Helix dan hubungan antara D, S, C, L

D = diameter dari Helix

C = circumference (keliling) dari Helix = πD

S = jarak antar lilitan

α = sudut jepit (pitch angle) = arctan S/πD

L = panjang dari 1 lilitan

(37)

A = axial length= nS

d = diameter konduktor Helix

Diameter dan keliling (circumference) digunakan sebagai parameter dalam menentukan frekuensi kerja dari antena Helix, biasanya dinyatakan pula dalam

panjang gelombang D dan C. Axial Length dan pitch angle menentukan gain dari antena Helix. Untuk mencari diameter antena Helix dapat menggunakan persamaan berikut:

(2.17)

Sementara untuk menghitung circumference dapat menggunakan persamaan berikut [11] :

(2.18)

Makin panjang axial length makamakin besar pula gain dari antena Helix. Relasi ini dapat dilihat dari persamaan berikut [11] :

(2.19)

Dan untuk mencari panjang dari antena Helix dapat menggunakan persamaan berikut [11] :

(2.20)

(38)

berbentuk datar. Dengan menggunakan ground plane, diharapkan back lobe dari antena Helix dapat diminimalisasi [12].

Gambar 2.14 Antena Helix dengan Ground Plane

Antena Helix dapat dioperasikan dalam dua mode, yaitu mode transmisi (transmission mode) dan mode radiasi (radiation mode).Mode transmisi digunakan untuk menjelaskan bagaimana gelombang elektromagnetik dipropagasikan sepanjang Helix, mengingat Helix dapat diasumsikan sebagai saluran transmisi tak hingga atau waveguide, dimana beberapa mode transmisi yang berbeda dapat dioperasikan.

Mode radiasi digunakan untuk mengetahui bentuk dari medan jauh (far field pattern) dari sebuah Helix. Pada mode radiasi dikenal dua macam mode, yaitu mode axialdan mode normal [12].

2.7.2Operasi Antena Helix pada Mode Axial

(39)

Antena Helix pada mode operasi axial adalah antena yang sederhana dan mudah untuk dibuat karena sifatnya yang non-critical.Ada beberapa parameter penting dari antena yang perlu untuk diperhatikan, yaitu [12] :

1. Beamwidth (lebar berkas) 2. Gain (penguatan)

3. Impedance (impedansi)

Parameter-parameter diatas merupakan fungsi dari banyaknya lilitan (n), jarak antar lilitan (S) dan frekuensi. Untuk jumlah lilitan yang telah ditentukan, sifat dari beamwidth, gain dan impedansi dapat menentukan lebar bandwith. Sementara itu, nilaidari bandwith juga berhubungan erat dengan circumference dari antena Helix.

Parameter lain yang mempunyai peran penting dalam perancangan antena Helix adalah bentuk dan ukuran dari ground plane, diameter konduktor antena Helix, struktur penunjang antena Helix, dan pengaturan feed. Ground plane dapat dibuat dalam berbagai macambentuk. Namun umumnya ground plane dibuat dalam bentuk lingkaran atau persegi yang datar atau flat dengan ukuran diameter

atau sisi minimal 3λ/4. Ukuran konduktor dapat dipilih dari 0.005λ sampai dengan

mendekati 0,05λ.

(40)

mempengaruhi impedansi dari antena Helix. Pada antena Helix, feeder dapat dipasang dengan 2 macam model, yaitu [12] :

1. Peripheral feed 2. Axial feed

Dengan model peripheral feed, impedansi antena Helix mempunyai nilai yang dihitung dengan persamaan berikut [11]:

(2.18)

Sementara dengan menggunakan axial feed impedansi antena Helix bernilai [11]:

(2.19)

Impedansi antena Helix dapat diatur sedemikian rupa sehingga sesuai dengan impedansi yang diinginkan dengan caramemodifikasi ¼ lilitan

terakhirnya.

Beamwidthdari antena Helix dapat dihitung sesuai dengan persamaan berikut [11]:

(2.20)

Sementara itu, beamwidth between first null dihitung berdasarkan persamaan berikut [11]:

(2.21)

Sedangkan directivityantena Helix dapat dihitung dengan persamaan dibawah ini [11]:

(41)

2.8 Material

Dalam merancang berbagai jenis antena, maupun peralatan untuk penyeimbang impedansi memerlukan pemilihan dari material dielektrik yang sesuai.

Banyak desain antena membutuhkan pemilihan bahan dielektrik yang sesuai. Kekuatan, berat, konstanta dielektrik, loss tangent danketahanan terhadap kondisi lingkungan adalah parameter utama yang harus diperhatikan .

2.9 Wideband Code Division Multiple Access (WCDMA)

WCDMA merupakan teknik multiple access yang berdasarkan spektral tersebar, dimana sinyal informasi disebar pada pita frekuensi yang lebih besar

daripada lebar pita sinyal aslinya (informasi). Sistem WCDMA hanya memerlukan satu channel frekuensi radio untuk semua pemakainya, masing-masing pemakai diberi kode yang membedakan antara pengguna satu dengan

yang lain. Skema metode akses yang digunakan untuk penyebaran sinyal WCDMA adalah direct sequence dimanacode sequence digunakan secara langsung untuk memodulasi sinyal radio yang dipancarkan dengan menggunakan sinyal penebar [13].

2.9.1 Arsitektur Jaringan WCDMA

(42)

Gambar 2.15 Arsitektur Jaringan WCDMA

Dari Gambar 2.15 terlihat bahwa arsitektur jaringan WCDMA terdiri dari perangkat-perangkat yang saling mendukung, yaitu sebagai berikut :

1. UE (User Equipment)

User Equipment merupakan perangkat yang digunakan oleh pelanggan untuk dapat memperoleh layanan komunikasi bergerak. UE dilengkapi dengan

smart card yang dikenal dengan nama USIM (UMTS Subscriber Identity Module) yang berisi nomor identitas pelanggan dan juga algoritma security untuk keamanan seperti authentication algorithm dan algoritma enkripsi. Selain terdapat USIM, UE juga dilengkapi dengan ME (Mobile Equipment) yang berfungsi sebagai terminal radio yang digunakan untuk komunikasi lewat radio.

2. UTRAN (UMTS Terrestrial Radio Access Network)

(43)

a. RNC (Radio Network Controller)

RNC bertanggung jawab mengontrol radio resources pada UTRAN yang membawahi beberapa Node B, menghubungkan CN (Core Network) dengan user dan merupakan tempat berakhirnya protokol RRC (Radio Resource Control) yang mendefinisikan pesan dan prosedur antara mobile user dengan UTRAN.

b. Node B

Node B sama dengan Base Station di dalam jaringan GSM. Node B merupakan perangkat pemancar dan penerima yang memberikan pelayanan radio

kepada UE. Fungsi utama node B adalah melakukan proses pada layer 1 antara lain: channel coding, interleaving, spreading, de-spreading, modulasi, demodulasi dan lain-lain. Node B juga melakukan beberapa operasi RRM (Radio Resource Management), seperti handover dan power control.

3. CN (Core Network)

Core Network berfungsi sebagai switching pada jaringan UMTS, memanajemen jaringan serta sebagai interface antara jaringan UMTS dengan jaringan yang lainnya. Komponen Core Network UMTS terdiri dari :

a. MSC (Mobile Switching Center)

(44)

b. VLR (Visitor Location Register)

VLR merupakan database yang berisi informasi sementara mengenai pelanggan terutama mengenai lokasi dari pelanggan pada cakupan area jaringan.

c. HLR (Home Location Register)

HLR merupakan database yang berisi data-data pelanggan yang tetap.

Data-data tersebut antara lain berisi layanan pelanggan, service tambahan serta informasi mengenai lokasi pelanggan yang paling akhir (Update Location)

d. SGSN (Serving GPRS Support Node)

SGSN merupakan gerbang penghubung jaringan BSS/BTS ke jaringan

GPRS. Fungsi SGSN adalah sebagai berikut : 1) Mengantarkan paket data ke MS

2) Update pelanggan ke HLR 3) Registrasi pelanggan baru

e. GGSN (Gateway GPRS Support Node)

GGSN berfungsi sebagai gerbang penghubungdari jaringan GPRS ke jaringan paket data standard (PDN). GGSN berfungsi dalam menyediakan fasilitas

(45)

interface Iub yang menghubungkan Node B dan RNC, Interface Iur yang menghubungkan antar RNC, sedangkan UTRAN dan CN dihubungkan oleh interface Iu. Protokol pada interface Uu dan Iu dibagi menjadi dua sesuai fungsinya, yaitu bagian control plane dan user plane. Bagian user plane merupakan protokol yang mengimplementasikan layanan Radio Access Bearer (RAB), misalnya membawa data user melalui Access Stratum (AS). Sedangkan control plane berfungsi mengontrol RAB dan koneksi antara mobile user dengan jaringan dari aspek : jenis layanan yang diminta, pengontrolan sumber daya transmisi, handover, mekanisme transfer Non Access Stratum (NAS) seperti Mobility Management (MM), Connection Management (CM), Session Management (SM) dan lain-lain[13].

2.9.2 Mekanisme Kerja WCDMA

WCDMA adalah salah satu dari 5 standar telekomunikasi selular generasi

ketiga yang memiliki kapabilitas layanan dengan kecepatan transfer data sebagai berikut:

a. 144 kbps untuk pengguna dengan mobilitas yang cepat. b. 384 kbps untuk pengguna yang mobilitasnya lambat. c. 2 Mbps untuk pengguna tanpa mobilitas

WCDMA merupakan teknologi direct sequence CDMA dengan chip rate 3,84 Mcps. Sistem generasi ke-3 ini diusulkan oleh badan standarisasi Eropa,

(46)

Gambar 2.16 Alur Evolusi dari Sistem Generasi ke-2 ke Generasi ke-3 Dari evolusi sistem yang ada, terdapat beberapa parameter dari generasi ke-2 yang masih relevan digunakan pada sistem generasi ke-3.

Parameter-parameter yang dimaksud diantaranya: a. Mobility Management (MM) b. GPRS Mobility Management c. Connection Management d. Session Management e. Subscriber Identity Module

Tabel 2.1 menunjukkan beberapa perbedaan mendasar antara teknologi

(47)

Tabel 2.1 Perbandingan Parameter 2G GSM dengan 3G WCDMA

Parameter GSM WCDMA

Metode Akses TDMA CDMA

Bandwidth per Carrier 200 kHz 5 MHz

Frekuensi Kerja 900 MHz & 1800 MHz 1900 MHz & 2100 MHz

Frequency Reused Factor

7 1

Packet Data Timeslot based scheduling (GPRS)

Load based on Packet Scheduling

Frequency Diversity Frequency Hopping Multipath Diversity dengan Rake Receiver

Tidak distandarkan Distandarkan

2.9.3 Keunggulan Teknologi WCDMA

WCDMAsebagai sistem telekomunikasi selular digital memiliki keunggulan yang banyak, di antaranya [15]:

1. Layanan yang Fleksibel

(48)

terminal dapat menerapkan layanan multimedia dengan multiple packet ataupun circuit connection.

2. Efisiensi Spektrum

Penggunaan spektrum radio pada WCDMA sangat efisien. Perencanaan

frekuensi reuse tidak diperlukan karena penerapan reuse "1" pada sistem WCDMA. Kapasitas jaringan dapat ditingkatkan dengan beberapa teknik seperti

Hierarchical Cell Structures (HCS), Adaptive Antena Array (AAA) dan coherent demodulation (bi-directional).

3. Kapasitas dan Cakupan

Transceiver frekuensi radio WCDMA dapat menangani delapan kali lipat user yang menggunakan voice dibandingkan dengan transceiver narrowband.Setiap RF carrier dapat menangani 100 panggilan voice secara simultan, atau 50 internet (data) secara simultan. Kapasitas dari WCDMA diperkirakan dua kali dari Narrowband CDMA dalam lingkungan urban maupun suburban. Adanya bandwidth yang lebih lebar, penggunaan coherent demodulation dan fast power control pada uplink maupun downlink memberikan threshold penerima yang lebih rendah.

4. Ragam Layanan per Koneksi

Packet dan circuitswitched dapat secara bebas digabungkan, dengan variable bandwidth dan kecepatan serta pengiriman yang simultan ke user yang sama dengan kualitas tertentu. Setiap terminal WCDMA dapat mengakses

(49)

yang bervariasi dapat dicapai dengan menggunakan variable orthogonal spreading codes dan penyesuaian dari daya keluaran yang ditransmisikan.

5. Efisiensi Jaringan

Dengan penambahan akses wireless WCDMA ke dalam jaringan digital selular yang telah ada seperti GSM dan inter-networking dua sistem tersebut, jaringan inti dan base station yang sama dapat digunakan. Hubungan antara jaringan akses WCDMA dengan jaringan GSM menggunakan ATM mini-cell transmission protocol, yang dikenal dengan ATM Adaptive Layer 2 (AAL2). Ini merupakan cara yang sangat efisien dalam menangani data paket dalam

meningkatkan kapasitas.

6. Kapasitas Suara yang Baik

Meskipun tujuan utama dari akses wireless generasi ketiga adalah untuk membawa trafik multimedia dengan bit rate yang tinggi, namun dapat pula mendukung mekanisme efisiensi spektrum dari trafik suara. Sebagai contoh,

setiap operator dengan alokasispektrum 2 x 15 MHz dapat menangani setidak-nya 192 panggilan suara per sel sektor.

7. Keterbukaan Akses

(50)

8. Indoor Coverage

Penggunaan mode operasi TDD (Time Division Duplex) secara teknik cocok untuk penerapan unlicensed spectrum pada lingkungan tertutup (indoor).

9. Akses Layanan yang Cepat

(51)

BAB III SIMULATOR HFSS

3.1 Umum

High Frequency Structure Simulator(HFSS) adalah sebuahperangkat lunak

komersil dari perusahaan Ansys untuk pemecahan masalah-masala

perangkat lunak yang sangat populer dan bermanfaat untuk merancang antena, dan untuk merancang rangkaian RF elektronik kompleks yang termasuk filter,

saluran transmisi dan semua yang berkenaan dengannya.Perangkat lunak ini awalnya dikembangkan olehProfesorZoltanCendes dan para mahasiswanya

diCarnegie Mellon University.Dan kemudian ProfesorCendesdan saudara laki-lakinya Nicholas Csendesmendirikan dan memasarkanHFSS pertama kali pada tahun 1989 yang dilakukan berdasarkan kerjasama pemasaran dengan perusahaan

bundle menjadi produk Ansoft.Setelah sekian lama bekerja sama pada periode tahun 1996-2006, HP (yang kemudian menjad

Agilent dengan pro

sedangkanAnsoftdengan produk HFSS mereka. Dan kemudian Ansoft akhirnya diakusisi oleh perusahaan Ansys [16].

AnsoftHFSS merupakan simulator gelombang elektromagnetik penuh dengan performa yang baik untuk memodelkan benda secara tiga dimensi yang

(52)

diperoleh dengan mudah dan akurat. Ansoft HFSS menerapkan metodeFinite Element Method (FEM), adaptive meshing, dan grafik yang bisa memberikan anda pengetahuan tentang permasalahan elektromagnetik secara tiga dimensi.

Ansoft HFSS dapat digunakan untuk menghitung berbagai parameter

seperti S Parameters, frekuensi resonansi, dan medan. Simulator ini khususnya digunakan dalam bidang :

a) Package modeling– BGA, QFP, Flip - chip.

b) PCB Board Modeling Power/Ground plane, Mesh Grid Grounds, Backplane.

c) Silicon/GaAs– Induktor spiral, dan transformator.

d) EMC/EMI Shield Enclosures, Coupling, radiasi medan jauh atau radiasi medan dekat.

e) Komunikasi Antena – antena Dipole, antena Yagi, antena Mikrostrip, antena Horn, untuk komunikasi radar, Frequency Selective Surface (FSS) dan sebagainya.

f) Konektor – koaksial, SFP/XFP, dan sebagainya.

HFSS merupakan sebuah simulator yang interaktif dimana elemen dasar mesh-nya adalah tetrahedron.Tetrahedron membuat penyelesaian persoalan yang berhubungan dengan bentuk geometri tiga dimensi yang dapat disesuaikan

bentuknya dengan keinginan pengguna, terutama bentuk yang memiliki kelengkungan dan bentuk yang kompleks.

(53)

elements, adaptive meshing, dan Adaptive LanczosPade Sweep (ALPS) [17]. Adapun tampilan gambar Ansoft pada layar komputer dapat dilihat pada Gambar 3.1 berikut:

Gambar 3.1 Tampilan Ansoft HFSS

3.2 Instalasi Ansoft HFSS

Ansoft HFSS memiliki syarat minimum untuk di instalasi ke dalam

komputer. Adapun syarat minimum untuk instalasi Ansoftadalah :

1. Sistem operasi Windows XP (32/64 bit), Windows 2000, atau Windows Server 2003.

2. Komputerdengan prosesor Pentium (diusahakan Pentium 4 keatas). 3. Kapasitas RAM (Random Access Memory)minimum 128 Mb. 4. Memiliki minimum 8 MbVideo Card .

5. Mouse.

(54)

Adapun cara instalasi dari Ansoft adalah sebagai berikut :

1. Buka folder Ansoft jalankanautorun.exe sehingga akan muncul tampilan seperti pada Gambar 3.2. lalu akan muncul beberapa opsi. Maka yang pertama dilakukan adalah memasanglibraries (install libraries), lalu ikuti langkah-langkah yang seterusnya dengan menekan tombolnext.dan pilihlah direktori dimana akan dipasanglibraries tersebut.

Gambar 3.2 Tampilan Awal Ansoft HFSS

2. Setelah lakukan pemasanganlibraries, maka dilanjutkan dengan memasang simulator Ansoft HFSS dengan cara menekaninstall software. Lalu ikuti perintah-perintah pemasangan perangkat lunak tersebut. Lalu pilih lokasi

(55)

3.3 Cara Kerja Ansoft HFSS

Ansoft HFSS adalah program yang sangat interaktif dalam menampilkan model peralatan frekuensi radio secara tiga dimensi yang dibuat. Beberapa tahapan dalam Ansoft HFSS diantaranya adalah :

1. Membuat parameter dari suatu model - perancangan bidang, boundries, dan excitation pada model yang dibuat.

2. Menganalisis model - pada tahapan ini model yang telah dibuat akan dianalisis dengan memasukkan frekuensi yang diinginkan dan

bentangan frekuensi yang diinginkan.

3. Hasil - menampilkan hasil dalam bentuk laporan dua dimensi (gambar, tabel, grafik) maupun laporan dalam bentuk tiga dimensi.

4. Penyelesaianloop - proses mendapatkan hasil sepenuhnya otomatis.

Adapun diagram alir dari proses pencarian solusi Ansoft HFSS

(56)

Gambar 3.3 Diagram Alir yang Menunjukkan Cara PencarianSolusi Simulator Ansoft HFSS

3.4 Perancangan Dasar Model pada Ansoft

Pada AnsoftHFSS, perancangan model dapat menggunakan bidang dua dimensi atau bidang tiga dimensi tergantung dari model yang akan dibuat. Semakin kompleks model yang akan dibuat maka semakin kompleks dan banyak

pula bidang yang digunakan pada Ansoft.

Untuk membuat model awal dari model yang diinginkan maka dilakukan

(57)

Gambar 3.4Geometri yang disediakan oleh Simulator Ansoft HFSS

Setelah memilih salah satu bentuk geometri yang diinginkan maka yang dilakukan selanjutnya adalah masukkan beberapa nilai untuk menentukan ukuran

dan posisi model yang ingin dibuat.

Misalkan dalam membuat model kubus atau balok, maka arahkan kursor ketiga arah koordinat sehingga terbentuk balok seperti pada Gambar 3.4 lalu tekan

(58)

Gambar 3.5 Bentuk yang Muncul Setelah Menekan Bidang Balok Pada Ansoft HFSS

3.4.1 Inisialisasi Model

Inisialisasi model adalah pemberian nilai awal dalamangka maupun koordinat dari model yang akan dirancang. Satuan model yangdibuat dapat diatur dengan cara menekan 3D modeler>units.Setelah modeldibuat maka akan munculproperty window yang memiliki 2 jenistab seperti yang ditunjukkan Gambar 3.6.

Gambar 3.6 Property Window yang Keluar Setelah Model Dibuat

Pada tab Command,akan ada beberapa opsi yaituCoordinate System, Position, XSize, YSize, dan ZSize. Prinsip dari pengaturan koordinat ini sama dengan yang dipelajari pada pembuatan grafik pada aplikasi sehari-hari. Position berfungsi untuk meletakkan model pada koordinat yang diinginkan pada sumbu x, sumbu y, dan sumbu z.XSize berfungsi untuk memasukkan panjang garis yang bekerja pada sumbu X dalam artian ini berarti menentukan lebar dari kubus, Sedangkan YSize untuk memasukkan panjang garis yang bekerja pada sumbu y, begitu pula ZSize untuk memasukkan panjang garis yang bekerja pada sumbu z.

(59)

tabung yang akan dibuat, maka parameter yang lain akan muncul seperti radius atau diameter danlength (tinggi atau panjang) model.

Gambar 3.7Property Window dengan Tab Attribute

Pada tab attribute seperti yang ditunjukkan pada Gambar 3.7 terdapat beberapa opsi yang bisa diatur. Misalkan kolomname berfungsi untuk menamai model yang dibuat, sedangkan kolom material berisi bahan yang digunakan oleh model tersebut. Dengan menekan vaccum maka akan muncul beberapa pilihan material yang dapat disesuaikan dengan keinginan.Color berfungsi untuk mewarnai model, dantransparent berfungsi untuk membuat model menjadi transparan.Transparent bisa diatur sesuai dengan keinginan.

Setelah proses inisialisasi model dengan memberikan nilai-nilai dan

besaran pada model maka hal yang perlu dilakukan adalah memasukkan beberapa pengaturan yang mendukung model yang dibuat. Project manager seperti yang ditunjukkan pada Gambar 3.8 berisi pengaturan-pengaturan model yang sesuai

(60)

Gambar 3.8Project Manager Window Pada Ansoft HFSS

3.4.2 Mensimulasikan Hasil Rancangan

Setelah hasil rancangan berhasil dibuat, maka rancangan harus disimulasikan.Untuk mengecek apakah hasil rancangan sudah berjalan dengan baik maka harus menekan HFSS pada toolbarlaluValidation Check.Jika ada yang mengalami kesalahan (error)lakukan pengecekan padaproject manager. Setelah rancangan sudah berjalan dengan baik maka yang harus dilakukan adalah

menganalisa rancangan tersebut dengan cara menekan HFSS kemudian Analyze All. Lalu program akan melakukan perhitungan terhadap model yang telah buat dengan lama waktu yang tidak terbatas tergantung dari kerumitan model dan

(61)

3.5 Aplikasi Ansoft HFSS

Ansoft dapat digunakan untuk berbagai aplikasi antena.Seperti antena Yagi, antena Dipole, antena Horn, dan sebagainya.Gambar 3.9 memperlihatkan salah satu dari aplikasi Ansoft HFSS [18].

Gambar 3.9 Salah Satu Aplikasi dari Ansoft HFSS yaitu AntenaHorn

Waveguide

(62)

BAB IV

PERANCANGAN ANTENA HELIX UNTUK APLIKASI WIDEBAND CODE DIVISION MULTIPLE ACCES

4.1 Umum

Pada Tugas Akhir ini akan dirancang sebuah antena Helix padamode axialyang mampu bekerja dan memenuhi spesifikasi sinyal yang digunakan pada sistemWCDMAsebagai penguat pada sisi terminal seperti pada laptop, PC

(Personal Computer), atau PDA (Personal Digital Assistant) yang dilakukan dengan menggunakan perumusan ilmiah yang ada lalu membandingkan hasilnya dengan menggunakan simulator antenna Ansoft HFSS v10.0.

Tahapan perancangan dimulai dari pemilihan bahan yang digunakan untuk perancangan antena Helix dan selanjutnya menghitung diameter Helix, panjang lilitan, jarak antar lilitan dan diameterground plane dan selanjutnya menyusun bagian-bagian tersebut dengan jarak-jarak tertentu supaya menghasilkan gain dan pengarahan yang sesuai. Hasil dari perhitungan tersebut kemudian

disimulasikandengan simulator Ansoft HFSS v10.0. Dengan simulator Ansoft HFSS v.10.0, dapat diperoleh parameter-parameter antena yang dihasilkan berupa nilai VSWR,gain antena dan pola radiasinya.

4.2 Perancangan Antena

(63)

akanmenjelaskan langkah-langkah perancangan antena Helix yang dilakukan

menggunakan Ansoft HFSS.

Tidak

Ya

parameter-parameter perancangan

mulai

Merancang model

Pengaturan saluran pencatu

Perancangan boundaries

Analisis model

Tampilkan hasil

Apakah sesuai dengan yang di

inginkan?

Buat kesimpulan

selesai

(64)

4.2.1 Perhitungan Parameter Antena

Agar dapat digunakan sebagai antena penguatan sinyal WCDMA, antena Helix harus diatur sedemikian rupa agar dapat bekerja pada frekuensi 1.9 GHz. Untuk perancangan awal digunakan perhitungan panjang gelombang dengan menggunakan persamaan 2.1 didapatkan panjang gelombang dari antena yang akan dibuat adalah:

Setelah didapatkan nilai panjang gelombang didapatkan maka selanjutnya

adalah menghitung diameter (D) antena Helix yang digunakan.Sebelum

menghitung diameter antena Helix, terlebih dahulu menentukan nilai . Dalam

perancangan ini ditentukan nilai (nilai optimum) atau dapat ditulis menjadi

. Maka nilai diameter dapat dihitung dengan persamaan 2.17

sebagai berikut :

Berdasarkan Gambar 2.13 maka jarak antara lilitan berkaitan dengan nilai

(65)

karena nilai pitch angelyang optimal adalah berkisar antara 12° ≤ α ≤ 14°. Sehingga jarak antara lilitan Helix adalah :

Untuk memenuhipersyaratan yang sudah ditetapkan, yaitu jumlah lilitan

helix harus lebih dari tiga lilitan (n>3) [11]. Maka dalam perancangan helix ini

dimulai dengan empat lilitan. Dengan menggunakan persamaan 2.20 maka panjang

dari antena Helix (axial length) menjadi :

(66)

Impedansi antena Helix adalah :

(2.18)

Melihat impedansi antena ini, maka diperlukan jaringan penyesuai impedansi agar impedansi antena sesuai dengan impedansi saluran transmisi (50

Ω).

Untuk gain antena dengan 4 lilitan dapat dihitung sebagai berikut :

(2.17)

4.3 Perancangan Model Antena Helix

Sebelum melakukan perancangan model antena, pada simulator Ansoft HFSS dipilih HFSS laluSolution type lalu pilihDriven Modal.Dan dilakukan

pengaturan terhadap satuan yang digunakan dengan memilih3D Modeler lalu pilih unit dan digunakan satuan mm sebagai satuan yang digunakan.Setelah itu

dilakukan perancangan model antena, adapun langkah-langkah perancangan

(67)

a. Perancangan inner

Adapun langkah-langkah untuk merancang innerantena adalah : 1) Pilih menu draw pada bagian kiri atas program lalu pilih cylinder.

2) Akan muncul sebuah kotak yang dinamakan Property Window.Yang terdiri atas dua buah tab. Pada tab attribute, pada bagian namediberi nama inner, lalu klik bagian material, ganti bahan menjadi perfect conductor. Pada tab command, tentukan radius 1 mm,height -23 mm. Masukkan nilaicenter potition, yaitu26.5, 0, 3 (satuan mm) seperti terlihat pada gambar 4.2 (a). Pengaturan tabcommand attibute tersebut dapat dilihat seperti Gambar 4.2 (b).

(68)

Gambar 4.2(b) Pengaturan TabAttibute pada Ansoft HFSS

b. Perancangan outer

1) Pilih menu draw pada bagian kiri atas program lalu pilih cylinder.

2) Sama halnya seperti perancangan inner tentukanradius-nya 2.25 mm, height -20 mm dan nilaicenter potition, yaitu26.5, 0, 3 (satuan mm) pada tab command.

3) Pada tab attribute ubah namanya menjadi outer dan atur material menjadi vacuum.

4) Membuatsubtract dengan cara pilih menudraw lalu pilihcylinder. Tentukanradius, yaitu1 mm. Tentukanheight,yaitu-23 mm. Masukkan nilaicenter potition, yaitu20, 0, 3 (satuan mm). Pilih menudrawlagi lalu pilihcylinder. Tentukanradius, yaitu1 mm. Tenukanheight,yaitu-7 mm. Masukkan nilaicenter potition, yaitu26.5, 0, 3 (satuan mm). Kemudian blok ketigaGambar, klik kanan, pilih edit, pilih boolean, lalu klik subtract.

(69)

Jika kedua langkah diatas telah dilakukan makan akan tampak seperti Gambar 4.3.

Gambar 4.3 Hasil Perancangan Model Inner dan Outter

c. Perancangan Ground Plane

1) Pilih menu drawpada bagian kiri atas program lalu pilih circle.

2) Akan muncul sebuah kotak yang dinamakan Property Window.Yang terdiri atas 2 buah tab. Pada tab attribute, pada bagian namediberi nama ground. Pada tab command, masukkan nilaicenter potition, yaitu0, 0, 300 (satuan mm), kemudian tentukan radius, yaitu82,5 mm.

3) Membuatsubtractdengan cara pilih menudrawlalu pilihcylinder. Tentukanradius, yaitu2.25 mm. Tentukanheight,yaitu-4 mm, dan masukkan nilaicenter potition, yaitu26.5, 0, 3 (satuan mm). Kemudian blok kedua Gambar, klik kanan, pilih edit, pilih boolean, lalu klik subtract.

4) Pilih warna sesuai yang diinginkan dan atur transparansinya, maka hasilnya Cylinder

I

(70)

Gambar 4.4 Hasil Perancangan Model Ground Plane

d. Perancangan Helix

1) Pilih menu drawpada bagian kiri atas program lalu pilih line.

2) Masukkan nilaipoint 1 = 0 ,-27 ,3,danpoint 2 = 0 ,-25 ,3 (satuan mm). 3) Kemudian pilih item drawkembali lalu pilih Helix.

4) Akan muncul Property Window.Pada tab command, masukkan nilaicenter potition, yaitu0, 0, 0 (satuan mm), tentukan nilaidirection = 0, 0, 10 (satuan mm), picth(40 mm). Untuk nilainumber of turn (4). Pada tab attribute, pada bagian namediberi nama Helix

5) Pilih warna sesuai yang diinginkan dan atur transparansinya

e. Perancangan strip.

1) Pilih menu drawpada bagian kiri atas program lalu pilih circle.

2) Akan Property Window. Pada tab command, masukkan nilaicenter potition, yaitu0, 0, 0 (satuan mm), kemudian tentukan radius (30 mm). Pada tab attribute, pada bagian namediberi nama strip.

Cylinder I

Cylinder O t

(71)

3) Membuatsubtractdengan cara pilih menudrawlalu pilihcircle. Tentukancenter potition= 0, 0, 3 (satuan mm). Tentukanradius, yaitu23mm. Pilihdrawlalu pilihrectangle.Tentukanpotition= 0, -60, 3 (satuan mm). Tentukanxsize (-50 mm) dan ysize(110 mm). Pilihdrawlalu pilihrectangle.Tentukanpotition= 0, 3, 3 (satuan mm). Tentukanxsize (50 mm) dan ysize(60 mm).Kemudian blok ke-4 Gambar, klik kanan, pilih edit, pilih boolean, lalu klik subtract. 4) Pilih warna sesuai yang diinginkan dan atur transparansinya.

Setelah semua langkah tersebut dilakukan maka akan dihasilkan model antena Helix seperti yang tampak pada Gambar4.5.

Gambar 4.5 Hasil Perancangan Model Antena Helix Strip

Inner dan outer Helix

(72)

Setelah model selesai di buat maka selanjutnya dilakukan perancangan

saluran pencatu. Saluran pencatu diletakkan pada outter. Adapun langkah perancangan saluran pencatu adalah sebagai berikut

1. Klikouter pada tree project

2. Lalu klik kanan, pilihselect faces, kemudian klik kanan lagi atau dengan menekan tombol ‘b’ sampai yang di blok hanya alas cylinderouter, seperti terlihat pada Gambar 4.6.

Gambar 4.6 Penentuan Letak Saluran Catu

3. Kemudian pilih menu HFSS, excitation, assignlalu kliklumpport.

4. Pada tab General, isi namanya dengan LumpPort1 tahanan yang diisi adalah 50 ohm, lalu pilih next. Sedangkan pada tab mode, dipilihnew lineseperti ditunjukkan pada Gambar 4.7 lalu dibuat arah garis di sepanjang alas dari cylinder outer yang dibuat.

Cylinder Outer Cylinder Inner

(73)

Gambar 4.7Pembuatan Saluran Catu pada Outer

4.5 Perancangan Ruang Batasan (Boundaries)

Ruang batasan dimaksudkan agar antena yang dibuat dapat menghasilkan pola radiasi yang maksimal.Ruang batasan ini juga diibaratkan medium penghantar sinyal seperti udara, ataupun ruang hampa udara. Adapun langkah-langkah

pembuatanboundariesadalah :

1. Pilih menu draw pada bagian kiri atas program lalu pilihcylinder.

(74)

Gambar 4.8 Peletakan Boundaries pada Ansoft HFSS

3. Lalu pada bagian menu HFSS, dipilihboundaries, lalu dipilihassign lalu digunakanradiation dalamboundaries tersebut

4.5.1 Arahan Pancaran(Radiation)

Setelah merancang boundaries, maka selanjutnya dilakukan penentuan arahan pancaran. Langkah-langkah menentukan arahan pancaran dalam Ansoft HFSS adalah sebagai berikut :

1. Pada bagian menu, dipilih HFSS, kemudian dipilih radiation , lalu insert far field setup, lalu infinite sphere.

(75)

4.5.2 Analisis Model

Setelah model antena selesai dibuat, langkah selanjutnya adalah menjalankan simulasinya. Untuk menjalankan simulasi ini langkah selanjutnya adalah klik menu HFSS kemudian pilih analysis setup, lalu pilih add solution setup, maka akan munculsolution setup window.

Lalu isi nama setup-nya, ikuti saja yang ada di dalam tab (misalnya setup1, setup2, dan seterusnya), kemudian isi nilai darisolution frequency menjadi 1,9 GHz. Nilai solution frequency ini sama untuk tiap setup. Lalu isi nilaimaximum number of phases menjadi 20. Kemudian isi nilaimaximum delta S sebesar 0,02 lalu pilih OK.

Selanjutnya klik menu HFSS kemudian pilihanalysis setup lalu pilih add sweep. Pilihsolution setup-nya setup1 dan klik tombol OK. Kemudian edit window sweep-nya, atursweep type menjadifast dan atur pulafrequency setup type menjadi linear count. Kemudian atur frekuensi start sebesar 1,8GHz, frekuensi stop2,1 GHz dan buat nilaicount menjadi 31. Lalu klik tombol OK.

Setelah itu langkah selanjutnya adalah klik menu HFSS lalu pilih

(76)

• Boundaries and Excitation

Mesh Operation

Analysis Setup

Optimetrics

Radiation

Jika ada salah satu dari keenam hal ini yang tidak terpenuhi (dalam hal

ini ada error) maka proses simulasi tidak dapat dilanjutkan.

Setelah melewati validation check, langkah selanjutnya adalah menganalisis model. Untuk menganalisis model ini caranya adalah dengan

menekan menu HFSS lalu pilihanalyze all. Proses menganalisis ini berlangsung sekitar 30-180 menit.

4.5.3 Menampilkan Hasil Simulasi

Setelah proses analisis selesai maka dapat ditampilkan grafik VSWR, pola

radiasi, dan gain-nya.Untuk menampilkan grafik VSWR, caranya adalah dengan menekan tombol HFSS lalu pilihresult dan kemudian pilihcreate report. Aturreport type menjadi modalsolution datadan aturdisplay set menjadi rectangular plot, lalu tekan OK. Maka akan munculwindow traces. Pada window traces ini atur solution menjadi setup1:sweep1. Kemudian pada tab Y aturcategory menjadi VSWR, atur juga quantity menjadi VSWR(lumpport1), kemudian tekanadd trace lalu tekandone. Maka akan muncul grafik VSWR.

(77)

traces. Pada window traces ini atur solution menjadi setup1:sweep1. Kemudian pada tab Y aturcategory menjadidirectivity, atur juga quantity menjadi DhirTotal, kemudian tekanadd trace lalu tekandone. Maka akan muncul grafik pola radiasi.

Untuk menampilkangain, caranya adalah dengan menekan tombol HFSS lalu pilihresult dan kemudian pilihcreate report. Aturreport type menjadifar field dan aturdisplay set menjadidata table, lalu tekan OK. Maka akan muncul window traces. Pada window traces ini atur solution menjadisetup1:sweep1. Kemudian pada tab Y aturcategory menjadigain, atur juga quantity menjadi GainTotal, kemudian tekanadd trace lalu tekandone. Maka akan muncul tabel gain.

Dari model yang telah dibuat dengan jumlah lilitan (n) = 4, maka didapat hasil simulasinya sebagai berikut :

a) VSWR

Berdasarkan simulasi yang telah dilakukan, didapatkan nilai VSWR

(78)

Gambar 4.9 Grafik VSWR pada Simulasi Awal

b) Gain

Dari simulasi yang telah dilakukan maka didapat gain seperti yang

diperlihatkan oleh Tabel 4.1.

(79)

Dari tabel 4.1 diperoleh gainterbesar yaitu pada sudut 0° dengan nilai sebesar 11.5 dB untuk frekuensi kerja 1,9 GHz.

Dan pola radiasi gain (radiation pattern) diperoleh yaitu seperti yang terlihat oleh Gambar 4.10.

Gambar 4.10 Gain Hasil Simulasi Awal c) Pola Radiasi

Gambar

Gambar 2.8 Voltage Standing Wave Ratio
Gambar 2.9 Antena Isotropis
Gambar 2.11 Contoh AntenaOmnidirectional
Gambar 2.12 Model Antena Helix
+7

Referensi

Dokumen terkait

Adapun parameter antena mikrostrip yang akan dibahas pada Tugas Akhir ini adalah bentuk antena, VSWR, frekuensi antena, bandwidth, gain antena, dan polaradiasi.. Perancangan

Dari hasil simulasi dapat dilihat bahwa antena Biquad hasil perancangan sudah memiliki VSWR < 2 sehingga diharapkan antena dapat bekerja dengan baik pada

Berdasarkan gambar 4 dan 5 dapat diketahui nilai VSWR dari simulasi yang dilakukan, antena mikrostrip patch array 1 elemen memiliki nilai VSWR terendah yaitu

Berdasarkan gambar 4 dan 5 dapat diketahui nilai VSWR dari simulasi yang dilakukan, antena mikrostrip patch array 1 elemen memiliki nilai VSWR terendah yaitu 1:1,01

Dari hasil simulasi dapat dilihat bahwa antena Biquad hasil perancangan sudah memiliki VSWR < 2 sehingga diharapkan antena dapat bekerja dengan baik pada

Setelah semua langkah perancangan pada bab 3 telah dilakukan dengan menggunakan simulator Ansoft HFSS v10 maka didapatlah model antena mikrostrip patch segiempat

Berdasarkan gambar di atas terlihat bahwa dari hasil simulasi menggunakan ansoft HFSS 13.0 dan dari hasil pengukuran dapat dilihat bahwa radiasi antena dipole  /2 tidak

Hasil Simulasi Antena Setelah Optimalisasi Pada proses ini dimana hasil simulasi antena seperti VSWR, return loss, pola radiasi, dan gain antena mikrostrip patch array 1x2 rectangular