• Tidak ada hasil yang ditemukan

NEW SUBCLASS OF UNIVALENT FUNCTIONS DEFINED BY USING GENERALIZED SALAGEAN OPERATOR | Joshi | Journal of the Indonesian Mathematical Society 46 144 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "NEW SUBCLASS OF UNIVALENT FUNCTIONS DEFINED BY USING GENERALIZED SALAGEAN OPERATOR | Joshi | Journal of the Indonesian Mathematical Society 46 144 1 PB"

Copied!
11
0
0

Teks penuh

(1)

NEW SUBCLASS OF UNIVALENT

FUNCTIONS DEFINED BY USING

GENERALIZED SALAGEAN OPERATOR

S. B. Joshi and N. D. Sangle

Abstract.In this paper, we have introduced and studied a new subclassT Dλ(α, β, ξ;n)

of univalent functions defined by using generalized Salagean operator in the unit disk U={z:|z|<1}We have obtained among others results like, coefficient inequalities, distortion theorem, extreme points, neighbourhood and Hadamard product properties.

1. INTRODUCTION

LetAdenote the class of functions of the form

f(z) =z+ ∞ X

k=2

akzk (1)

which are analytic in the unit disk U ={z: |z| <1}. In [4], Al-oboudi defined a differential operator as follows, for a functionf ∈A,

D0f(z) =f(z),

Df(z) =D1f(z) = (1−λ)f(z) +λzf′(z) =Dλf(z), λ≥0, (2)

in general

Dnf(z) =Dλ(Dn−1f(z)). (3)

Iff(z) is given by (1), then from (2) and (3) we observe that

Dnf(z) =z+ ∞ X

k=2

[1 + (k−1)λ]nakzk (4)

Received 20-06-2008, Accepted 18-09-2009.

2000 Mathematics Subject Classification: 30C45

Key words and Phrases: Univalent function, Distortion theorem, Neighbourhood, Hadamard product

(2)

when λ = 1, get Salagean differential operator [7]. Further, let T denote the subclass ofAwhich consists of functions of the form

(3)

Since|Re(z)|<|z|for allz, we obtain

Re

½ P∞

k=2[1 + (k−1)λ]nkakzk−1 2ξ(1−α)−(2ξ−1)P∞

k=2[1 + (k−1)λ]nkakzk−1 ¾

< β.

Lettingz→1− through real values, we get (8). The result is sharp for the function

f(z) =z− 2βξ(1−α)

[1 + (k−1)λ]nk[1 +β(2ξ1)]z

k, k2.

Corollary 1. Letf ∈T belong to the class T Dλ(α, β, ξ;n)then

ak ≤

2βξ(1−α)

[1 + (k−1)λ]nk[1 +β(2ξ1)], k≥2. (9)

Theorem 2. Let f ∈T belong to the class T Dλ(α, β, ξ;n), then for |z| ≤r <1, we have

r−r2 βξ(1−α) 1 +β(2ξ−1) ≤ |D

nf(z)| ≤r+r2 βξ(1−α)

1 +β(2ξ−1) (10)

and

1−r 2βξ(1−α)

1 +β(2ξ−1) ≤ |(D

nf(z))| ≤1 +r 2βξ(1−α)

1 +β(2ξ−1). (11)

bounds given by (10) and (11) are sharp.

Proof. By Theorem 1, we have

∞ X

k=2

[1 + (k−1)λ]nk[1 +β(2ξ−1)]ak≤2βξ(1−α)

then, we have

2(1 +λ)n[1 +β(2ξ1)]a k≤

∞ X

k=2

[1 + (k−1)λ]nk[1 +β(2ξ1)]a

k≤2βξ(1−α),

then,

∞ X

k=2 ak≤

(4)

Hence

|Dnf(z)| ≤ |z|+ ∞ X

k=2 ¯

¯[1 + (k−1)λ]nakzk ¯ ¯

≤ |z|+|z|2(1 +λ)n ∞ X

k=2 ak

≤r+r2(1 +λ)n ∞ X

k=2 ak

≤r+r2 βξ(1−α) 1 +β(2ξ−1),

and

|Dnf(z)| ≥ |z| − ∞ X

k=2 ¯

¯[1 + (k−1)λ]na kzk

¯ ¯

≥ |z| − |z|2(1 +λ)n ∞ X

k=2 ak

≥r−r2(1 +λ)n ∞ X

k=2 ak

≥r−r2 βξ(1−α) 1 +β(2ξ−1),

thus (10) is true. Further,

|(Dnf(z))| ≤1 + 2r(1 +λ)n ∞ X

k=2 ak

≤1 +r 2βξ(1−α) 1 +β(2ξ−1),

and

|(Dnf(z))′| ≥1−2r(1 +λ)n ∞ X

k=2 ak

≥1−r 2βξ(1−α) 1 +β(2ξ−1).

The result is sharp for the functionf(z) defined by

f(z) =z− 2βξ(1−α)

1 +β(2ξ−1)z

(5)

Theorem 3. Let n∈N∪ {0},λ≥0,0≤α1≤α2< 12ξ,0< β ≤1,1/2≤ξ≤1. ThenT Dλ(α2, β, ξ;n)⊂T Dλ(α1, β, ξ;n).

Proof. By assumption we have

2βξ(1−α2)

[1 + (k−1)λ]nk[1 +β(2ξ1)]

2βξ(1−α1)

[1 + (k−1)λ]nk[1 +β(2ξ1)]

Thus,f(z)∈T Dλ(α2, β, ξ;n) implies that

∞ X

k=2

[1 + (k−1)λ]na k ≤

2βξ(1−α2) k[1 +β(2ξ−1)] ≤

2βξ(1−α1) k[1 +β(2ξ−1)]

thenf(z)∈T Dλ(α1, β, ξ;n).

Theorem 4. The set T Dλ(α, β, ξ;n)is the convex set.

Proof. Let fi(z) = z−P∞

k=2ak,izk (i = 1,2) belong to T Dλ(α, β, ξ;n) and let g(z) =ζ1f1(z) +ζ2f1(z) withζ1andζ2 non negative andζ1+ζ2= 1, we can write

g(z) =z−

∞ X

k=2

(ζ1ak,1+ζ2ak,2)zk.

It is sufficient to show thatg(z) =T Dλ(α, β, ξ;n) that means

X

k=2

[1 + (k−1)λ]nk[1 +β(2ξ−1)](ζ1ak,1+ζ2ak,2)

=ζ1

X

k=2

[1 + (k−1)λ]n

k[1 +β(2ξ−1)]ak,1+ζ2

X

k=2

[1 + (k−1)λ]n

k[1 +β(2ξ−1)]ak,2

≤ζ1(2βξ(1−α)) +ζ2(2βξ(1−α))

= (ζ1+ζ2)(2βξ(1−α))

= 2βξ(1−α)

Thusg(z)∈T Dλ(α, β, ξ;n).

We shall now present a result on extreme points in the following theorem

Theorem 5. Let f1(z) =z and

f(z) =z− 2βξ(1−α)

(6)

for all k≥2, n∈N ∪ {0}, λ≥0, 0 ≤α < 12ξ, 0< β ≤1,1/2 ≤ξ ≤1. Then

(7)

Theorem 5. Let

γ= 2βξ(1−α) (1 +λ)n[1 +β(2ξ1)].

ThenT Dλ(α, β, ξ;n)⊂N(k,γ)(e).

Proof. Letf ∈T Dλ(α, β, ξ;n) then we have

2(1 +λ)n[1 +β(2ξ−1)] ∞ X

k=2 ak

∞ X

k=2

[1 + (k−1)λ]nk[1 +β(2ξ−1)]ak

≤2βξ(1−α),

therefore

∞ X

k=2 ak≤

βξ(1−α)

(1 +λ)n[1 +β(2ξ1)], (14)

also we have for|z|< r

|f′(z)| ≤1 +|z|

∞ X

k=2

kak ≤1 +r ∞ X

k=2 kak.

In view (14), we have

|f′(z)| ≤1 +r 2βξ(1−α) (1 +λ)n[1 +β(2ξ1)].

From above inequalities we get

∞ X

k=2 kak ≤

2βξ(1−α)

(1 +λ)n[1 +β(2ξ1)] =γ,

thereforef ∈N(k,γ)(e).

Definition 2. The function f(z) defined by (5) is said to be a member of the subclassT Dλ(α, β, ξ, ζ;n) if there exits a functiong∈T Dλ(α, β, ξ;n)such that

¯ ¯ ¯ ¯

f(z) g(z) −1

¯ ¯ ¯ ¯

(8)

Theorem 6. Let g∈T Dλ(α, β, ξ;n)and

ζ= 1−γ

2d(α, β, ξ;n). (15)

Then N(k,γ)(g) ⊂ T Dλ(α, β, ξ, ζ;n) where n ∈ N ∪ {0}, λ ≥ 0, 0 ≤ α < 12ξ, 0< β≤1,1/2≤ξ≤1,0≤ζ <1 and

d(α, β, ξ;n) = (1 +λ)

n[1 +β(2ξ1)]

(1 +λ)n[1 +β(2ξ1)]βξ(1α).

Proof. Letf ∈N(k,γ)(g) then by (14) we haveP∞

k=2k|ak−bk| ≤γ, thenP∞k=2|ak− bk| ≤ γ2. Sinceg∈T Dλ(α, β, ξ;n) we have

∞ X

k=2 bk≤

βξ(1−α) (1 +λ)n[1 +β(2ξ1)],

therefore,

¯ ¯ ¯ ¯

f(z) g(z)−1

¯ ¯ ¯ ¯

< P∞

k=2|ak−bk| 1−P∞

k=2bk

≤ γ

2

µ (1 +λ)n[1 +β(2ξ1)]

(1 +λ)n[1 +β(2ξ1)]βξ(1α)

= γ

2d(α, β, ξ;n) = 1−ζ.

Then by Definition 2, we getf ∈T Dλ(α, β, ξ, ζ;n).

Theorem 7. Let f(z) and g(z) ∈ T Dλ(α1, β, ξ;n) be of the form (5) such that f(z) = z−P∞

k=2akzk and g(z) = z−P∞k=2bkzk where ak, bk ≥ 0. Then the Hadamard product h(z) defined by h(z) = z −P∞

k=2akbkzk is in the subclass T Dλ(α2, β, ξ;n)where

α2≤

[1 + (k−1)λ]nk[1 +β(2ξ1)]2βξ(1α1)2 [1 + (k−1)λ]nk[1 +β(2ξ1)] .

Proof. By Theorem 1, we have

∞ X

k=2

[1 + (k−1)λ]nk[1 +β(2ξ1)]

2βξ(1−α1) ak ≤1 (16)

and

X

k=2

[1 + (k−1)λ]nk[1 +β(2ξ1)]

(9)

We have only to find the largestα2 such that

∞ X

k=2

[1 + (k−1)λ]nk[1 +β(2ξ1)]

2βξ(1−α2) akbk ≤1.

Now, by Cauchy-Schwarz inequality, we obtain

∞ X

k=2

[1 + (k−1)λ]nk[1 +β(2ξ1)] 2βξ(1−α1)

p

akbk≤1,

we need only to show that

[1 + (k−1)λ]nk[1 +β(2ξ1)] 2βξ(1−α2) akbk

≤ [1 + (k−1)λ]

nk[1 +β(2ξ1)]

2βξ(1−α1)

p

akbk, (18)

equivalently,

p akbk≤

[1 + (k−1)λ]nk[1 +β(2ξ1)] 2βξ(1−α1) ×

2βξ(1−α2)

[1 + (k−1)λ]nk[1 +β(2ξ1)]

≤ 1−α2

1−α1 .

But from (18), we have

p akbk≤

2βξ(1−α1)

[1 + (k−1)λ]nk[1 +β(2ξ1)]

Consequently, we need to prove that

2βξ(1−α1)

[1 + (k−1)λ]nk[1 +β(2ξ1)] ≤ 1−α2 1−α1.

or equivalently, that

α2≤

[1 + (k−1)λ]nk[1 +β(2ξ1)]2βξ(1α1)2 [1 + (k−1)λ]nk[1 +β(2ξ1)] .

Theorem 8. Letf ∈T Dλ(α, β, ξ;n)be defined by (5) andc any real number with c >−1 than the functionG(z)defined as G(z) = c+1zc

Rz 0 s

(10)

Proof. By virtue ofG(z) it follows from (5) that

≤1 and by Theorem 1, so the proof is complete.

Theorem 8. Let f ∈T Dλ(α, β, ξ;n)be defined by (5) and

Proof. Letf defined by (5) then

Fµ(z) = (1−µ)z+µ

(11)

2. P.L. Duren, Univalent functions Grundlehren der Mathematischen wissenchaften, Bd.259, Spinger-Verlag, Berlin, Heidelberg and Tokyo, 1983.

3. G. Murugusundaramoorthy, and H.M. Srivastava, “Neighbourhood of certain classes of analytic functions of complex order”, J Inequal. Pure Appl. Math. 5:2 (2004), Art. 24. 8 pp.

4. F.M. Al-Oboudi, “On univalent functions defined by generalized Salagean operator”,

IJMMS27(2004), 1429–1436.

5. S. Ruscheweyh, “Neighborhoods of univalent functions”, Proc. Amer. Math. Soc.

81(1981), 521–527.

6. S. Ruscheweyh, S. and T Sheil Small, “Hadamard products of Schlicht functions and the polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135. Neighbourhood of univalent functions”,Proc. Amer. Math. Soc. 81(1981), 521–527. 7. G.S. Salagean,Subclasses of univalent functions, Complex-Analysis- fifth Romanian

-Finnish Seminar, Part I (Bucharest, (1981)), Lecture Notes in Math, Vol.1013, 362– 372, Springer Berlin, New-York, 1983.

S. B. Joshi: Department of Mathematics, Walchand College of Engineering, Sangli (M.S), India 416 415.

E-mail: joshisb@hotmail.com.

N. D. Sangle: Department of Mathematics, Annasaheb Dange College of Engineering, Ashta, Sangli (M.S), India 416 301.

Referensi

Dokumen terkait

Panitia Pengadaan pada Badan Kepegawaian Negara Kantor Regional VIII Banjarmasin akan melaksanakan Pelelangan Umum dengan pascakualifikasi untuk paket pekerjaan

Madju Warna Steel juga sudah sesuai dengan 10 peran organisasi menurut Mintzberg (dalam Robbins, 2008) yaitu sebagai tokoh utama yaitu melakukan tugas rutin,

PANDUMUDA PERKASA Tidak memenuhi syarat Gugur.. BINA MUDA Memenuhi syarat

Sejak awal berdirinya perusahaan, perusahaan selalu berusaha untuk mencapai visi yang telah diangkat oleh perusahaan, yakni menjadi mitra strategis jangka panjang

Dari daftar panjang tersebut diambil 3 (tiga) perusahaan dengan nilai terbaik untuk dimasukkan ke dalam daftar pendek konsultan yang diundang untuk mengikuti

gugur menggunakan ambang batas yang telah dilakukan secara online menggunakan Aplikasi SPSE di portal LPSE Kementerian Sosial RI melalui alamat Website LPSE

[r]

Demikian juga wewenang, tugas dan fungsi BHP yang diatur dalam KUHPdt dan S 1872 Nomor 166 tentang Instruksi untuk Balai Harta Peninggalan mengenai perwalian, dan kewajiban BHP