• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:EJQTDE:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:EJQTDE:"

Copied!
14
0
0

Teks penuh

(1)

Electronic Journal of Qualitative Theory of Differential Equations 2004, No. 14, 1-14;http://www.math.u-szeged.hu/ejqtde/

On the local integrability and boundedness of

solutions to quasilinear parabolic systems

Tiziana Giorgi

Mike O’Leary

September 6, 2004

Abstract

We introduce a structure condition of parabolic type, which allows for the gen-eralization to quasilinear parabolic systems of the known results of integrability, and boundedness of local solutions to singular and degenerate quasilinear parabolic equations.

1

Introduction

In this note, we investigate under which conditions it is possible to extend to systems the results of local integrability and local boundedness known to hold for solutions to a general class of degenerate and singular quasilinear parabolic equations. In particular, we show that the results presented by DiBenedetto in [1, Chp. VIII] are true for a larger class of problems, by providing conditions under which one can recover for weak solutions of quasilinear parabolic systems the work contained in [5, 6]. Fundamental to our approach is a new condition for the parabolicity of systems, which can be viewed as the extension of an analogous notion for parabolic equations, introduced in [1, Lemma 1.1 pg 19].

Generalizations of the results in [1, Chp. VIII] to initial-boundary value problems for systems have been proven in [7].

We study systems of the general form:

∂ ∂tui−

∂xjAij(x, t, u,∇u) =Bi(x, t, u,∇u) (1)

fori= 1,2, ..., n, and(x, t)∈ΩT ≡Ω×(0, T)withΩ⊆RN; where we assumeAij

andBi to be measurable functions inΩ×(0, T)×Rn×RN n, herei = 1,2, ..., n;

j= 1,2, ..., N.

1991 Mathematics Subject Classifications: 35K40, 35K655.

Key words and phrases: Singular and degenerate quasilinear parabolic systems, local integrability, local

boundedness

Partially supported by the National Science Foundation-funded ADVANCE Institutional Transformation

(2)

By a weak solution of (1), we mean a functionu = (u1, u2, . . . , un)withu ∈

L∞,loc(0, T;L2,loc(Ω))∩Lp,loc(0, T;Wp,loc1 (Ω))for somep >1, which verifies

Z Z

ΩT

−ui

∂φi

∂t +Aij(x, t, u,∇u) ∂φi ∂xj

dxdt=

Z Z

ΩT

Bi(x, t, u,∇u)φidxdt (2)

for allφ= (φ1, φ2, . . . , φn)∈C0∞(ΩT;Rn).

To the system (1), we add the following classical structure conditions (see [1, Chp. VIII]). For a.e.(x, t)∈ΩT, everyu∈Rn, andv∈RN n, we assume that

(H1)

N X

j=1

n X

i=1

Aij(x, t, u, v)vij ≥C0|v|p−C3|u|δ−φ0(x, t);

(H2) |Aij(x, t, u, v)| ≤C1|v|p−1+C4|u|δ(1− 1

p)+φ

1(x, t);

(H3) |Bi(x, t, u, v)| ≤C2|v|p(1− 1

δ)+C5|u|δ−1+φ2(x, t),

for C0 > 0,C1, C2, . . . , C5 ≥ 0, with δ s.t. 1< p≤δ <

N+ 2

N

p≡m, and

whereφ0, φ1, φ2are non-negative functions which satisfy

(H4) φ0∈L1,loc(ΩT),φ1∈L p p−1,loc

(ΩT), andφ2∈L m

m−1,loc(ΩT)

.

Finally, we introduce and assume the parabolicity condition

(H5)

n X

i,k=1

N X

j=1

Aij(x, t, u, v)uiukvkj ≥0.

The main result of our work is the complete recovery for systems of the form (1) of Theorem 1 in [5]:

Theorem 1 Letube a weak solution of (1), and suppose that the structure conditions (H1)-(H5) hold true, together with the following additional hypotheses:

(H6) φ0∈Lµ,loc(ΩT),φ1, φ2∈Ls,loc(ΩT), whereµ >1ands >

(N+ 2)p

(N+ 2)p−N;

(H7) u∈Lr,loc(ΩT), withr >1andN(p−2) +rp >0.

Ifs, µ > (Np+p), thenu∈L∞,loc(ΩT);

ifs=µ= (Np+p), thenu∈Lq,loc(ΩT)for anyq <∞;

ifs, µ < (Np+p), thenu∈Lq,loc(ΩT)for anyq < q∗, where

q∗= min

s(N p+p−N)

sN−(s−1)(N+p),

µ(N p+ 2p)

µN−(µ−1)(N+p)

(3)

Remark We would like to point out that the parabolicity condition (H5) is a quite

natural one to consider. In fact, for the case of a single equation it reduces to the condition

Aj(x, t, u, v)u2vj ≥0,

which, foru 6= 0, is equivalent to the weak parabolicity condition presented in [1, Lemma 1.1, p.19].

Further, in the simple case where

∂ui ∂t −

∂ ∂xj

ajm(x, t, u,∇u)∂ui

∂xm

=Bi(x, t, u,∇u);

our requirement is satisfied if the matrixajm(x, t, u,∇u)is for example positive defi-nite. Indeed, since for the above system one has the identity

n X

i,k=1

N X

j=1

Aij(x, t, u, v)uiukvkj =

n X

i,k=1

N X

j,m=1

ajm(x, t, u, v) (uivim) (ukvkj),

(H5) can be rewritten as

n X

i,k=1

N X

j=1

Aij(x, t, u, v)uiukvkj =

N X

j,m=1

ajm(x, t, u, v)wmwj ≥0,

where we setwh=P lulvlh.

Finally, we note that (H5) is not so restrictive that the equation must have one of these simple forms. For example, consider the perturbation

Aij(x, t, u, v) =ajm(x, t, u, v)vim+αij(x, t, u, v)

where the matrixajmis positive definite. Define

λ(x, t, u, v) = min

|w|=1ajm(x, t, u, v)wjwm>0;

this exists and is obtained because

w7→ajm(x, t, u, v)wjwm

is positive and continuous for each(x, t, u, v)on the compact set{w∈RN :|w|= 1}.

Then for any vectorw∈RN, w6=0

ajm(x, t, u, v)wjwm=ajmwj |w|

wm |w||w|

2

λ|w|2.

Condition (H5) will be verified if the perturbationαij satisfies the smallness con-dition

N X

j=1

n X

i=1

|αij(x, t, u, v)ui| ≤λ(x, t, u, v)

N X

j=1

n X

i=1

(4)

Indeed, we have

We follow the approach of [1, 5, 6] and start with the derivation, presented in tion 2, of a local energy estimates for weak solutions to (1). We then outline, in Sec-tion 3 and SecSec-tion 4 how the methods in [5] can be applied to obtain local integrability and boundedness.

We also remark that the techniques presented can be modified to handle doubly degenerate problems, whereAij(x, t, u, v)vij ≥ Φ(|u|)|v|pC

3|u|δ −φo(x, t)for

someΦ, following the same lines as the proof in [6].

2

Energy Estimates for

u

2.1

Notation & Preliminaries

Let(x0, t0) ∈ ΩT, without loss of generality we can assume(x0, t0) = (0,0). For kernel in space-time, and for a given functionf we use the notationfη ≡ Jη∗f to represent its convolution withJη.

(5)

verifies

0≤f′(s)≤ 

 

 

0 s < κ,

1

ǫ κ < s <2κ,

1

s κ s >2κ,

(4)

provided0< ǫ <12.

We are now ready to start the derivation of our energy estimate. Fixη >0,κ >0

and consider the test function{ui,η(x, t)f(|uη(x, t)|)ζkp(x, t)}η.Because this is aC0∞

function forηsufficiently small, we can substitute it into the definition of weak solution to obtain

Z Z

ΩT

−ui∂

∂t{ui,ηf(|uη|)ζ p

k}η dx dt

+

Z Z

ΩT

Aij(x, t, u,∇u) ∂

∂xj {ui,ηf(|uη|)ζ p

k}η dx dt

=

Z Z

ΩT

Bi(x, t, u,∇u){ui,ηf(|uη|)ζkp}η dx dt.

(5)

For convenience of notation, we rewrite (5) in compact form asI1+I2=I3, and

discuss each of these terms in turn.

2.2

Estimate of

I

1

We begin by using the symmetry of the mollifying kernel, and integration by parts to rewriteI1as

I1=−

Z Z

ΩT

ui,η∂

∂t{ui,ηf(|uη|)ζ p k} dx dt

=

Z Z

Qτ R

∂ ∂tui,η

ui,ηf(|uη|)ζkpdx dt.

We then notice that summing over the indexiimplies

X

i ui,η∂

∂tui,η=

1 2

X

i ∂ ∂t(ui,η)

2

= 1 2

∂ ∂t|uη|

2=|

uη|∂

∂t|uη|, (6)

and we derive

I1=

Z Z

Qτ R

|uη|∂|uη|

∂t f(|uη|)ζ p k dx dt.

If we now letk→ ∞, thanks to the uniform convergence ofζk →ζ, and the smooth-ness of the mollified functions we obtain

lim

k→∞I1=

Z Z

Qτ R

|uη|∂|uη|

(6)

Proceeding in a standard fashion, we rewrite the integral on the right hand side as

whereγ2is a constant that depends onσ, Randp. (Note that the above limits are zero

(7)

2.3

Estimate of

I

2

We start as in Section 2.2, and use the symmetry of the mollifying kernel to rewriteI2:

I2=

Z Z

Qτ R

Aij,η(x, t, u,∇u) ∂

∂xj{ui,ηf(|uη|)ζ p

k} dx dt.

We then take the limit fork→ ∞, and by the smoothness of the mollified functions we obtain

lim

k→∞I2=

Z Z

Qτ R

Aij,η(x, t, u,∇u) ∂

∂xj {ui,ηf(|uη|)ζ

p} dx dt. (9)

As done while deriving the estimate for I1, we would like to consider the limit

forη ↓ 0as well. To do so, we notice that the structure condition (H2) implies the inequality

Z Z

Qτ R

|Aij(x, t, u,∇u)|p−p1 dx dt≤γ Z Z

Qτ R

h

|∇u|p+|u|δ+φ

p p−1

1

i dx dt.

From which, we have thatAij(x, t, u,∇u)∈ L p p−1(

R), sinceδ < mand since by

the classical embedding theorems for parabolic spaces we know

u∈L∞,loc(0, T;L2,loc(Ω))∩Lp,loc(0, T;Wp,loc1 (Ω))֒→Lm,loc(ΩT). (10)

Therefore, we obtain Aij,η(x, t, u,∇u)−→η↓0 Aij(x, t, u,∇u)inL p p−1(

R).

On the other hand,

∂xj{ui,ηf(|uη|)ζ

p}= ∂ui,η

∂xj f(|uη|)ζ p

+ui,ηf′(|uη|)∂|uη|

∂xj ζ p+

pui,ηf(|uη|)ζp−1 ∂ζ ∂xj;

hence fromui,η→uiand∇ui,η→ ∇uialmost everywhere [3, Appendix C, Theorem 6] we conclude that

∂xj{ui,ηf(|uη|)ζ

p} →

∂xj{uif(|u|)ζ

p} a.e.

If next we use our estimates forfandf′, we have the upper bound

∂xj{ui,ηf(|uη|)ζ p}

p

|∇ui,η|+ 2κ1

ǫ|∇uη|+|uη|

1

κ|uη||∇uη|+C|uη| p

≤C{|∇uη|p+|uη|p},

which, applying a slight generalization of Lebesgue’s Dominated Convergence Theo-rem [4,§1.8], gives

∂xj{ui,ηf(|uη|)ζ

p}−→η↓0 ∂

∂xj{uif(|u|)ζ p} in

(8)

We then have that equation (9) yields

The first integral above can be estimated with the help of (H1) as follows:

Z Z

To handle the second integral, we use the parabolicity assumption (H5), and the

equal-ity∂|u|

For the last integral, we need (H2) to derive

Z Z

Finally, we combine (11), (12), (13), and (14) so to obtain the inequality:

(9)

2.4

Estimate of

I

3

Once again, our first step is to rewriteI3in the form

I3=

Z Z

Qτ R

Bi,η(x, t, u,∇u){ui,ηf(|uη|)ζkp} dx dt,

and to consider the limit fork→ ∞:

lim

k→∞I3=

Z Z

Qτ R

Bi,η(x, t, u,∇u){ui,ηf(|uη|)ζp} dx dt.

To justify taking the limit forη ↓ 0 in this case, we proceed by noticing that (H3) implies

|Bi(x, t, u,∇u)|mm−1 ≤C2|∇u|p(1−

1

δ)( m

m−1) +C5|u|m

δ−1

m−1 +φ

m m−1

2 (x, t).

Which yieldsBi,η −→ Bi inL m m−1(

R), in view of the embedding (10), and the

relationsδ < m,p 1−1

δ

m

m−1

=p1111/m/δ< p. Moreover, since we know that

ui,ηf(|uη|)ζp −→uif(|u|)ζp for a.e.(x, t), and |ui,ηf(|uη|)ζp|m≤C|uη|m;

we can apply the same generalization of Lebesgue’s Dominated Convergence Theorem to see that

ui,ηf(|uη|)ζp−→uif(|u|)ζp inLm(QτR).

Thus,

lim

η↓0klim→∞I3=

Z Z

Qτ R

Bi(x, t, u,∇u)uif(|u|)ζpdx dt, (16)

and we can use (H3) once more to conclude

lim

η↓0klim→∞I3≤C2

Z Z

Qτ R

|∇u|p(1−1δ)|u|f(|u|)ζpdx dt

+C5

Z Z

Qτ R

|u|δf(|u|)ζpdx dt+

Z Z

Qτ R

φ2(x, t)|u|f(|u|)ζpdx dt. (17)

2.5

The Energy Estimate

To derive our energy estimate (presented in Proposition 3 below), we use the interme-diate result stated as Lemma 2. This is a direct consequence of equations (8), (15) and (17): starting from (5), one can use the bounds given in the previous sections, and

then apply Young’s inequality to treat the terms involving|∇u|p−1,|∇u|p(1−1

δ), and

(10)

Lemma 2 Letp > 1, letf be defined by (3), and letu ∈L∞,loc(0, T;L2,loc(Ω))∩ Lp,loc(0, T;Wp,loc1 (Ω))be a weak solution of (1). If the assumptions (H1)-(H5) are verified, then for any

R(x0, t0) =BR(x0)×(t0−Rp, τ)⊂⊂ΩT we have

To extract useful information from Lemma 2, we need to substitute our choice of

(11)

Moreover, since

f(|u|) = (|u| −κ)+ (|u| −κ)++ǫ

↑χ[|u|> κ] asǫ↓0,

we can use the Monotone Convergence Theorem to pass to the limit asǫ ↓ 0 in the remaining terms of (18), and gather the bound

1 2

Z

BR

(|u| −κ)2+ζpdx

t=τ

+

Z Z

Qτ R

|∇u|pχ[|u|> κ]ζpdx dt

≤γ Z Z

Qτ R

|u|δχ[|u|> κ]dx dt+

Z Z

Qτ R

|u|pχ[|u|> κ]|∇ζ|pdx dt

+

Z Z

Qτ R

|u|2χ[|u|> κ]ζtdx dt+

Z Z

Qτ R

φ0(x, t)χ[|u|> κ]dx dt

+

Z Z

Qτ R

φ1(x, t)|u|χ[|u|> κ]|∇ζ|dx dt+

Z Z

Qτ R

φ2(x, t)|u|χ[|u|> κ]dx dt

!

.

In turn, the above inequality leads to the classical local energy estimate stated in Propo-sition 3 below, if one takes in account the relation∇|u|

p

≤ |∇u|p.

Proposition 3 (Local Energy Estimate) Under the hypotheses (H1)-(H5), ifuis a weak solution of (1) then forQR(x0, t0) = BR(x0)×(t0−Rp, t0)⊂⊂ ΩT,0 < σ <1,

andκ >0

ess sup

−Rp<τ <0

Z

BσR

(|u| −κ)2+dx

t=τ

+

Z Z

QσR

|∇(|u| −κ)+|pζpdx dt

≤γ Z Z

QR

|u|δχ[|u|> κ]dx dt+ 1

(1−σ)pRp Z Z

QR

|u|pχ[|u|> κ]dx dt

+ 1

(1−σ)pRp Z Z

QR

|u|2χ[|u|> κ]dx dt+Z Z

QR

φ0(x, t)χ[|u|> κ]dx dt

+ 1

(1−σ)R Z Z

QR

φ1(x, t)|u|χ[|u|> κ]dx dt

+

Z Z

QR

φ2(x, t)|u|χ[|u|> κ]dx dt

.

(20)

for some constantγ=γ(C0, C1, C2, C3, C4, C5, p).

3

Higher Integrability of

u

(12)

parabolic spaces [1, Chap. 1], and hypotheses (H6) for the functionsφ0, φ1, andφ2,

we have

Z Z

QσR

(|u| −κ)p(

N+2

N )

+ ζpdx dt

1+1p N

≤γ Z Z

QR

|u|δχ[|u|> κ]dx dt

+ γ

(1−σ)pRp Z Z

QR

|u|pχ[|u|> κ]dx dt

+ γ

(1−σ)pRp Z Z

QR

|u|2χ[|u|> κ]dx dt+γ||φ0||Lµ(QR)(meas[|u|> κ])

1−1

µ

||φ

1||Ls(QR)

(1−σ)R +||φ2||Ls(QR)

Z Z

QR

|u|χ[|u|> κ]dx dt.

(21)

Inequality (21) is the key link needed to obtain for our systems exactly the same higher integrability result proven in [5, Proposition 3] for single equations:

Proposition 4 Under the hypotheses and notation of Theorem 1, we have that

ifs, µ≥ (Np+p), thenu∈Lq,loc(ΩT)for anyq <∞;

ifs, µ < (Np+p), thenu∈Lq,loc(ΩT)for anyq < q∗.

Indeed, supposeu∈Lβ,loc. Then we can use (21) to see that

κ(NN+2)pmeas

QσR

[|u|>2κ]

1+1p/N

≤Cγ,R,σ,p||u||βLβ(QR) (

1 κ

β−δ

+

1 κ

β−p

+

1 κ

β−2)

+C||u||β(1−

1

µ)

Lβ(QR)

1

κ

β(1−1µ)

+C||u||β(1−

1

s)

Lβ(QR)

1

κ

β(1−1s)−1

.

Therefore, if

α(β) = N+ 2

N p+

1 + p

N

min

β−2, β−δ, β

1−1 s

−1, β

1− 1 µ

thenu∈Lweakα(β),loc. Thusu∈Lq,loc(QR)for allq < α(β), and we can iterate this

process starting fromβ0= max{2,

N+ 2

N p, r}to obtain the result. The details can be

found in [5].

4

Boundedness of

u

(13)

thatQρ⊂⊂ΩT. For each integern, we define

ρn=σρ+(1−σ) 2n ρ,

and setQn=Qρn. Next we fixκ >0to be chosen later, and set

κn=κ

1− 1

2n+1

.

ForNN+2p >2, we consider

Yn = 1

measQn Z Z

Qn

|u−κn|mdx dt,

while forNN+2p≤2, we take

Yn= 1

measQn Z Z

Qn

|u−κn|λdx dt,

forλsufficiently large. This is well defined thanks to the local integrability proven in Section 3. We then apply the local energy estimate (21)in a standard way to obtain an estimate of the form

Yn+1≤γ(B1nYn1+ǫ1+B2nYn1+ǫ2+Bn3Yn1+ǫ3),

for positive constantsγ, B1, B2, B3, ǫ1, ǫ2 andǫ3. As final step, we chooseκ

suffi-ciently large so to haveYn→0asn→ ∞which implies|u|< κinQσρ.

It should be clear from the above presentation how the crucial roles in the gener-alization of the results in [5] to system of the form (1) are played by the local energy estimate of Proposition 3, and by the fact that the techniques in [5] really depend just on|u|. In a similar fashion, it is an easy exercise to check that the same ingredients (Proposition 3 and replacement ofuby|u|) lead to the more general results of [6] .

References

[1] E. DiBenedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993.

[2] , Partial differential equations, Birkh¨auser, Boston, 1995.

[3] L. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998.

[4] E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, Amer-ican Mathematical Society, 1997.

[5] M. O’Leary, Integrability and boundedness of solutions to singular and degenerate

quasilinear parabolic equations, Differential Integral Equations 12 (1999), 435–

(14)

[6] , Integrability and boundedness for local solutions to doubly degenerate

quasilinear parabolic equations, Adv. Differential Equations 5 (2000), no. 10-12,

1465–1492.

[7] W. H. Zajaczkowski,L∞-Estimate for solutions of nonlinear parabolic systems, Singularities and differential equations (Warsaw, 1993), 491–501, Banach Center Publ., 33, Polish Acad. Sci., Warsaw, 1996.

TIZIANAGIORGI

Department of Mathematical Sciences, New Mexico State University Las Cruces, NM 88003 USA.

E-mail address: tgiorgi@nmsu.edu

MIKEO’LEARY

Mathematics Department, Towson University Towson, MD 21252 USA.

E-mail address: moleary@towson.edu

Referensi

Dokumen terkait

Berdasarkan hasil analisis regresi linier berganda dan uji t, maka dapat disimpulkan bahwa variabel lokasi memiliki pengaruh yang positif, searah, tetapi

KSA terhitung mulai tanggal 28 Agustus 2015 sampai dengan 31 Agustus 2015 sesuai jadwal lelang ini, disertai bukti terjadinya penyimpangan, dengan tembusan

Modalitas terapi pada anak- anak seharusnya mudah, sederhana cara pemberiannya, tidak menimbulkan rasa nyeri atau efek samping ringan, dan mempunyai clearance rate tinggi

Pokja Unit Layanan Pengadaan (ULP) Kantor Unit Penyelenggara Pelabuhan Kelas III Bawean akan melaksanakan Lelang Pemilihan Langsung dengan Pascakualifikasi Metode Sistem

Perancangan sistem informasi Absensi ini secara sederhana dapat digambarkan sebagai sebuah bentuk fasilitas yang memberikan pelayanan bagi setiap pegawai PDAM Tirta

The leadership literature is voluminous. This study adopted the contingency model to explain the relationship between the leader- subordinate similarity and

Hasil yang didapat dari proses skrining fitokimia, maka dilakukan prosedur uji dengan Kromatografi Lapis Tipis (KLT). Sedangkan untuk elusidasi struktur senyawa aktif

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Barang/Jasa Pemborongan untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD