• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:BJGA:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:BJGA:"

Copied!
8
0
0

Teks penuh

(1)

of a Riemannian manifold

Cristian Eni

Abstract. On the tangent bundle of a Riemannian manifold (M, g) we consider a pseudo-Riemannian metric defined by a symmetric tensor fieldc onM and four real valued smooth functions defined on [0,∞). We study the conditions under which the above pseudo-Riemannian manifold has constant sectional curvature.

M.S.C. 2000: Primary 53C55, 53C15, 53C05.

Key words: tangent bundle, pseudo-Riemannian metric, curvature.

1

Necessary facts about the tangent bundle

T M

Let (M, g) be a smoothn-dimensional Riemannian manifold and let π: T M →M be its tangent bundle. ThenT M has a structure of a 2n-dimensional smooth mani-fold induced from the structure of smoothn-dimensional manifold of M as follows: every local chart (U, φ) = (U, x1, ..., xn) on M induced a local chart (π−1(U),Φ) =

(π−1(U), x1, ..., xn, y1, ..., yn) onT M, where we made an abuse of notation,identifying

xi with πxi =xiπ andyi being the vector space coordinates ofy π−1(U) with

respect to the natural local frame (( ∂

∂x1)π(y), ...,(∂x∂n)π(y)) i.e.y=yi( ∂

∂xi)π(y)

This special structure ofT M allows us to introduce the notion ofM-tensor fields on it (see [3]). An M-tensor field of type (p, q) on T M is defined by sets of np+q

functions depending onxi and yi, assigned to induced local charts (π−1(U),Φ) on

T M, thus the change rule is that of the components of a tensor field of type (p, q) on M, when a change of local charts on the base manifold is performed. Remark that the componentsyi define anM-tensor field of type (1,0) onT M. It is also obvious that

a usual tensor field of type (p, q) onM may be thought as anM-tensor field of type (p, q) onT M. In the case of a covariant tensor field, the correspondingM-tensor field on the tangent bundleT Mis nothing else but the pullback of the initial tensor field by the submersionπ:T M →M. Other usefulM-tensor fields onT M may be obtained as follows. Leta: [0,∞)→R be a smooth function and letkyk2=g

π(y)(y, y) be the

square of the norm of the tangent vectory. Then the components a(ky k2i j define

a M-tensor field of type (1,1) on T M. Similarly, if gij(x) are the local coordinate

Balkan Journal of Geometry and Its Applications, Vol.13, No.2, 2008, pp. 35-42. c

(2)

components of the metric tensor field g on M, then the components a(k y k2)g ij

define a symmetricM-tensor field of type (0,2) onT M. The componentsg0i=yjgji

define anM-tensor field of type (0,1) on T M.

Recall that the Levi-Civita connection ˙∇of the Riemannian metric gdefines the direct sum decomposition

T T M =V T M⊕HT M

of the tangent bundle toT M into the vertical distribution V T M =ker π and the horizontal distribution HT M. The vector fields ( ∂

∂y1, ...,

∂yn) define a local frame

field forV T M and for the horizontal distributionHT M we have the local frame field ( δ

δx1, ...,

δ

δxn), where

δ δxi =

∂ ∂xi −Γ

h i0

∂ ∂yh; Γ

h

i0= Γhikyk

and Γh

ij are the Christoffel symbols defined by the Riemannian metric g. In [5] the

author proves the following

Lemma 1. Ifn >1 andu, v are smooth function on T M such that

ugij+vg0ig0j= 0, g0i=yjgji, y∈π−1(U)

on the domain of any induced local chart onT M, thenu=v= 0.

In a similar way we can obtain

Lemma 2. Ifn >1 andu, v are smooth function on T M such that

ugjkδih−ugijδkh+vg0ig0jδkh−vg0jg0kδhi = 0, g0i=yjgji, y∈π−1(U)

on the domain of any induced local chart onT M, thenu=v= 0.

Remark.From the relation

ugjkyiyh−ugikyjyh= 0, y∈π−1(U),

we obtainu= 0.

Since we work in a fixed local chart (U, φ) onM and in the corresponding induced local chart (π−1(U),Φ) on T M, we shall use the following simpler notations

∂ ∂yi =∂i,

δ δxi =δi

We also denote by

t=1 2 kyk

2=1

2gπ(y)(y, y) = 1 2gij(x)y

(3)

2

A pseudo-Riemannian metric on

T M

Letcbe a symmetric tensor field of type (0,2) onM, and leta1, b1, a2, b2: [0,∞)→R

be smooth functions. Consider the following symmetric tensor field of type (0,2) on T M (see [6],[7],[4])

The expression ofGin local adapted frames is defined by the followingM-tensor fields

G1ij =G(δi, ∂j) =a1gij+b1g0ig0j,

G2ij =G(δi, δj) =a2cij+b2g0ig0j.

The associated matrix ofGwith respect to the adapted local frame is 

The conditions forGto be nondegenerate are ensured if

a1(a1+ 2tb1)6= 0.

Under these conditions the matrix (G1

ij) has the inverse with the entries

H1ij = 1

(4)

Proposition 3.The Levi-Civita connection∇of the pseudo-Riemannian manifold

(T M, G)has the following expression in the local adapted frame (∂1, ..., ∂n,

δ1, ..., δn)

∇∂i∂j = Q

h

ij∂h, ∇δi∂j = (Γ

h

ij+Pejih)∂h+Pjihδh,

∇∂iδj = P

h

ijδh+Peijh∂h, ∇δiδj = (Γ

h

ij+Seijh)δh+Sijh∂h,

where theM-tensor fieldsQh

ij,Pijh,Peijh,Sijh,Seijh are given by:

Qhij = 1 2H

hk

1 (∂iG1jk+∂jG1ik),

Pijh = 1 2H

hk

1 (∂iG1jk−∂kG1ij),

e Pijh =1

2H

hk

1 ∂iG2jk−

1 2H

rl

1(∂iG1jl−∂lG1ij)G2rkH1kh,

Sijh =a2

2 ( ˙∇icjk+ ˙∇jcki−∇k˙ cij)H

kh 1 − −a1R0ijkH1kh+

1 2H

sl

1(∂lG2ij)G2skH1kh,

e Sijh =−1

2H

hk 1 ∂kG2ij,

Rlijk denoting the local coordinate components of the Riemann-Christoffel tensor of

the Levi-Civita connection∇˙ onM andR0ijk=ylRlijk

Remark.Replacing the expressions ofG1ij,G2ij,H1ij,∂iG1jk,∂iG2jk by their local

coordinate components we obtain some quite complicated expressions.

The curvature tensor field K of the connection ∇ is defined by the well-known formula

K(X, Y)Z=∇X∇YZ− ∇Y∇XZ− ∇[X,Y]Z, X, Y, Z∈Γ(T M)

Proposition 4. The local coordinate expression of the curvature tensor field in the adapted local frame(∂1, ..., ∂n, δ1, ..., δn)is given by

K(∂i, ∂j)∂k =Y Y Y Ykijh ∂h,

K(∂i, ∂j)δk=Y Y XYkijh ∂h+Y Y XXkijh δh,

K(∂i, δj)∂k=Y XY Ykijh ∂h+Y XY Xkijh δh,

K(∂i, δj)δk=Y XXYkijh ∂h+Y XXXkijh δh,

K(δi, δj)∂k=XXY Ykijh ∂h+XXY Xkijh δh,

K(δi, δj)δk =XXXYkijh ∂h+XXXXkijh δh,

(5)

Y Y Y Yh

kij=∂iQhjk+QljkQilh−∂jQhik−QlikQhjl

Y Y XYkijh =∂iPejkh +PeilhPjkl +Pejkl Qhil−∂jPeikh−PejlhPikl −Peikl Qhjl

Y Y XXkijh =∂iPjkh +Pjkl Pilh−∂jPikh −Pikl Pjlh

Y XY Yh

kij =∂iPekjh +Pekjl Qhil+PeilhPkjl −PeljhQlik

Y XY Xh

kij=∂iPkjh +Pkjl Pilh−PljhQlik

Y XXYh

kij=∂iSjkh +Sjkl Qhil+Sejkl Peilh−SjlhPikl −Peikl Peljh−∇j˙ Peikh

Y XXXh

kij=∂iSejkh +Sejkl Pilh−SejlhPikl −Peikl Pljh

XXY Yh

kij= ˙∇iPekjh +Pekjl Pelih+Pkjl Silh−∇j˙ Pekih −PekilPeljh−Pkil Sjlh+

+Rh

kij+Rl0ijQhlk

XXY Xkijh =Pekjl Plih+Pkjl Seilh−Pekil Pljh−Pkil Sejlh

XXXYh

kij = ˙∇iSjkh +SilhSejkl +Sjkl Pelih−∇j˙ Sikh −SjlhSelik−SlikPeljh+R0ijl Pelkh

XXXXh

kij= ˙∇iSejkh +Sejkl Seilh+Sjkl Plih−∇j˙ Seikh −Seikl Sejlh−Sikl Pljh+

+Rh

kij+Rl0ijPlkh

Remark.Note that, as a first step, the formulae for the local expression ofKalso contain some other terms involving the Christoffel symbolsΓh

ij. However, all of these

terms are involved in the derivative∇˙. For example

˙

∇iPejkh =δiPejkh −ΓlijPelkh −ΓlikPejlh+ ΓhilPejkl ,

but using the expression ofPeh

ij and taking account of relations (2.2) we obtain after

a straightforward computation that

˙

∇iPejkh = a ′

2

2 H

hl

1 g0j∇i˙ ckl−

a2

2H

sl

1(∂jG1kl−∂lG1jk)( ˙∇icsr)H1rh

Remark also that the terms∇i˙ Qh

jk and∇i˙ Pjkh do not appear because they are zero as

follows from the formulae (2.2).

Now, we have to replace the expression of the M tensor fieldsQh

ij, Pijh, Peijh,Shij,

e Sh

ij in order to obtain the explicit expression of the components ofK. However, the

final expressions are quite complicated, but they may be obtained after some long and hard computation made by using the Mathematica package RICCI.

Recall that the pseudo-Riemannian manifold (T M, G) has constant sectional cur-vaturekif its curvature tensor fieldKis given by

K(X, Y)Z=K0(X, Y)Z =k(G(Y, Z)X−G(X, Z)Y),∀X, Y, Z∈Γ(T M).

In order to find under which conditions (T M, G) has constant sectional curvature we shall consider the differences between the components of the tensor fieldsK andK0

and we shall denote them byDif f. For example

Dif f Y Y Y Ykijh =Y Y Y Ykijh −Y Y Y Y0kijh . The explicit expression ofDif f Y Y Y Yh

kij is

Dif f Y Y Y Ykijh = a ′

1−b1

2(a1+ 2tb1)

(6)

+ 1

Using again Lemma 2 and taking account that a1 6= 0 it follows that

Dif f Y Y XYkijh = 0 if and only ifk= 0. Under the conditionsb1=a

Now we may consider the following cases:

(i)a′2= 0, b2= 0 so the pseudo-Riemannian metricGis given by

the remaining differences we have

(7)

˙

∇i∇k˙ chj −∇j˙ ∇k˙ chi + ˙∇j∇˙hc

ik−∇i˙ ∇˙hcjk= 0.

Observing that the first bracket of the expression of Dif f XXXYh

kij is zero if and

only if the second bracket of it is zero we may state:

Theorem 5. If the tangent bundle (T M, G) has constant sectional curvature, where G has the entries given by (2.3), then it must be flat. Moreover, (T M, G) is flat if and only if(M, g)is flat and the tensor field c satisfies the condition

(2.4) ∇i˙ ∇l˙ cjk−∇i˙ ∇k˙ clj+ ˙∇j∇k˙ cli−∇j˙ ∇l˙ cik= 0.

A symmetric tensor fieldc of type (0,2) onM is Codazzi tensor field if

( ˙∇Xc)(Y, Z) = ( ˙∇Yc)(X, Z), X, Y, Z ∈Γ(M)

Note that the condition (2.4) is fulfilled if c is parallel with respect to ∇ or it is a Codazzi tensor field onM.

(ii)a2= 0,b2= 0 so the pseudo-Riemannian metricGis given by

(2.5)

          

G(∂i, ∂j) = 0,

G(δi, ∂j) =a1gij+a

1g0ig0j,

G(δi, δj) = 0,

wherea1: [0,∞)→Ris a smooth function. In this case all the differencesDif f are

zero, so we have the following

Theorem 6. If the tangent bundle (T M, G) has constant sectional curvature, where G has the entries given by (2.5), then it must be flat. Moreover, (T M, G) is flat if and only if(M, g)is flat.

(iii)a2= 0, so the pseudo-Riemannian metricGis given by

(2.6)

          

G(∂i, ∂j) = 0,

G(δi, ∂j) =a1gij+a

1g0ig0j,

G(δi, δj) =b2g0ig0j,

wherea1, b2: [0,∞)→Rare smooth functions, b2(0) = 0. In this case we have

Dif f XXY Ykijh =ugjkyiyh−ugikyjyh,

whereu= b2(a1b2−2a′1b2t+2a1b

2t)

4a1(a1+2a′

1t)2

. FromDif f XXY Yh

kij= 0 we have, using the remark

(8)

b2(a1b2−2a

1b2t+ 2a1b

2t) = 0.

Remark thatb2= 0 is a solution of this equation. Next we shall prove thatb2= 0 is

the unique solution of this equation. First of all let us observe that

¡tb22

a2 1

¢′ =a1b

2

2+ 2ta1b2b

2−2a

1b22t

a3 1

= 0,∀t≥0

It follows that tb22a−12 is a constant function, but since b2(0) = 0, we must have

tb22(t)a−12(t) = 0,∀t ≥0, sob2(t) = 0, for all t ≥0. As a consequence of Theorem 6

we obtain:

Theorem 7. If the tangent bundle (T M, G) has constant sectional curvature, where G has the entries given by (2.6), then it must be flat. Moreover, (T M, G) is flat if and only if(M, g)is flat and b2= 0.

Acknowledgement.The author is indebted to Professor V. Oproiu for suggesting the subject and for the advice during the preparation of this paper.

References

[1] C.L.Bejan, V. Oproiu Tangent bundles of quasi-constant holomorphic sectional curvatures,Balkan Journal of Geometry and Its Applications 11 (1) (2006), 11-22.

[2] J.M.Lee,A Mathematica package for doing tensor calculation in differential ge-ometry. User’s Manual, 2000.

[3] K.P.Mok, E.M. Patterson, Y.C. Wong, Structure of symmetric tensors of type (0,2) and tensors of type (1,1) on the tangent bundle, Trans. Amer. Math. Soc., 234 (1977), 253-278.

[4] C. Oniciuc, On the harmonic sections of tangent bundles, An. Univ. Buc., 1 (1998), 67-72.

[5] V. Oproiu,Some classes of natural almost Hermitian structures on the tangent bundles.Publ. Math. Debrecen 62 (2003), 561-576.

[6] V. Oproiu,On the harmonic sections of cotangent bundles, Rend. Sem. Fac. Sci. Univ. Cagliari 59 (2), (1989), 177-184.

[7] V. Oproiu, N. Papaghiuc, Some classes of almost anti-hermitian structures on the tangent bundle, Mediterr. J. Math. 1 (2004), 269-282.

[8] D.D. Poro¸sniuc, A class of locally symmetric K¨ahler Einstein structures on the nonzero cotangent bundle of a space form,Balkan Journal of Geometry and Its Applications, 9 (2), (2004), 68-81.

[9] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, M. Dekker, New York 1973.

Cristian Eni

Referensi

Dokumen terkait

Sama halnya dengan Perangkat Radio Sagem Link F yang menggunakan sistem dasar transmisi untuk komunikasi jarak jauh, radio Sagem Link F dilengkapi dengan

Tingkatan brand awareness yang paling rendah adalah brand unware (tidak menyadari merek), dimana konsumen tidak menyadari adanya merek, brand recognition

[r]

Dalam menggunakan sumberdaya yang ada secara bersama – sama, missal seorang pengguna yang berada 100 km jauhnya dari suatu data, tidak mendapatkan. kesulitan dalam

Dalam proses Pembuktian Kualifikasi tersebut, saudara diharapkan membawa dokumen asli beserta 2 (dua) rangkap salinannya di kertas A4 yang telah diinput dan dioupload

Departemen Keuangan Republik Indonesia, Direktorat Jenderal Kekayaan Negara Kantor Wilayah XII Banjarmasin bekerjasama dengan Unit Layanan Pengadaan Kota Banjarbaru mengundang

Besides using its tentacles to catch small fish, sea plants, crab and lobsters, the octopus also uses them against its enemies.. The octopus wraps its tentacles around the victim

PEMERINTAH KABUPATEN TANAH BUMBU SEKRETARIAT DAERAH.. UNIT