• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
10
0
0

Teks penuh

(1)

Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

ON THE INVARIANCE PROPERTY OF THE FISHER INFORMATION FOR A TRUNCATED LOGNORMAL

DISTRIBUTION (I)

Ion Mihoc, Cristina I. F˘atu

Abstract.The Fisher information is well known in estimation theory. The objective of this paper is to give some definitions and properties for the trun-cated lognormal distributions. Then, in the next paper ([2]), we shall deter-mine some invariance properties of Fisher’s information in the case of these distributions.

Keywords: Fisher information, lognormal distribution, truncated distribu-tion, invariance property

2000 Mathematics Subject Classification: 62B10, 62B05.

1.Normal and lognormal distributions

Let X be a normal distribution with density function

f(x;mx, σx2) =

1

2πσx

exp (

−1

2

xm

x

σx

2)

, xR, (1) where the parameters mx and σx2 have their usual significance, namely:

mx =E(X), σx2 =V ar(X), mx ∈R, σx >0.

Definition 1.1.If X is normally distributed with mean mx and variance

σx2, then the random variable

Y =eX, orX = lnY, Y >0, (2) is said to be lognormally distributed. The lognormal density function is given by

g(y;mx, σx2) =

1

2πσx

1 yexp

  

−12 lnyσ−mx

x

!2  

(2)

E(Y) =my = exp mx+

σx2 2

!

, V ar(Y) =σy2 = exp{2mx+σx2}

eσx2−1. (4)

Remark 1.1.From the relations (4), we obtain

mx = ln

 

m2y q

m2

y +σy2

, σ2x= ln "

m2y+σ2y m2

y

#

. (5)

2.The truncated lognormal distributions

Definition 2.1. We say that the random variable Y has a lognormal distribution truncated to the left at Y = a, a R, a > 0 and to the right at Y = b, b R, a < b, denoted by Ya↔b, if its probability density function ,

denoted by ga↔b(y;mx, σy2), is of the form

ga↔b(y;mx, σx2) =

        

k(a,b)

2πσ

1

y exp

−12

lny

−mx

σx 2

if 0< ayb, 0 if 0< y < a

0 if y > b,

(6)

where the constant

k(a, b) = Φ(lnbmx 1 σx )−Φ(

lnamx

σx ) (7)

results from the conditions

10 g

a↔b(y;mx, σx2)≥0if y ∈(0,∞),

20 +R∞

0

ga↔b(y;mx, σ2x)dx= 1.

(8)

Remark 2.1.The function

Φ(z) = √1

z

Z

−∞

exp t

2

2 !

(3)

for which we have the following relations

Φ(−∞) = 0,Φ(0) = 1

2,Φ(+∞) = 1,Φ(−z) = 1−Φ(z), (10) is the normal distribution function corresponding to the standard normal ran-dom variable

Z = X−mx σx

, M(Z) = 0, V ar(Z) = 1 (11) which has the probability density function

f(z; 0,1) =f(z) = √1

2π exp − t2

2 !

, z (−∞,+). (12)

Remark 2.2. A such truncated probability distribution can be regarded as a conditional probability distribution in the sense that if X has an un-restricted distribution with the probability density function g(y;mx, σx2), then

ga↔b(y;mx, σx2),as defined above, is the probability density function which

gov-erns the behavior of subject to the condition that Ya↔b is known to lie in [a, b].

Also, in such case, we say that the random variable Ya↔b has a bilateral

trun-cated lognormal distribution with the limits a and b.

Remark 2.3.It is easy to see that from the relations (6), (7) and (10) follows

lim

a→0ga↔b(y;mx, σ 2

x) =

  

1 Φ(lnbmx

σx )

.g(y;mx, σx2) if 0< y≤b

0 if y > b, (13)

lim

b→+∞

ga↔b(y;mx, σx2) ==

  

1 1−Φ(lna−mx

σx )

.g(y;mx, σx2) if y ≥a

0 if 0< y a, (14) and

lim

a→−0,b→+∞

ga↔b(y;mx, σx2) = √21πσx

1

y exp

−12

lny−mx

σx 2

(4)

where gb(y;mx, σx2) is the probability density function then when Y→b has

a lognormal distribution truncated to the right at Y = b; ga←(y;mx, σx2) is

the probability density function then when Ya← has a lognormal distribution

truncated to the left atY =aandg(y;mx, σ2x)is the probability density function

then when Y has an ordinary lognormal distribution.

Theorem 2.1.If Ya↔b is a random variable which follows a bilateral

trun-cated lognormal distribution, then its expected value E(Ya↔b) and second

mo-ment E(Y2

a↔b) have the following expressions

E(Ya↔b) = exp

( mx+

σx2 2

)hΦlnb−mx

σx −σx

−Φlna−mx

σx −σx i h

Φlnb−mx

σx

−Φlna−mx

σx

i , (16)

E(Ya2b) = expn2mx+ 2σx2

o h

Φlnb−mx

σx −2σx

−Φlna−mx

σx −2σx i h

Φlnb−mx

σx

−Φlna−mx

σx

i . (17) Proof. Making use of the definition of E(Ya↔b), we obtain

E(Ya↔b) =

k(a, b)

2πσx b

Z

a

exp   

−12 lnyσ−mx

x

!2  

dy. (18)

By making the change of variables

t = lny−mx σx

, (19)

we obtain

y= exp{mx+σxt}, dy=σxexp{mx+σxt}dt, (20)

and (18) can be rewritten as follows

E(Ya↔b) =

k(a, b) exp{mx}

lnbmx σx Z

lnamx σx

exp

−1

2(t

2

−2σxt)

(5)

= k(a, b) exp n

mx+σ

2

x

2

o

lnbmx σx Z

lnamx σx

exp

−12(tσx)2

dt= (22)

= k(a, b) exp n

mx+σ

2

x

2

o

lnbmx σx −σx

Z

lnamx σx −σx

exp

−12w2

dw, (23)

if we used a new change of variables, namely w=tσx.

From (23) we obtain just the form (16) for the expected value of Ya↔b.

Using an analogous method we can obtain the expression for the second moment E(Y2

a↔b).

Thus, we have E(Y2

a↔b) = k(a,b)

2πσx

b

R

a

yexp

−1 2

lny

−mx

σx 2

dy= = k(a,b) exp{2mx+2σ2x}

lnbmx σx R

lnamx σx

expn12(t2σx)2

o dt=

= k(a,b) exp{2mx+2σ2x}

lnbmx σx −2σx

R

lnamx σx −2σx

expn12v2odv=

= exp{2mx+ 2σx2}

[Φ(lnbmx

σx −2σx)−Φ(

lnamx σx −2σx)] [Φ(lnb−mx

σx )−Φ(

lnamx σx )]

,

if we used the change of variables (19), respectively the change of variables v =t2σx.

Corollary 2.1.IfYa↔b is a random variable with a lognormal distribution

truncated to the left at Y =a and to the right at Y =b, then Var(Ya↔b) = E(Ya2↔b)−[E(Ya↔b)]2 =

=exp{2mx+ 2σx2}

[Φ(lnb−mx

σx −2σx)−Φ(

lnamx σx −2σx)] [Φ(lnb−mx

σx )−Φ(

lnamx

σx )] −

−exp{2mx+σx2}

[Φ(lnbmx

σx −σx)−Φ(

lnamx σx −σx)]

2

[Φ(lnbmx σx )−Φ(

lnamx σx )]

(6)

Corollary 2.2.For the unilateral truncated lognormal random variables Ya← and Y→b, respectively for the lognormal random variable Y we have the

following expected values and variances

E(Ya←) = lim b→+∞

E(Ya↔b) = exp

( mx+

σ2

2 )h1

−Φlna−mx

σx −σx i h

1Φlna−mx

σx

i , (24)

VarYa←= limb

→+∞V ar(Ya↔b) =

= exp{2mx+ 2σx2}

[1−Φ(lna−mx

σx −2σx)] [1−Φ(lna−mx

σx )] −

exp{2mx+σx2}

[1−Φ(lna−mx

σx −σx)]

2

[1−Φ(lna−mx

σx )]

2 ,

E(Yb) = lim

a→0E(Ya↔b) = exp

n

mx+σ

2 2

oΦ(lnb−mx σx −σx)

Φ(lnbmx σx )

,

VarYb = lim

a→0V ar(Ya↔b) =

= exp{2mx+ 2σx2}

Φ(lnb−mx

σx −2σx)

Φ(lnb−mxσx) −exp{2mx+σ

2

x}

Φ2(lnbmx σx −σx)

Φ2(lnbmx σx )

, respectively

E(Y)=my = lim a→−∞,b→+∞

E(Ya↔b) = exp

mx+σ

2

x

2

,

Var(Y)=σ2

y =a lim

→0,b→∞V ar(Ya↔b) = exp{2mx+

σx2}eσ2

x−1

.

Starting with the second page the header should contain the name of the author and a short title of the paper

3.Fisher’s information measures for a truncated lognormal distribution.

Case: mx-an unknown parameter,σ2x-a known parameter

Theorem 3.1.If the random variable Ya↔b has a bilateral truncated

log-normal distribution,that is its probability density function is of the form

ga↔b(y;mx, σx2) =

        

k(a,b)

2πσ

1

yexp

−12

lny

−mx

σx 2

if 0< ay b, 0 if 0< y < a

0 if y > b,

(7)

where

k(a, b) = 1

Φlnb−mx

σx

−Φlna−mx

σx

, (26)

then the Fisher’s information measure, about the unknown parameter mx,

has the following form

IYab(mx) = 1 σ2

x −

[f(lnb;mx, σ2x)−f(lna;mx, σ2x)]2

h

Φlnb−mx

σx

−Φlna−mx

σx

i2 −

−[(lnb−mx)f(lnb;mx, σ

2

x)−(lna−mx)f(lna;mx, σx2)]

σ2

x

h

Φlnb−mx

σx

−Φlna−mx

σx

i , (27)

where

f(lna;mx, σx2) =

1

2πσx

exp   

−12 lnaσ−mx

x

!2  

∈R+

f(lnb;mx, σx2) =

1

2πσx

exp   

−12 lnbσ−mx

x

!2  

∈R+.

Proof. For a such continuous random variable Ya↔b the Fisher information

measure, about the unknown parameter mx,has the form

IXab(mx) = E  

∂lngab(y;mx, σ

2

x)

∂mx

!2 =

=

b

Z

a

∂lngab(y;mx, σ

2

x)

∂mx

!2

gab(y;mx, σx2)dy=

=

b

Z

a

∂2lng

ab(y;mx, σ

2

x)

∂m2

x

gab(y;mx, σx2)dy=−E

" ∂2lng

ab(y;mx, σ

2

x)

∂m2

x

(8)

Using (25), we obtain lnga

↔b(y;mx, σ

2

x) =−ln(

2πσx) + lnk(a, b)−lny−12

lny

−mx

σx 2

, respectively

∂lnga

↔b(y;mx, σ

2

x)

∂mx

= ∂lnk(a, b) ∂mx

+lny−mx σ2

x

= 1

k(a, b)

∂k(a, b) ∂mx

+lny−mx σ2 x . (29) Because ∂k(a, b) ∂mx = ∂ ∂mx   1 Φlnb−mx

σx

−Φlna−mx

σx  = = − ∂ ∂mx h

Φlnb−mx

σx i

+ ∂ ∂mx

h

Φlna−mx

σx i h

Φlnb−mx

σx i

+hΦlna−mx

σx

i2 , and

∂ ∂mx

"

Φ lna−mx σx !# = ∂ ∂mx     1 √ 2π

lnamx σx Z

−∞

exp t

2 2 ! dt    = = ∂ ∂mx     1 2 + 1 √ 2π

lnamx σx Z

0

exp t

2 2 ! dt    =

=1√2πσxexp

  

−1

2

lnamx

σx

!2  

=f(lna;mx, σ2x), (30)

∂ ∂mx

"

Φ lnb−mx σx

!#

=f(lnb;mx, σ2x), (31)

we obtain that

∂k(a, b) ∂mx

= f(lnb;mx, σ

2

x)−f(lna;mx, σx2)

h

Φlnb−mx

σx i

+hΦlna−mx

σx

(9)

∂lngab(y;mx, σx2)

∂mx

= f(lnb;mx, σ

2

x)−f(lna;mx, σ2x)

h

Φlnb−mx

σx i

+hΦlna−mx

σx

i +

lnymx

σ2

x

.

Then, from this last relation, we obtain ∂2lngab(y;mx, σx2)

∂m2

x

=

σ12

x

+k(a, b) σ2

x

h

(lnbmx)f(lnb;mx, σ2x

−lnamx)f(lna;mx, σx2)

i +

+[f(lnb;mx, σ

2

x)−f(lna;mx, σ2x)]

2

h

Φlnb−mx

σx i

+hΦlna−mx

σx

i2 ,

then when we have in view the relations (30), (31) as well as the following relations

∂ ∂mx

h

f(lna;mx, σx2)

i

= lna−mx σ2

x

f(lna;mx, σ2x)

∂ ∂mx

h

f(lnb;mx, σ2x)

i

= lnb−mx σ2

x

f(lnb;mx, σ2x).

Because ∂2lngab(y;mx,σ2x)

∂m2x is independent of the variable y, from (3.3b) we

obtain just the Fisher’s information (27), if we have in view thatgab(y;mx, σ

2

x)

is a probability density function. This completes the proof of the theorem.

References

[1] Mihoc, I., F˘atu C. I., Fisher′ s Information Measures and Truncated

Normal Distributions (II), Seminarul de teoria celei mai bune aproxim¯ari, con-vexitate ¸si optimizare, 1960-2000, ,,Omagiu memoriei academicianului Tiberiu Popoviciu la 25 de ani de la moarte, 26-29 octombrie,2000, pp.153-155.

(10)

[3] Mihoc, I., F˘atu, C.I., Calculul probabilit˘at¸ilor ¸si statistic˘a matematic˘a, Casa de Editur˘a Transilvania Pres, Cluj-Napoca, 2003.

[4] Schervish,M.J.,Theory of Statistics, Springer-Verlag New York,Inc. 1995. Ion Mihoc

Faculty of Economics

Christian University Dimitrie Cantemir , 3400 Cluj-Napoca, Romania Teodor Mihali 56, 3400 Cluj-Napoca, Romania

email:imihoc@cantemir.cluj.astral.ro Cristina F˘atu

Faculty of Economics

Christian University Dimitrie Cantemir , Cluj-Napoca, Romania Teodor Mihali 56, 3400 Cluj-Napoca, Romania

Referensi

Dokumen terkait

Menimbang, bahwa setelah Pengadilan Tinggi mempelajari dengan cara seksama berkas perkara, berita acara persidangan, keterangan saksi, keterangan Terdakwa II, III

Sejak kejadian kecelakaan nuklir di Fukushima Daiichi yang terjadi pada 11 Maret 2011, berbagai kegiatan telah dilaksanakan, terutama oleh negara-negara anggota

Penelitian ini dilakukan di Universitas Kristen Maranatha Bandung dengan menggunakan 100 responden dengan karakteristik yang digunakan adalah usia, jenis kelamin,

Penyesuaian pernikahan tergolong sedang dengan nilai paling rendah ada pada 10 pasang yang menikah dini yang suaminya berusia kurang dari 19 tahun, berpenghasilan kurang dari

Selanjutnya untuk mewujudkan tata kelola program bantuan yang baik (good) dan bersih (clean), terbuka (transparant), dan bertanggungjawab (accountable) telah

“Laporan keuangan pada dasarnya adalah hasil dari proses akuntansi yang dapat digunakan sebagai alat untuk berkomunikasi antara data keuangan atau aktivitas suatu perusahaan

Sirkulasi adalah elemen perancangan kota yang secara langsung dapat membentuk dan mengkontrol pola kegiatan kota, sebagaimana halnya dengan keberadaan sistem transportasi dari

Hasil penelitian ini diketahuihampir setengah (45 %) responden menyatakan bahwa perpustakaan Desa Baru Pasar 8 kurang berperan dalam memenuhi kebutuhan informasi, hampir