ESTIMASI PARAMETER DISTRIBUSI EKPONENSIAL PADA LOKASI TERBATAS (Estimating Parameter Distribution Exponential At Finite Location)
MOZART W TALAKUA1, JEFRI TIPKA2
1 Staf Jurusan Matematika, FMIPA,UNPATTI 2 Calon Staf Jurusan Matematika, FMIPA,UNPATTI Jl. Ir. M. Putuhenam, Kampus Unpatti, Poka-Ambon
E~Mail: [email protected] ABSTRACT
The common method in Estimating Parameter Distribution Exponential at Finite Location is Maximum Likelihood Estimation (MLE).The best estimator is consistent estimator. Because of The Mean Square Error (MSE) can be used in comparing some detectable estimators that it had looking for with Maximum Likelihood Estimation (MLE) so can find the consistent estimator in Estimating Parameter Distribution Exponential At Finite Location.
Keywords: Distribution Exponential, Estimator, Finite Location, Parameter.
PENDAHULUAN
Jika data dikumpulkan melalui sampel random dari suatu populasi, tujuan yang paling utama dari suatu analisis statistik adalah melakukan inferensi atau generalisasi tentang karateristik populasi itu dari infornasi yang terkandung dalam data sampel tersebut. Dapat dilihat bahwa kumpulan data variabel acak yang bebas atau suatu sampel data yang diambil secara acak dari suatu populasi yang mempunyai distribusi. Biasanya dituju pada sifat numerik populasi itu, seperti mean dan variansi distribusi populasi itu. Setiap sifat numerik suatu distribusi populasi dapat dinyatakan dalam bentuk parameter yang tampak dalam fungsi probabilitas populasi itu.
Inferensi atau generalisasi tergantung pada maksud dan tujuan penyelidikan. Dua macam inferensi yang paling penting adalah Estimasi Parameter dan Uji Hipotesis Statistik.
Biasanya parameter populasi dipandang sebagai suatu konstanta yang tidak diketahui harga sebenarnya. Jika berdasarkan data sampel kita ingin menduga atau memperkirakan harga parameter itu dengan kecermatan tertentu, maka inferensinya dinamakan Estimasi Parameter.
Suatu statistik yang digunakan sebagai estimasi suatu parameter dinamakan Estimator Titik parameter itu. Tujuan dari estimasi titik adalah menghasilkan suatu bilangan yang harganya dekat dengan harga parameter yang tidak diketahui misalkan dipunyai sampel acak
dari suatu populasi probabilitas
n
X
X
X
1,
2,...,
( )
x
;
θ
ˆ
f
dan seringkali ditulis estimasi titik sebagai estimasi parameterθ
ˆ
θ
. Fungsi probabilitas estimatorθ
seringkali dapat diturunkan (dengan menggunakan fungsi Pembangkit Momen atau transformasi variabel) apabila fungsi probabilitas populasinya diketahui.Hal yang sudah dipelajari secara menyeluruh adalah, bahwa distribusi populasi atau distribusi variabel acaknya mempunyai bentuk matematika yang diketahui. Sebagai contoh, misalkan populasi mempunyai distribusi normal
dengan parameter
µ
danσ
, yang tidak diketahui, atau misalkan populasi mempunyai distribusi binomial( )
n
p
b ,
, dimana p tidak diketahui.Untuk mencari nilai parameter dari θ (populasi yang mempunyai Distribusi Eksponensial), maka terlebih dahulu dicari Maximum Likelihood Estimation (MLE) dari
θ
serta distribusinya baik dalam lokasi/ruang parameter tak terbatas maupun terbatas.TINJAUAN PUSTAKA
Memperoleh suatu estimator yang dianggap baik untuk mengestimasi parameter adalah permasalahan yang mendasar dalam suatu populasi.
Dalam pandangan teori keputusan ‘pengamatan (data)’ yang biasanya dengan distribusi yang tidak diketahui sebelumnya, misal data yang mengandung parameter
Θ
∈
θ
, denganΘ
diketahui, bersama dengan ‘kemungkinan kerugian/keuntungan’ akibat pemilihan satu dari sejumlah keputusan yang mungkin merupakan dua unsur utama dalam persoalan umum statistika.Adapun sampel yang digunakan dalam penelitian disebut sebagai penduga (estimator). Sedangkan fungsi nilai sampel yang digunakan untuk menduga parameter disebut penduga parameter dan angka yang merupakan hasilnya disebut dugaan secara statistik. Suatu penduga
δ
dikatakan baik jika memiliki sifat-sifat tidak bias, efisiaen, konsisten.Keputusan biasanya disebut aksi atau tindakan yang dinotasikan dengan A, himpunan keputusan yang mungkin dinotasikan dengan A, dan himpunan variabel
random atau ruang sampel dinotasikan dengan
χ
. Bila fungsi distribusi dari variable random bergantung padan
X
X
X
1,
2,..,
θ
yang tidak diketahui, maka persoalan mengestimasi θ merupakan persoalan estimasi2 TALAKUA ESTIMASI PARAMETER
titik.
θ
diestimasi oleh suatu fungsi dari pengamatan yang disebut statistik atau estimation.n
X
X
X
1,
2,..,
Selain itu, estimator-estimator tersebut di atas juga mempunyai sifat-sifat analitik yang nantinya dipakai dalam mengestimasi parameter. Oleh karena itu, penulis mencoba untuk menggambarkan secara ringkas sifat-sifat dari estimator-estimator tersebut di atas dengan bertolak dari definisi-definisi yang ada.
Definisi 1 Fungsi Densitas Probabilitas
Fungsi f(x) adalah fungsi kepadatan jika X kontinu, dan sering disebut fungsi densitas probabilitas (density
probability function)
Fungsi densitas probabilitas dari variabel X yang kontinu adalah f(x), sedemikian hingga:
(
a X b)
f(
x dx P b a∫
= ≤ <)
, dimana( )
≥0dan∫
( )
=1 ∞ − dx x f x f xDefinisi 2Rataan Fungsi Densitas Probabilitas
Jika X adalah variabel random kontinu dan f(x) adalah nilai dari fungsi kepadatan pada x, maka meannya adalah
( )
∫
∞( )
∞ − ⋅ = x f xdx X ESelanjutnya, jika X adalah variabel random kontinu dan
( )
xf adalah nilai dari fungsi kepadatan pada x, nilai harapan dari g( )X diberikan oleh
( )
[
g
X
]
E
=∫
g
( ) ( )
x
.
f
x
dx
∞ ∞ −Definisi 3 Variansi Fungsi Densitas Probabilitas Jika X adalah variabel random kontinu dan
f
( )
x
adalah nilai dari fungsi kepadatan pada x, variansi dari X adalah2 σ =
E
(
[
X
−
µ
]
2)
=∫
(
x
) ( )
f
x
dx
. ∞ ∞ −−
µ
2 atau dapat ditulis dalam bentuk lain( )
XVar =E
( )
X2 −µ2Sifat-sifat Kebaikan dari Suatu Estimator
Sampel yang digunakan dalam penelitian disebut sebagai penduga (estimator). Sedangkan fungsi nilai sampel yang digunakan untuk menduga parameter disebut penduga parameter dan angka yang merupakan hasilnya disebut dugaan secara statistik. Suatu penduga δ dikatakan baik jika memiliki sifat-sifat sebagai berikut:
Definisi 4 Tidak Bias
Suatu penduga
δ
dikatakan tidak bias bagi parameternyaθ
apabila nilai penduga sama dengan nilai yang diduganya (parameter)parameternya
(
penduga =E
)
Jadi, penduga tersebut secara tepat dapat menduga nilai parameternya .
Sebaliknya, suatu penduga dikatakan bias bagi parameternya jika nilai penduga tersebut tidak sama dengan nilai yang diduganya (parameternya), atau dapat ditulis:
( )
[
biasδ] ( )
= Eδ −θDengan
E
( )
δ
dinamakan Kuadrat Tengah Galat, danθ
δ − disebut galat pendugaan. Definisi 5 Efisien
Suatu estimator dikatakan efisien bagi parameternya apabila estimator tersebut memiliki variansi yang lebih kecil, dan apabila terdapat lebih dari satu estimator, estimator yang efisien adalah yang memiliki variansi terkecil.
Definisi 6 Konsisten
Jika
{ }
δ
n merupakan barisan estimator dari parameter θ, estimator ini dikatakan konsisten dari θ jika untuk setiap0
>
ε
,[
]
1 lim − < = ∞ → δn θ ε n P untuk setiapθ
∈
Ω
Suatu estimator dikatakan konsisten apabila memenuhi syarat berikut:
a. Jika ukuran sampel semakin bertambah maka estimator akan mendekati parameternya, jika besarnya sampel menjadi tak berhingga maka estimator konsisten harus dapat memberi suatu dugaan titik yang sempurna terhadap parameternya. Jadi
δ
merupakan estimator konsisten jika dan hanya jika:(
δ
−
θ
)
2→
0
E
jikan
→
∞
b. Jika ukuran sampel bertambah tak berhingga maka distribusi dari estimator akan mengecil.
Definisi 7
a. Suatu estimator
δ
1 lebih baik dariδ
2 jika(
θ
,
δ
1) (
R
θ
,
δ
2)
R
≤
untuk semuaθ
, dan untuk suatuθ
0, R(
θ
0,δ
1) (
≤Rθ
1,δ
2)
.b. Estimator
δ
1 ekivalen denganδ
2 jika(
θ
,δ
1) (
Rθ
,δ
2)
R =
Maximum Likelihood Estimation (MLE)
Salah satu metode yang terkenal dalam memperoleh salah satu estimator ialah metode kemungkinan maksimum yang didefinisikan sebagai berikut:
Definisi 8
Misalkan
(
x
1,
x
2,...,
x
n)
adalah sampel random iid dari populasi dengan pdff
(
x
|
θ
1,
θ
2,...,
θ
n)
maka Fungsi kemungkinan adalah(
) (
(
)
∏
= = = n i i n x f x x x L x L 1 2 1 2 1 2 1 ,..., , | ,..., , | ,..., , |θ
θ
θ
)
θ
θ
θ
θ
Definisi 8Estimator
θ
ˆ
=
θ
ˆ
(
x
1,
x
2,...,
x
n)
disebut MLE dariθ
jika:( )
θ
ˆ|x =SupL(
θ
|x1,x2,...,xn)
,θ
∈Θ LJika fungsi kemungkinan terdiferensialkan dalam
θ
, maka nilai-nilaiσ
1,
σ
2,...,
σ
n diperoleh dengan menyamakan turunan parsial dari fungsi kemungkinan atau logaritmanya dengan nol dan mencari akar-akarnya dan syarat perlu pencapaian maksimum adalah turunan keduanya bernilai dua parameter. Dalam kasus persamaan turunan parsial tidak mempunyai penyelesaian, MLE diperoleh dengan argumentasi.Bila suatu variabel random diketahui distribusi tertentu seringkali diinginkan untuk mengetahui distribusi dari fungsi variabel random atau suatu statistik.
Mean Square Error (MSE)
Untuk membandingkan suatu estimator dengan estimator lainnya diperlukan ukuran tertentu, salah satu ukuran kualitas dari suatu estimator adalah Mean Square Error
(MSE), didefinisikan sebagai berikut: Definisi 9
MSE dari estimator
δ
=
δ
( )
x
dan parameterθ
adalah fungsi yang didefinisikan oleh:(
δ
θ
)
(
δ
θ
)
2−
=
−
E
MSE
dengan :[
bias( )
δ] ( )
= Eδ −θ karena(
δ
−
θ
)
=
(
δ
−
θ
)
2−
[
(
δ
−
θ
)
]
2E
E
Var
Maka(
δ
θ
)
Var
( )
δ
[
bias
(
δ
]
2MSE
−
=
+
)
Teorema 1Jika
δ
adalah estimator dari parameter θ, maka:( )
δ
( )
δ
[
( )
δ
]
2 bias Var MSE = + Bukti :( )
δ = E(
δ−θ)
2 MSE( ) ( )
[
]
( )
[
]
2[
( )
]
2 2 θ δ δ δ θ δ δ δ − + − = − + − = E E E E E E E( )
(
( )
)
[
]
[
[
( )
]
( )
]
( )
[ ]
[
( ) ( )
]
[
( )
]
[
]
( )
[
]
[
( )( )
]
[ ]
[
]
( )
[
( ) ( )
(
)
]
[
( )
]
[
]
( )
[
]
[
( )( )
]
[ ]
[
]
( )
[
( ) ( )
(
)
]
[
( )
]
[
]
[
( )
]
( )
[
( )
]
[
( )
]
[
]
[
( )
]
( )
[
( )
]
[
2 2]
[
( )
]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 δ δ δ δ δ δ δ δ δ δ δ δ θ θ δ δ δ δ δ δ θ θ δ δ δ δ δ δ θ θ δ δ δ δ δ δ Bias E E Bias E E E Bias E E E E E E E E E E E E E E E E E E E E E E E E E + − = + + − = + + − = + − + + − = + − + + − = + − + + − =( )
δ[
Bias( )
δ]
2 Var + = Diketahui bahwa:( )
[
bias
δ
]
= E
( )
δ
−
θ
maka dapat ditulis:
( )
δ
=
θ
E
sehingga,(
)
( )
[
( )
2[
( ) ( )
(
)
]
[
( )
]
2]
2θ
θ
θ
θ
δ
θ
δ
Var E E E E MSE − = + − + atau( )
δ
( )
δ
[
( )
δ
]
2bias
Var
MSE
=
+
Jadi MSE merupakan ukuran kualitas yang mempunyai
dua komponen varian sebagai pengukur varibilitas dan bias sebagai pengukur keakuratan dari estimator, dengan kata lain bila suatu estimator tak bias maka MSE-nya
sama dengan variansinya. Definisi 10
Barisan estimator
{ }
θ
n dikatakan tak bias secara asimtotik untuk θ, jika:( )
0bias lim→∞ δn =
n , untuk semua θ
Teorema 2
Barisan estimator
{ }
θ
n untukθ
, dikatakan konsisten dalam kuadrat rata-rata jika dan hanya jika:1. Var
( )
δ
n →0, n→∞2.
δ
n tak bias secara asimtotik Bukti: Karena(
δ
−θ
2)
=(
δ
−θ
2) (
+δ
−θ
2)
n n n Var E E( )
[
(
]
2bias
n nVar
δ
+
δ
=
)
yang akan menuju 0 jika dan hanya jika kedua sukunya menuju 0
Definisi 11 Metode Momen
Jika X1,X2,..,Xn adalah suatu sampel random dari
(
x
n)
f
;
θ
1,
θ
2,...,
θ
, maka sampel momen ke-k diberikan oleh : n x M n i i J∑
= = 1 2 k J=1,2,...,4 TALAKUA ESTIMASI PARAMETER
HASIL DAN PEMBAHASAN
1. Estimator Parameter Distribusi Eksponensial Pada Lokasi Tak Terbatas
Misalkan adalah Variabel Random iid masing-masing berdistribusi eksponensial dengan fungsi kepadatannya: n X X X1, 2,..,
(
)
θ θ θ e x x f | = 1 − Maka( )
X =θ E( )
X =θ
2 Vardan fungsi kemungkinan adalah :
(
)
⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − =∑
= n i i n x x L 1 exp 1 |θ
θ
θ
denganX
( )1=
Min
(
X
1,
X
2,...,
X
n)
untuk setiap
θ
tetap, karenaL |
(
θ
x
)
merupakan perkalian antara suatu fungsi yang naik dalam θ dengan indikator yang nilainya 1 jikaX
( )1∈
θ
dan 0 untuk lainnya. SehinggaL |
(
θ
x
)
mencapai maksimum pada:( )
(
X
X
X
n)
X
Min
,
,...,
ˆ
2 1 1=
=
θ
Selanjutnya diperoleh:( )
[
]
∑ + − = ⎥⎦ ⎤ ⎢⎣ ⎡− − ∑ ∂ ∂ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∑ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ∂ ∂ = ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + ∂ ∂ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ∂ ∂ = ∂ ∂ = = = − ∑ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = =∑
n i i n i i n i i n x n n i i n x n x n x e x x L n i i 1 2 1 1 1 1 1 1 log log log 1 log exp 1 log | log 1 θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θDengan menyamakan persamman di atas sama dengan nol maka diperoleh MLE untuk
θ
adalah:∑ = ∑ − = − = ∑ + − = = = n i i n i i n i i x n x n x n 1 2 1 2 1 2 1 1 1 0 1 1 θ θ θ θ θ θ Maka n x n i i ∑ = =1 θ atau X n x n i∑ i = = =1 ˆ θ
n
S
=
dengan=
∑
= n ix
iS
1Jelas
θ
ˆ
memberikan nilai maksimum untukL |
(
θ
x
)
sebab:(
)
[
]
∑ − = ⎥⎦ ⎤ ⎢⎣ ⎡− + ∑ ∂ ∂ = ⎥⎦ ⎤ ⎢⎣ ⎡− + ∑ ∂ ∂ = ∂ ∂ = − − = − − = n i i n i i n i i x n x n x n x L 1 3 2 1 2 1 1 2 2 1 1 | log θ θ θ θ θ θ θ θ θ θ 0 2 1 3 2− ∑ < = = − − n i xi n θ θjika dan hanya jika
θ
<
2
θ
ˆ
dan
L
(
θ
|
x
)
→
0
jikaθ
→
0
atauθ
→
∞
untukθ
ˆ= X( )1 =Min(
X1,X2,...,Xn)
Akibatnya(
)
[
]
[
(
)
]
[
] [
]
[
]
(
)
[
]
(
)
θ x n n e x X P x X P x X P x X P x X X X P x X X X P − − = ≤ − − = > − = > > − = > − = ≤ 1 1 1 1 ... 1 ,..., , Min 1 ,..., , Min 1 2 1 1 1 2 1 2 1Sehingga fungsi kepadatan dari
X
( )1 adalah:( )
( )
θ θ t X e n t f − = 1 θ >0 dengan( )
( ) n X E 1 =θ( )
( ) 2 1 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = n X Var θ Teorema 3Bila adalah Variabel Random iid berdistribusi eksponensial exp(
n
X
X
X
1,
2,..,
θ
), maka:( )
ˆ
~
( )222
θ
θ
χ
θ
−
n
BuktiDari persamaan diperoleh bahwa ⎟
⎠ ⎞ ⎜ ⎝ ⎛ n e Xi ~ xp θ , maka
menurut sifat parameter lokasi ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ n e Xi -θ ~ xp θ , sehingga ( ) ( )
(
)
1 2 1 2 1 1 11 11 − − − − − = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = t n X n X θ θ θψ
θ
ψ
yang merupakan fungsi pembangkit momen dari distribusi Khi-kuadrat dengan derajat kebebasan 2.
Jadi terbukti bahwa
( )
(
)
( )2 2 ~ 2 ˆ 2θ
χ
θ
θ
θ
θ
− = Xi− n nDari persamaan diperoleh:
(
−
1
=
⎟
⎠
⎞
⎜
⎝
⎛
n
n
n
S
E
θ
)
(
1)
2 2 − = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ n n n S Varθ
(
1)
2 2 2 − = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ n n S E n S Var n S E θθ
)
merupakan estimator bias, maka diperoleh estimator baru untukθ
, misalnya ( )∑
[
( )]
= − − = n i i X X n X 1 1 2 1 1 1
δ
yang juga bias tapi bila prosedur dilakukan untuk setiap pengambilan sampel n,
{ }
δ
1n secara asimtotik tak bias karenalim
bias
( )
1=
0
∞
→ n
n
δ
, sedangkan estimator tak biasuntuk θ adalah:
(
)
∑
[
( ) = − − − = n i i X X n U 1 1 1 1 1]
( )
∑
[
( ) = − − = n i i X X n U 1 1 2 1]
2. Estimator Parameter Distribusi Eksponensial Pada Lokasi Terbatas
Sekarang diandaikan dalam pdf parameter lokasi
θ
terbatas ke atas oleh c,
θ
≤
c
, dengan c suatu konstanta.Akan tetapi dicari MLE dari
θ
.Misalkan adalah variabel random iid dari exp( n
X
X
X
1,
2,..,
θ
), dengan−
∞
<
θ
≤
c
, maka:(
)
θθ
θ
e x x f | = 1 −dan fungsi kemingkinannya adalah
(
)
⎭ ⎬ ⎫ ⎩ ⎨ ⎧ − = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ − =∑
∏
= = n i i n n i i n x x x L 1 1 exp 1 exp 1 | θ θ θ θ θJika diketahui, dan diambil sampel maka kita tidak dapat mengamati
x
i yang lebih kecil dariθ
karenaL |
(
θ
x
)
adalah perkalian satu fungsi dari θ naik dengan fungsi indikator yang bernilai 1 untukx
i∈ ,
(
θ
∞
)
dan 0 untuk lainnya, dan diketahui bahwa−
∞
<
θ
<
∞
, . Tetapi untuk ( )1ˆ
=
X
θ
c
≤
<
∞
−
θ
, jika maka nilai ini jelas di luar parameter, sehingga untuk ,( )
c
X
1>
( )
c
X
1>
(
x
)
L |
θ
mencapai maksimum pada , karena itu untukc
=
θ
ˆ
c
≤
<
∞
−
θ
, maka MLE untuk adalah :θ
ˆ
( ) ( ) ( ) ⎪ ⎩ ⎪ ⎨ ⎧ > ≤ = c X c X c X 1 1 1 Jika , Jika , ˆ θ
Untuk mendapatkan MLE dari
θ
diperoleh dengan cara menyamakan log[
L |(
θ
xθ
∂ ∂)]
dengan 0, sehingga didapatkan: ( )[
]
[
]
( ) ( ) c Jika , c Jika , 1 1 1 ˆ 1 1 1 1 1 1 > ≤ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ − − = =∑
∑
∑
= = = X X c X n X X n x n n i i n i i n i iθ
Sekarang dengan mengadopsi estimator
( )
∑
[
( )]
= − = n i i X X n X 1 1 2 1 1 1δ
Dalam ruang parameter tak terbatas, dapat dibentuk estimator untuk
θ
dalam ruang parameter terbatas (misalkanδ
2) sebagai berikut:[
]
( ) ( ) c Jika , c Jika , 1 1 1 1 2 1 2 > ≤ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ − − =∑
= X X c X n c n i i δ δDan para estimator tersebut sekarang akan dibandingkan terhadap kriteria Mean Square Error (MSE), dengan kata
lain dicari risiko masing-masing estimator terhadap fungsi kuadratis, dengan memanfaatkan idenpedensi dari dan S
( )1
X
Terlebih dahulu dibanding dengan
θ
ˆ
δ
1 yang keduanya merupakan bias dalam ruang parameter tak terbatas. Dengan kriteria MSE diperoleh:( )
( )(
( ))
( ) ( )(
2)
...(1) 2 1 ˆ 2 3 2 2 2 2 2 1 2 1 1 n n n n n n n n S X X E MSE MSE + − = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − = ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − − − = − θ θ θ θ δ θDari persamaan (1) dapat menunjukan bahwa
( )
δ( )
θˆ1 MSE
MSE < sehingga dapat dinyatakan bahwa 1
δ
lebih baik daripada .θ
ˆ
Selanjutnya perbandingan
δ
1 denganδ
2 adalah sebagai berikut: ( ) ( ) ( ) [ ] ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − − − ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − = −∑
= 2 1 2 2 2 1 2 1 1 θ θ δ δ n i i c X n c E n S X E MSE MSE6 TALAKUA ESTIMASI PARAMETER
(
)
( )(
)
(
)
(
( ))
−(
−)
⎥⎦⎤ ⎢⎣ ⎡ − − − − + = 1 1 1 1 22 2c 2θ n S c X n n c X E n nKarena dan S adalah independen, dan secara
kondisional , maka ( )1
X
( )c
X
1>
X
( )1−
c
~
e
xp
( )
θ
, sehingga(
( ))
2 2 2 1 n c X E − =θ , maka diperoleh:( )
( )
(
)
(
)
⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − − − + = − n S E c n n n n n n n MSE MSEδ1 δ2 1 θ22 1 θ22 2 2 2θ(
)
⎥⎦ ⎤ ⎢⎣ ⎡ − − + = 4 1 4 4 θ θ θ n nc n nHasil di atas menunjukan bahwa MSE
( )
δ1 <MSE( )
δ2sehingga dapat disusun teorema berikut:
Maka perbandingan antara
δ
3 danδ
4 menghasilkan:( )
( )
[
]
0 0 1 2 2 1 2 2 2 4 3 = ⎥⎦ ⎤ ⎢⎣ ⎡ − = ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − − − ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = −∑
= n E c X n c E n S E MSE MSE n i i θ θ δ δ Karena( )
2 3 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = n S bias n S Var n S MSE MSEδ(
)
(
)
(
)
( )
n n n n n n n n 2 2 2 2 2 2 2 2 2 1 1 1 θ θ θ θ θ = = + − = + − = Maka( )
n MSE 2 3 θ δ = Lema 1Fungsi kerugian kuadratis adalalah konveks tegas dalam
(
) (
)
2|
δ
δ
θ
θ
=
−
L
δ
. Bukti Diberikanα
(
0
<
α
<
1
)
danL
(
θ
|
δ
)
1). L(
θ
,α
( ) ( )
δ
1 +δ
2)
=[
(
αδ
1+(
1−α
)
δ
2)
−θ
]
2(
)
(
)
(
(
)
)
2 2 1 2 2 11
α
δ
2
θ
αδ
1
α
δ
θ
αδ
+
−
−
+
−
−
=
2).α
(
L(
θ
,δ
1 +(
1−α
) (
Lθ
,δ
2)
)
) (
=α
δ
1 −θ
) (
2 + 1−α
)(
δ
2 −θ
)
2(
)
(
)
2 2 2 1 2 2 2 1 1α
δ
2αθδ
21α
θδ
δ
αδ
+ − − + − + =( ) ( )
(
)
(
(
(
) (
)
)
)
(
)
(
2)
0 karena(
)
0 , 1 , , 2 2 2 2 1 2 1 2 2 1 2 1 < − < + + − = − + − + α α δ δ δ δ α α δ θ α δ θ α δ δ α θ L L L Terbukti,( ) ( )
(
θ
,
α
δ
1δ
2)
α
(
L
(
θ
,
δ
1(
1
α
) (
L
θ
,
δ
2)
)
)
L
+
<
+
−
yang berarti
L
(
θ
|
δ
)
adalalah konveks tegas. Karena( )
n MSE 2 4 θ δ = Maka( )
2 2 2 2 2 5 2 1 2 2θ
θ
θ
δ
n n n n MSE = − = −( )
(
)
(
1)
1 2 2 2 6 + = + − = n n n n MSE θ θ θ δ dapat dinyatakan:( )
δ
6 MSE( )
δ
5 MSE( )
δ
4 MSE(
δ
3)
MSE < < =
Semuanya menuju nol apabila n menuju
∞
, dengan kata lain estimator yang konsisten dalam kuadrat rata-rata.KESIMPULAN DAN SARAN Kesimpulan
Berdasarkan hasil pembahasan dari bab-bab sebelumnya dapat disimpulkan bahwa
1. Tujuan dari estimasi titik adalah menghasilkan suatu bilangan yang harganya dekat dengan parameter yang tidak diketahui, Estimator parameter pada lokasi terbatas bergantung pada nilai n sampel dan
merupakan estimator bias.
θ
ˆ
2. Mean dan Variansi jika parameter berada pada selang takterbatas berturut-turut adalah
( )
n X E =θ dan
( )
⎟2 ⎠ ⎞ ⎜ ⎝ ⎛ = n X Var θ3. Dengan menggunakan metode Mean Square Error
(MSE) diperoleh beberapa estimator, yang bila
prosedur estimasi serupa untuk setiap pengambilan sampel n terhadap estimator-estimator tersebut.
Semuanya menuju nol apabila n menuju
∞
, dengan kata lain estimator yang konsisten dalam kuadrat rata-rata. Dapat ditunjukan sebagai berikut :( )
(
2)
3 2 1 n 2 n n MSE n = − + θ δ( )
( )
n MSE MSE n n 2 4 3 θ δ δ = =( )
2 2 5 2 1 2θ
δ
n n MSE n = −( ) ( )
1 2 6 = n+ MSEδ θ dengan( )
δ
6 MSE( )
δ
5 MSE( )
δ
4 MSE( )
δ
3DAFTAR PUSTAKA
Andi, H. N. dan Abdurrauf, R, (1994), Teori Statistika Untuk Ilmu-Ilmu Kuantitatif, Penea Karya
Aksara-Jakartarbit Bhata
Bain, L. J, (1992), Introduction To Probability And Mathematical Statistics, PWS-KENT Publishing
Company.
Dudewicz, E. J. dan Mishra, S. N, (1998), Statistika Matematika Modern, ITB Bandung.
Roussas, G. G, (1973), A First Course in Mathematical Statistics, Addison-Wesley Publishing Company,
Massachusetts.
Walpole, R. E. dan Myers, R. H, (1995), Ilmu Peluang dan Statistik Untuk Insinyur dan Ilmuan, ITB