• Tidak ada hasil yang ditemukan

Crainic2 Referat 4. engl

N/A
N/A
Protected

Academic year: 2017

Membagikan "Crainic2 Referat 4. engl"

Copied!
4
0
0

Teks penuh

(1)

ACTA UNIVERSITATIS APULENSIS

67

NUMERICAL CHARACTERISTICS OF UNIFORME BIRKHOFF

UNIVARIATE INTERPOLATION SCHEMES

by

Nicolae Crainic

Abstract: In this article we will determine estimative values for the numbers

) (Z

ar =

{

A:s(Z,A)≠0

}

that correspond to a uniforme Birkhoff univariate interpolation

scheme

(

Z

,

S

,

A

)

, where

Z

is a set of n nodes,

A

is the set of interpolated derivates,

A

r= , and

s

(

Z

,

A

)

={S:(Z,S,A)is regular}.

For the beginning we present the following:

1. The uniform univariate Birkhoff interpolation scheme is the triplet

(

Z

,

S

,

A

)

consisting of a set

Z

of n real numbers, an inferior set

S

=

{

0

,

1

,...,

k

}

IN

which defines the space of the interpolation polynomials

S

P

=

=

IR

a

x

a

x

P

x

IR

P

i i

S i

i

,

)

(

:

]

[

,

and a finite set

AS

, which designates the derivatives with which we

interpolate. Regarding all these notions, we can set the associated (uniform,

bivariate) Birkhoff

interpolation problem,

which consists in determining the

polynomials that satisfy the equations:

(

x

)

c

,

(

)

A

,

x

Z

,

x

P

=

α

α α

α

where

c

α are arbitrary constants.

2. As it follows from the abstract, we denote by

s

(

Z

,

A

)

the number of inferior sets S for which the interpolation scheme

(

Z

,

S

,

A

)

is regular, and by ar(Z) the number of sets

A

for which

(

Z

,

S

,

A

)

is regular for at least one choice of set S.

3. The scheme

(

Z

,

S

,

A

)

is normal if nA =|S| (where

|

A

|

is the number of the elements of the set

A

, and

|

S

|

is the number of the elements of S), and in this case we write the determinant of the interpolation system as

D

(

Z

,

S

,

A

)

.

4. The scheme

(

Z

,

S

,

A

)

is regular (singular) if

D

(

Z

,

S

,

A

)

does not vanish (does vanish) for any choice of the set

Z

of nodes and is almost regulate if

)

,

,

(

Z

S

A

D

is not identical null.

5. The interpolation scheme

(

Z

,

S

,

A

)

satisfy the Pólya condition if

,

i

n

a

i

(

)

0

i

s

,

where

A

=

{

a

0

,

a

1

,...,

a

s

}

with

a

0

<

a

1

<

...

<

a

s,
(2)

ACTA UNIVERSITATIS APULENSIS

68

regularity of an interpolation scheme

(

Z

,

S

,

A

)

.

In case of regularity of an uniform Birkhoff interpolation scheme, the

Pólya condition states that the number

a

r

(

Z

)

is equal to the number

(

r

1

)

-tuples

(i1,....ir−1)

that satisfy

i1 <i2 <...<ir−1

,

1

i

k

kn

,

for any

1

1≤kr− . This fact shows that the problem of computing the numbers

a

r

(

Z

)

is combinatorial, and this offers us the possibility of an explicit calculation of these numbers (at least for the first values of

r

).

1. Proposition.If ar(Z)=

{

A:s(Z,A)≠0

}

, then for any nIN the following take place:

1

)

(

1

Z

=

a

,

n

Z

a

2

(

)

=

,

2

)

1

3

(

)

(

3

=

n

n

Z

a

3

)

1

4

)(

1

2

(

)

(

4

=

n

n

n

Z

a

24

)

3

5

)(

2

5

)(

1

5

(

)

(

5

=

n

n

n

n

Z

a

.

Proof: The first two formulas are obvious. For the computation of

a

3

(

Z

)

we must find out the numbers of the non-null natural numbers pairs (i1,i2) in the conditions

2 1 i

i < , i1n, i2 ≤2n.

We have two possibilities. The first one is to have 1<i1 <i2n, and the number of these pairs coincides with the number of choices of two numbers from a set of n numbers, i.e.

C

n2. The second one is to have 1<i1 ≤n<i2 ≤2n, and the

number of these pairs is

n

2. Summing up, it follows exactly the formula from the enunciation.

We compute now

a

4

(

Z

)

, i.e. the number of the triplets

(

i

1

,

i

2

,

i

3

)

with

3 2 1

1

i

<

i

<

i

, i1n,i2 ≤2n,

i

3

3

n

. Again we consider more possible cases (in fact all possibilities):

)

1

(

1

i

1

n

<

i

2

2

n

<

i

3

3

n

;

)

2

(

1

i

1

<

i

2

n

<

2

n

<

i

3

3

n

;

)

3

(

1

i

1

<

i

2

n

<

i

3

2

n

;

)

4

(3)

ACTA UNIVERSITATIS APULENSIS

69

)

5

(

1

i

1

<

i

2

<

i

3

n

.

The first case produces

n

3 possibilities. Each of the cases (2), (3) and (4) produces

nC

n2 possibilities, and the case (5) produces

3

n

C

possibilities. It follows a total of

3

)

1

4

)(

1

2

(

6

)

2

)(

1

(

2

1

(

3

3

+

n

n

+

n

n

n

=

n

n

n

n

n

possibilities.

We compute now

a

5

(

Z

)

. We have to count those

(

i

1

,

i

2

,

i

3

,

i

4

)

, satisfying conditions similar to the above ones. We distinguish the following cases:

(1)

1

i

1

<

i

2

<

i

3

<

i

4

n

. The number of possibilities in this case coincides with the choices of four elements from a set with n elements, i.e.

C

n4.

(2)

1

i

1

<

i

2

<

i

3

n

<

i

4

4

n

. In this case we have

C

n3 possible choices for

(

i

1

,

i

2

,

i

3

)

and 3n choices for i4. Thus the total number of possibilities is

3

nC

n3.

(3)

1

i

1

<

i

2

n

<

i

3

<

i

4

3

n

. In this case we have

C

n2 possible choices for (i1,i2) and

C

22n for

(

i

3

,

i

4

)

. Thus the total number of possibilities is

2 2 2

n n

C

C

.

(4)

1

i

1

<

i

2

n

<

i

3

3

n

<

i

4

4

n

. In this case we have

C

n2 possible choices for (i1,i2), 2n choices for

i

3, and n possible choices for i4. Thus the total number of possibilities is

2

n

2

C

n2.

Analogously we have:

(5)

1

i

1

n

<

i

2

<

i

3

<

i

4

2

n

where the number of possibilities is

nC

n3, (6)

1

i

1

n

<

i

2

<

i

3

2

n

<

i

4

4

n

with

2

n

2

C

n2 possibilities,

(7)

1

i

1

n

<

i

2

<

i

3

3

n

<

i

4

4

n

with

n

2

C

n2 possibilities and (8)

1

i

1

n

<

i

2

2

n

<

i

3

3

n

<

i

4

4

n

with

n

4 possibilities.

Summing up, we obtain

=

+

+

+

+

2 4

2 2 2 2 3 4

5

4

nC

n

C

C

C

n

C

n n n n n

=

+

+

=

24

6

55

150

125

n

3

n

2

n

(4)

ACTA UNIVERSITATIS APULENSIS

70

24

)

6

25

25

)(

1

5

(

2

+

=

n

n

n

n

possibilities, which is exactly the formula from the enunciation of the proposition. □.

2. Remark. Analyzing the above formulas, we can notice that they contain the same type of expressions, and this fact makes us believe that a simple general formula for all numbers

a

r

(

Z

)

, exists, namely:

1

1

)

(

=

mr

r

C

r

Z

a

.

Also we remark that in order to prove this formula is sufficient to verify it for

1

r

distinctive values of n. Even more, this formula can be rewritten as a polynomial identity. In order to see this, we remark first that the choice of a

(

r

1

)

-tuple (i1,....ir1) as above is the same with the choice of a

(

r

1

)

-tuple (j1,....jr1) of natural numbers that satisfy the inequalities:

...

,

3

,

2

,

1

1 2 1 2 3

1

j

+

j

j

+

j

+

j

j

and whose sum is

r

1

. Depending on the initial

(

r

1

)

-tuples,

j

k is the number of the i∈{i1,....ir1} elements with

(

k

1

)

n

<

i

kn

. Thus, we can have

1 1... )

( =

jr

n j n

r Z C C

a ,

where the sum is done after all (j1,....jr1) as above. Thus the initial formula can be also written as:

)! 1 (

) 2 )...(

2 )( 1 ( !

) 1 )...(

1 ( ... !

) 1 )...(

1 (

1 1 1

1

− − +

− −

= + − −

+ − −

− −

nr nr r nr r

n j

j n n

n j

j n n

n

r r

.

This equality makes sense for any real number n and it is the equality of two polynomials of degree

(

r

1

)

. This proves the given statements.

References

1.Crainic, M., Crainic N., Birkhoff interpolation with rectangular sets of nodes, Utrecht University Preprint, nr 1266 January 2003 (trimis spre publicare la Journal of Numerical Analysis).

2.Stancu, D. Dimitrie, Coman Gheorghe, Agratini Octavian, Trâmbiţaş Radu, Analiză numerică şi teoria aproximării, Vol. I, Presa Universitară Clujană, Universitatea “Babeş – Bolyai”, 2001.

Referensi

Dokumen terkait

• PA/KPA pada Perpres 54/2010 diwajibkan untuk mengumumkan rencana umum pengadaan pada awal tahun anggaran yang bertujuan agar proses pengadaan lebih transparan karena

[r]

Paket pengadaan ini terbuka untuk penyedia jasa yang teregistrasi pada Layanan Pengadaan Secara Elektronik (LPSE) dan memenuhi persyaratan.

Sedangkan hasil penghitungan uji reliabilitas menunjukkan alpha cronbach ’ s untuk variabel need for Achievement nilainya lebih besar dari 0,6.Dengan demikian

Pengadaan Peralatan Ranjang Tidur BPPTD Palembang Tahun Anggaran 2017 dengan nilai HPS.. sebesar

Oleh karena itu, studi ini memutuskan meng- gunakan model FEM karena model FEM lebih tepat dari model PLS dan REM; Kedua, PDRB memiliki pengaruh negatif signifikan terhadap

penguasaan konsep energi panas, energi bunyi, dan energi alternatif, aplikasi konsep sains siswa sekolah dasar, tes sikap siswa, lembar observasi pembelajaran dengan

Peserta didik diberikan stimulus berupa pemberian materi oleh guru (selain itu misalkan dalam bentuk lembar kerja, tugas mencari materi dari buku paket