• Tidak ada hasil yang ditemukan

Cabulea_Rev2003-B5. 94KB Jun 04 2011 12:08:29 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Cabulea_Rev2003-B5. 94KB Jun 04 2011 12:08:29 AM"

Copied!
8
0
0

Teks penuh

(1)

APPROXIMATION PROPERTIES OF A STANCU

S-VARIATE OPERATOR OF BETA TYPE

by

Lucia A. Căbulea and Mihaela Todea

Abstract: In this paper the main result consist in introducing and investigating the

approximation properties of a new beta operator of a second kind , ,..., 1 ,...,1,..., 1 1 1 2

1

+ +

= s

s s s

n n

x n x n n n

n T

S

which is an integral linear positive operator reproducing the linear functions. Then we have estimations of the orders of approximation, by using the modulus of continuity of first and second orders.

1. INTRODUCTION [1]

In his recent paper [18], Professor D. D. Stancu has introduced a new beta operator of second kind Sn defined by the following formula:

(1)

( )

+ + −

∞ ∈ +

+ =

0

1 1

)), , 0 ( ( , )

1 ( ) ( ) 1 , (

1 )

( dt x

t t t f n

nx B x f

S nx n

nx n

where f ∈ M[0,∞) and n is a natural number ≥ 2.

Here M[0,∞) denotes the space of bounded and locally integral functions on [0,∞). Actually, Sn is applicable to functions of polynomial growth if we restrict ourselves to n ≥ n0 with n0∈ N sufficiently great.

The operator (1) is constructed, roughly speaking, by applying a beta second kind transform

∞ +

+

=

0 1

,

,

(

[

0

,

)),

)

1

(

)

(

)

,

(

1

M

g

dt

t

t

t

g

q

p

B

g

T

p q

p q

p

to the Baskakov operator

(2)

(

(

0

,

))

)

1

(

1

)

,

(

0

+





+

=

+

=

x

n

k

f

x

x

k

k

n

x

f

B

n k

k

k n

(2)

Sn is a positive linear operator reproducing the linear functions. It is mentioned in [18] that Sn is distinct from the other beta-type operators considered earlier in the papers [10], [19], [8] and [2].

Furthermore, Professor D. D. Stancu has given estimations for the order of approximation by using the moduli of continuity of first and second orders. He has also established an asymptotic formula of Voronovskaja-type

(3)

(

)

2

)

1

(

))

(

)

)(

((

lim

n

S

n

f

x

f

x

x

x

f

x

n

′′

+

=

∞ →

for all f ∈ M[0,∞) admitting a bounded derivative of second order at x (x >0).

2. THE BETA SECOND-KIND S-VARIATE

TRANSFORM s

s

q q q

p p p

T 1,, 2,...,,..., 2 1

Let us denote by M([0,∞)×[0,∞)×…×[0,∞)) the linear space

of functions g(t1, t2, …, ts), defined for ti≥ 0, i ≥ 0, bounded and Lebesque measurable in I1×I2×…×Is, where Is = [0,∞).

We shall define a linear transform by using the beta s-variate distribution of second kind, with the positive parameters p1, p2,…, ps and q1, q2,…, qs, which has the probability density

(4)

,

)

1

)(

,

(

)

,...,

,

(

1

1 2

1 ,..., ,

,..., ,

2 1

2

1

= +

+

=

s

i

q p i i i

p i s

q q q

p p

p i i

i s

s

t

q

p

B

t

t

t

t

b

where ti> 0, i = 1,2,…, s and s

s p p p

q q q

b 1 2,..., ,..., 2 , 1

,

(t1,t2,…,ts) =0 otherwise, by B(p,q), i=1,2,…,s is denoted the beta function. By using distribution (4) we can define the beta s-variate second-kind transform s

s

q q q

p p p

T 1,,2,...,,..., 2

1 , of a function g ∈ M([0,∞)×[0,∞)×…×[0,∞)), by

(5) s

s

q q q

p p p

T 1,,2,...,,..., 2

1 g =

=

∫ ∫ ∫

∞ ∞ ∞ =

0 0 0 1 1 2

,..., ,

,..., ,

1, ,..., ) (( , ,..., ) ...

(

... 1 2

2

1 t s s

q q q

p p p s

t t b t t t dt dt dt

t t

g s

s

=

∫ ∫ ∫

= +

=

∞ ∞ ∞

+

s

i

s q

p i p i s

i

s

dt

dt

dt

t

t

t

t

t

g

q

p

B

i i

i

1

2 1 1

1 0 0 0

2

1

...

)

1

(

)

,...,

,

(

...

)

,

(

1

such that s s

q q q

p p p

T 1,, 2,...,,..., 2

(3)

One observes that s s

q q q

p p p

T 1,, 2,...,,..., 2

1 is a linear positive functional. We need to state and prove:

THEOREM 1. The moment of order (r1, r2,…,rs) (r1, r2,…,rs ≥ 1) of the functional s

s

q q q

p p p

T 1,,2,...,,..., 2

1 has the following value (6)

s s

s

s r r r

q q q

p p p s s r

r

r p q p q p q T e

v , ,..., 1 1 2 2 ,, ,...,,..., , ,..., 2 1 2 1

2 1 2

1 ( , ; , ;...; , )= =

=

= − − −

− + +

s

i i i i i

i i i

i

r q q

q

r p p

p

1 ( 1)( 2)...( )

) 1 )...(

1 (

Proof: We have

s s

i

s

i

q p i

r p i i

i r

r r q q q

p p

p

dt

dt

t

t

q

p

B

e

T

i i i i

s s

s

...

)

1

(

...

)

,

(

1

1

1 0 0 0 1

1 ,...,

, ,..., ,

,...,

, 1 2

2 1

2

1

∫ ∫ ∫ ∏

=

∞ ∞ ∞

= +

− +

+

=

=

=

=

+ − +

+

s

i

i q p i

r p i i

i

dt

t

t

q

p

B

i i

i i

1 0

1

)

1

(

)

,

(

1

.

If we make the change of integration variable yi = ti / (1+ti), we have ti = yi / (1-yi), dti = (1-yi)-2dyi (i = 1, 2, …., s) and we obtain

= + −

= s

i i i

i i i i r

r r q q q

p p p

q p B

r q r p B e

T

s s s

1 ,..., , ,..., ,

,..., ,

) , (

) ,

(

2 1 2 1

2

1 .

By using the relation

B(p+r,q-r) =

(

,

)

)

)...(

2

)(

1

(

)

1

)...(

1

(

q

p

B

r

q

q

q

r

p

p

p

+

+

we obtain the desired result (6). 3. THE FUNCTIONAL

) (

) , ;...; , ; ,

( , ,...,

,..., ,

,..., , 2

2 1 1 ,...,

, 1 2

2 1

2 1 2

1 p q p q p q T B f

F

s s

s

s n n n

q q q

p p p s s f

n n

n =

Now let us apply the transform (5) to the s-variant Baskakov operator

s

n n n

(4)

(7)     +     + − = =

∑ ∏

= = s s k i k i k k k s i i i i s n n n n k n k f t t k k n t t t f B i i s s ,..., ) 1 ( 1 ) ,..., , )( ( 1 1 0 ,..., , 1 2 1 ,..., , 2 1 2 1

We may state and prove

THEOREM 2. The s

s q q q p p p

T

1,, 2,...,,...,

2

1 transform of Bn1,n2,...,ns f can be

expressed under the following form

(8)

(

,

;

,

;...;

,

)

=

(

, ,...,

)

=

,..., , ,..., , 2 2 1 1 ,...,

, 1 2

2 1

2 1 2

1

p

q

p

q

p

q

T

B

f

F

s s

s

s n n n

q q q p p p s s f n n n

∑ ∏

,...,=0 = + −  ++ ++ ++ + ++ − 

, 1 1

1 2 1 ,..., ) 1 )...( 1 )( ( ) 1 )...( 1 ( ) 1 )...( 1 ( 1 s k k k s i s s i i i i i i i i i i i i i i i i i i i n k n k f k n q p q p q p n q q q q p p p k k n Proof:

We can write successively

∑ ∏

= =



+



=

0 ,..., , 1 ,..., , ,..., , ,..., , 2 1 2 1 2 1 2 1

)

,

(

1

1

)

(

s s s s k k k s

i i i i

i i n n n q q q p p p

q

p

B

k

k

n

f

B

T





+

∫ ∫ ∫ ∏

∞ ∞ ∞ = + + + − + s s s i s k q p n i k p i

n

k

n

k

n

k

f

dt

dt

dt

t

t

i i i i i i

,...,

,

...

)

1

(

...

2 2 1 1 0 0 0

1

2 1 1

.

If we make the change of variable yi = ti / (1+ti), i = 1,2,…,s in the integral

∞ + + +

− +

+

=

0 1

,

)

1

(

)

,

(

i i i i i i i

i p q n k

i i k p i i i k n

t

dt

t

q

p

I

, we get

=

+

+

=

=

+ −

(

1

)

+ −

(

,

)

)

,

(

1 0 1 1

, i i i i i

q n i p k i i i k

n

p

q

y

y

dy

B

k

p

n

q

I

i i i i

i i

)

,

(

)

1

)...(

1

)(

(

)

1

)...(

1

(

)

1

)...(

1

(

i i i i i i i i i i i i i i i i i i

q

p

B

k

n

q

p

q

p

q

p

n

q

q

q

q

p

p

p

+

+

+

+

+

+

+

+

+

=

and we obtain the formula (8).

(5)

parameter-dependent operator s s

n n n

Lα,,α,...,,...,α 2 1

2

1 , as a generalization of the Baskakov operator. By using the factorial powers, with the step hi = -αi, it can be expressed under the following compact form

(

)

(

)

[ ] [ ]

[ ]   + ⋅

⋅   

 + −

=

− +

− −

= =

∑ ∏

s s k

n i

n k

i

k k k

s

i i

i i s

n n n

n k n k n k f x

x

k k n x

x x f L

i i i

i i i i

s s

s

,..., , )

1 (

1

1 ,...,

,

2 2 1 1 ,

, ,

0 ,...,

, 1

2 1 ,...,

, ,..., ,

2 1 2

1 2 1

α α α

α α α

4. THE BETA SECOND-KIND LINEAR POSITIVE OPERATOR

1 ,..., 1 ,...,

1 1 1

+ + s

s s

n n

x n x n

T

Now we introduce a new beta second-kind s-variate

approximating operator. If in (5) we choose pi = nixi and qi = ni + 1, then to any function f ∈M([0,∞)×[0,∞)×…×[0,∞)) we associate the linear positive operator

s

n n n

S 1,2,..., , defined by (10)

(

)

=

∫ ∫ ∫ ∏

∞ ∞ ∞

= + +

− + +

+ +

=

= =

s

i

s

i

s s

n x n i

x n i i

i u

n n

x n x n s n

n n

dt dt dt t t t f t

t n

x n B

f T

x x x f S

i i i i i s

s s s

1 0 0 0 1

2 1 2

1 1 1 1 ,..., 1 ,..., 2

1 ,..., ,

... )

,..., , ( )

1 ( ... )

1 , (

1

) ,..., ,

( 1

1 1 2

1

This represents an extension to s-variables of the operator (1) of D. D. Stancu. Because

(

)

∫ ∫ ∫

∞ ∞ ∞ + + +

=

=

0 0 0 1 2 1 2

1 ,..., 1 , 1

,..., , 0

,..., 0 , 0 ,...,

,

(

,

)

...

(

,

,...,

)

...

1

2 1

2 2 1 1 2

1 s s

n n n

x n x n x n n

n

n

e

x

y

b

t

t

t

dt

dt

dt

S

s

s s s

and according to (6) we have

(

Sn1,n2,...,nse1,0,...,0

)

(x1,x2,...,xs)= x1,

(

Sn1,n2,...,nse0,1,...,0

)

(x1,x2,...,xs)= x2 ,…,

(

Sn1,n2,...,nse0,0,...,1

)

(x1,x2,...,xs)= xsand

(

Sn1,n2,...,nse1,1,...,1

)

(x1,x2,...,xs)=x1x2...xs.
(6)

{

}

i i i

s s

s

x x

x x x f x x x f f

δ

δ

δ

δ

ϖ

≤ −

− =

'

' ' 2 ' 1 2

1 2

1, ,..., ) sup ( , ,..., ) ( , ,..., ) ,

; (

i=1,2,…,s where (x1,x2,…,xs) and ( , ,..., ) ' ' 2 '

1 x xs

x are the points of

(0,∞)×(0,∞)×…×(0,∞) and δi∈R+, i = 1,2,…,s.

By using a basic property of the modulus of continuity we can write

)

,...,

;

(

)

(

1

1

)

,...,

,

)(

(

)

,...,

,

(

1 1

2 2

2 1 ,..., , 2

1 1 2

s s

i

i i n i

s n

n n s

f

t

x

S

x

x

x

f

S

x

x

x

f

i

s

δ

δ

ϖ

δ

+

=

Because

1

)

1

(

)

(

)

(

2

2

+

=

=

i i i i

i n n

n

x

x

x

t

S

x

i i

δ

, i = 1,2,…,s

if we take

1

1

=

i i

n

δ

we can state

THEOREM 3. If f ∈ C([0,∞)×[0,∞)×…×[0,∞)), such that

〈∞

)

,...,

,

;

(

1 2

,..., ,2

1n n s

n

f

x

x

x

S

s , then for any ni > , i = 1,2,…,s we have the following

inequality

+

+

=

1

1

,...,

1

1

,

1

1

;

)

1

(

1

)

,...,

,

)(

(

)

,...,

,

(

2 1

1

2 1 ,...,

, 2

1 1 2

s s

i

i i

s n

n n s

n

n

n

f

x

x

x

x

x

f

S

x

x

x

f

s

ϖ

A similar inequality can be obtained if we assume that the function f has a bounded continuous derivative for xi≥ 0, i = 1,2,…,s.

According to the Bohman-Korovkin convergence criterion, we can deduce COROLLARY 1. If f ∈ M([0,∞)×[0,∞)×…×[0,∞)) and is continuous at all points of I1×I2×…×Is (Ii⊂ [0,∞), i = 1,2,…,s), then Sn1,n2,...,ns f converges uniformly on

(7)

REFERENCES

1. Abel, U., Asymptotic approximation with Stancu beta operators, Rev. Anal. Numér. et de Théorie Approximation, 27 (1998), 5-13.

2. Adell, J.A., De la Cal, J., On a Bernstein - type operator associated with the inverse Polya-Eggenberger distribution, Rend. Circolo Matem. Palermo, Ser. II, Nr. 33, 1993, 143-154.

3. Agratini, O., On the construction of approximating linear positive operators by probabilistic methods, Studia Univ. Babe∏-Bolyai, Mathematica, 38 (1993), 4, 45-50.

4. Bojanic, R., Khan, M.K., Rate of convergence of some operators of functions with derivatives of bounded variation, Atti Sem. Mat. Fis. Univ. Modena, 29 (1991), 153-170.

5. Feller, W., An Introduction To Probability Theory and its Applications, Vol. 2. Wiley, New York, 1966.

6. Gonska, H.H., Meier, J., Quantitative theorems on approximation by Bernstein-Stancu operators, Calcolo 21 (1984), 317-335.

7. Guo, S., On the rate of convergence of the Feller operator for functions of bounded variation, J. Approx. Theory 58 (1989), 90-101.

8. Khan, M.K., Approximation properties of beta operators, Progress in Approx. Theory, Academic Press, New York, 1991, 483-495.

9. Khan, R.A., Some probabilistic methods in the theory of approximation operators, Acta Math. Acad. Sci. Hungar. 39 (1980), 193-203.

10. Lupa∏, A., Die Folge der Beta Operatoren, Dissertation, Universität Stuttgart, 1972.

11. Mamedov, R.G., The asymptotic value of the approximation of differentiable functions by linear positive operators (Russian), Dokl. Akad. Nauk. SSSR 128 (1959), 471-474.

12. Müller, M.W., On asymptotic approximation theorems for sequences of linear positive operators, (Proc. Sympos. Lancaster, 1969; ed. A. talbot), 315-320, Acad. Press, London, 1970.

13. Stancu, D.D., The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Anal. Ser. B, 1(1964), 137-163.

14. Stancu, D.D., Use of probabilistic methods in the theory of uniform approximation functions, Rev. Roumaine Math. Pures Appl. 14 (1969), 693-691.

15. Stancu, D.D., Probabilistic methods in the theory of approximation of functions of several variables by linear positive operators, In: Approximation Theory (Proc. Sympos. Lancaster, 1969; ed. A. talbot), 329-342.

(8)

17. Stancu, D.D., Probabilistic approach to a class of generalized Bernstein approximating operators, L’Analyse Numér. Theor. de l’Approximation, 14 (1985), 83-89.

18. Stancu, D.D., On the beta approximating operators of second kind, Rev. Anal. Numér. et de Théorie Approximation, 24 (1995), 231-239.

Referensi

Dokumen terkait

[r]

Berdasarkan hasil analisis regresi uji F di atas diketahui bahwa variabel harga domestic, harga internasional, nilai tukar rupiah, pendapatan negara, jumlah penduduk, trend,

Mendemonstrasikan transaksi database dimana suatu perubahan data yang dilakukan oleh seorang user tidak dapat diakses oleh user lain sebelum

Jalan Slamet Riyadi No. Pendaftaran dan Pengambilan Dokumen Kualifikasi / Download Dokumen dilakukan mulai Hari Kamis / tgl. Jadwal Pelaksanaan dilihat dalam aplikasi SPSE pada

Hal tersebut mengharuskan konsu men terutama para orang tua harus hati-hati dan teliti dalam memilih pasta gigi yang tepat untuk anak, utamanya anak usia dini, karena pada

sesuai dengan penelitian yang dilakukan oleh Sembiring (2009) yang menunjukkan bahwa variabel penghargaan finansial, pengakuan profesional, pertimbangan pasar

Pokja Pengadaan Barang/Jasa ULP Kementerian Sosial RI, Pusat Pendidikan dan Pelatihan Kesejahteraan Sosial akan melaksanakan Pemilihan Langsung dengan pascakualifikasi

Berdasarkan penelitian dan analisis yang dilakukan, maka kesimpulan yang dapat diambil adalah pertambahan nilai dari tegakan kayu pinus dapat diakui sebagai pendapatan apabila