• Tidak ada hasil yang ditemukan

fisio otot fkunja2010 | our mini digital library

N/A
N/A
Protected

Academic year: 2018

Membagikan "fisio otot fkunja2010 | our mini digital library"

Copied!
80
0
0

Teks penuh

(1)

Physiology of Muscle

Physiology of Muscle

Humaryanto

(2)

TIPE OTOT

TIPE OTOT

Otot Skeletal

Otot Skeletal

(lurik/striata)

(lurik/striata)

Otot Jantung

Otot Jantung

(lurik/striata)

(lurik/striata)

Otot Polos (polos)

Otot Polos (polos)

(GI, VU, Vascular)

(3)

Extrafusal Muscle Fibers

Extrafusal Muscle Fibers

Striate muscle

Striate muscle

Force for limb

Force for limb

movements

movements

flexion - closes joint

flexion - closes joint

extension - opens joint

extension - opens joint

(4)

OTOT SKELETAL

OTOT SKELETAL

40%

40% BB tubuh BB tubuh Fungsi

Fungsi : mengatur posisi : mengatur posisi dan gerak rangka

dan gerak rangka

Melekat ke tulang melalui

Melekat ke tulang melalui

tendo

tendo

Origo

Origo : perlekatan pada : perlekatan pada bag. proksimal, bersifat

bag. proksimal, bersifat

stasioner

stasioner

Insersio

Insersio : perlekatan pada : perlekatan pada bag. distal, bersifat mobil

(5)
(6)

TIPE OTOT SKELETAL

TIPE OTOT SKELETAL

Berdasarkan kecepatan kontraksi dan daya

Berdasarkan kecepatan kontraksi dan daya

tahan terhadap fatigue.

tahan terhadap fatigue.

Fast-twitch glycolitic fibers (putih)

Fast-twitch glycolitic fibers (putih)

Fast-twitch oxidative fibers (merah)

Fast-twitch oxidative fibers (merah)

Slow twitch oxidative fibers (merah)

Slow twitch oxidative fibers (merah)

Setiap orang punya 3 tipe otot, tapi berbeda

Setiap orang punya 3 tipe otot, tapi berbeda

pada komposisi dominan

pada komposisi dominan

(Jauhari Johan vs John Murray/ Ben Johnson)

(7)

Type 1 Fibers

Type 1 Fibers

Slow fibers

Slow fibers

dark red dark red

– slow, sustained contraction slow, sustained contraction

– slow to fatigue slow to fatigue

Aerobic metabolism

Aerobic metabolism

– many capillaries & mitochondriamany capillaries & mitochondria

– oxygen required for ATP synthesis oxygen required for ATP synthesis

– myoglobin myoglobin

(8)

Type 2b Fibers

Type 2b Fibers

Fast fatigable fibers

Fast fatigable fibers

white fibers white fibers

rapid, brief contraction rapid, brief contraction fast to fatiguefast to fatigue

produce about 10x force of Type 1 produce about 10x force of Type 1

Anaerobic metabolism

Anaerobic metabolism

fewer capillaries & mitochondriafewer capillaries & mitochondriaATP generated by glycolysisATP generated by glycolysis

(9)

Type 2a Fibers

Type 2a Fibers

Fast fatigue-resistant fibers

Fast fatigue-resistant fibers

pale red pale red

properties intermediate to types 1 & 2b

properties intermediate to types 1 & 2b

rapid, brief contraction

rapid, brief contraction

slow to fatigue

slow to fatigue

produce least force

produce least force

Aerobic & Anaerobic metabolism

(10)
(11)
(12)

Neuromuscular Junction

Neuromuscular Junction

Synapse between neuron & effector

Synapse between neuron & effector

Cholinergic (ACh)

Cholinergic (ACh)

nicotinic receptors

nicotinic receptors

Motor end-plate

Motor end-plate

postsynaptic membrane

postsynaptic membrane

folds packed with receptors

folds packed with receptors

increased surface area ~

(13)

Global view of a Global view of a neuromuscular

neuromuscular

junction:

junction:

1.

1. AxonAxon

2. Motor end-plate

2. Motor end-plate

3.

3. Muscle fiberMuscle fiber 4.

(14)

Detailed view of a

Detailed view of a

neuromuscular junction:

neuromuscular junction:

1.

1. PresynapticPresynaptic terminal terminal 2.

2. SarcolemmaSarcolemma 3. Synaptic vesicle

3. Synaptic vesicle

4. Nicotinic acetylcholine

4. Nicotinic acetylcholine

receptor

receptor

5. Mitochondrion

(15)

Mechanism of action

Mechanism of action

Upon the arrival of an action potential at the axon terminal, Upon the arrival of an action potential at the axon terminal,

voltage-dependent calcium channels open and Ca2+ ions voltage-dependent calcium channels open and Ca2+ ions

flow from the extracellular fluid into the motor neuron's flow from the extracellular fluid into the motor neuron's

cytosol. This influx of Ca2+ triggers

cytosol. This influx of Ca2+ triggers excitation-contraction excitation-contraction coupling

coupling, a biochemical cascade that causes , a biochemical cascade that causes

neurotransmitter-containing vesicles to fuse to the motor neurotransmitter-containing vesicles to fuse to the motor

neuron's cell membrane and release acetylcholine into the neuron's cell membrane and release acetylcholine into the

synaptic cleft. synaptic cleft.

Acetylcholine diffuses across the synaptic cleft and binds to Acetylcholine diffuses across the synaptic cleft and binds to

the nicotinic acetylcholine receptors that dot the motor end the nicotinic acetylcholine receptors that dot the motor end

plate. plate.

The receptors are ligand-gated ion channels, and when The receptors are ligand-gated ion channels, and when bound by acetylcholine, they open, allowing sodium and bound by acetylcholine, they open, allowing sodium and

potassium ions to flow in and out of the muscle's cytosol, potassium ions to flow in and out of the muscle's cytosol,

(16)

Mechanism of action

Mechanism of action

Because of the differences in electrochemical gradients Because of the differences in electrochemical gradients

across the plasma membrane, more sodium moves in across the plasma membrane, more sodium moves in

than potassium out, producing a local depolarization of than potassium out, producing a local depolarization of

the motor end plate known as an end-plate potential the motor end plate known as an end-plate potential

(EPP). (EPP).

This depolarization spreads across the surface of the This depolarization spreads across the surface of the

muscle fiber into transverse tubules, eliciting the release muscle fiber into transverse tubules, eliciting the release

of calcium from the sarcoplasmic reticulum, thus initiating of calcium from the sarcoplasmic reticulum, thus initiating

muscle contraction. muscle contraction.

The action of acetylcholine is terminated when the The action of acetylcholine is terminated when the

enzyme acetylcholinesterase degrades the enzyme acetylcholinesterase degrades the

neurotransmitter and the unhydrolysed neurotransmitter neurotransmitter and the unhydrolysed neurotransmitter

(17)

Neurotransmitters and

Neurotransmitters and

Neuromodulators

Neuromodulators

Neuromodulators modify the postsynaptic cell's response to

Neuromodulators modify the postsynaptic cell's response to

neurotransmitters or change the presynaptic cell's synthesis, release or

neurotransmitters or change the presynaptic cell's synthesis, release or

metabolism of the neurotransmitter.

metabolism of the neurotransmitter.

Acetylcholine (Ach)

Acetylcholine (Ach)

Major neurotransmitter. Fibers that release ACh are called cholinergic fibers.

Major neurotransmitter. Fibers that release ACh are called cholinergic fibers.

Acetylcholine is degraded by the enzyme, acetylcholinesterase.

Acetylcholine is degraded by the enzyme, acetylcholinesterase.

Biogenic Amines

Biogenic Amines

Biogenic amines are neurotransmitters containing an amino group.

Biogenic amines are neurotransmitters containing an amino group.

Catecholamines such as dopamine, norepinephrine and epinephrine,

Catecholamines such as dopamine, norepinephrine and epinephrine,

serotonin. Nerve fibers that release epinephrine and norepinephrine are

serotonin. Nerve fibers that release epinephrine and norepinephrine are

called adrenergic and noradrenergic fibers respectively.

(18)

Neurotransmitters and

Neurotransmitters and

Neuromodulators

Neuromodulators

Amino Acid Neurotransmitters

Amino Acid Neurotransmitters

Amino acid neurotransmitters are the most prevalent

Amino acid neurotransmitters are the most prevalent

neurotransmitters in CNS. Glutamate, aspartate GABA (gamma

neurotransmitters in CNS. Glutamate, aspartate GABA (gamma

aminobutyric acid), glycine,

aminobutyric acid), glycine,

Neuropeptides

Neuropeptides

Neuropeptides are composed of two or more amino acids. Neurons

Neuropeptides are composed of two or more amino acids. Neurons

releasing neuropeptides are called

releasing neuropeptides are called peptidergicpeptidergic. Beta-endorphin, . Beta-endorphin, dynorphin, enkephalins.

dynorphin, enkephalins.

Nitric oxide, ATP, adenine also act as neurotransmitters.

Nitric oxide, ATP, adenine also act as neurotransmitters.

Neuroeffector Communication

Neuroeffector Communication

Many neurons of peripheral nervous system end at neuroeffector

Many neurons of peripheral nervous system end at neuroeffector

junctions on muscle and gland cells. Neurotransmitters released by

junctions on muscle and gland cells. Neurotransmitters released by

these efferent neurons then activate the target cell.

(19)

Muscle Contraction

Muscle Contraction

AP generated in muscle fiber (cell)

AP generated in muscle fiber (cell)

Ca++ released from internal stores

Ca++ released from internal stores

Muscle fiber contracts

Muscle fiber contracts

continues while Ca++ & ATP available

continues while Ca++ & ATP available

Relaxation

Relaxation

(20)

Muscle Fiber Structure

Muscle Fiber Structure

Multinucleated

Multinucleated

– fusion of multiple precursor cellsfusion of multiple precursor cells

Sarcolemma Excitable membrane

Sarcolemma Excitable membrane

Myofibrils: contractile units

Myofibrils: contractile units

Sarcopasmic reticulum (SR)

Sarcopasmic reticulum (SR)

– sequesters Ca++ sequesters Ca++

T tubules

T tubules

(21)

Miofibril

Miofibril

struktur kontraksi otot

struktur kontraksi otot

1 Serat otot, tdd: ribuan miofibril

1 Serat otot, tdd: ribuan miofibril

1 miofibril tdd:

1 miofibril tdd:

Aktin & miosin

Aktin & miosin (protein kontraksi) (protein kontraksi) Troponin & tropomiosin

Troponin & tropomiosin (protein pengatur) (protein pengatur) Titin & nebulin

Titin & nebulin (protein asessoris besar) (protein asessoris besar) Miosin

Miosin  thick filament, punya kepala thick filament, punya kepala

Motor protein, E kimia

Motor protein, E kimia  E mekanik, mgd ATP-ase (hidrolisis) E mekanik, mgd ATP-ase (hidrolisis)

Aktin

Aktin  thin filament, melekat troponin & tropomiosin thin filament, melekat troponin & tropomiosin Titin

Titin  molekul elastis (protein terbesar) molekul elastis (protein terbesar)

 stabilitas & elastisistas ototstabilitas & elastisistas otot Nebulin

(22)

Sarcolemma

Myofibrils

Sarcoplasmic

(23)
(24)

Myofibril: structure &

Myofibril: structure &

function

function

Sarcomeres

Sarcomeres

– repeating sectionsrepeating sections

Z lines

Z lines

dividers between sarcomeres

dividers between sarcomeres

thin filaments anchored to Z lines

thin filaments anchored to Z lines

– actin & troponinactin & troponin

Thick filaments between thin filaments

Thick filaments between thin filaments

– myosinmyosin

Contraction:filaments slide by each

Contraction:filaments slide by each

(25)

Sarcomere

Z line

Thin filaments

Z line

Thick

(26)
(27)

KONTRAKSI OTOT

KONTRAKSI OTOT

Menghasilkan force / gaya

Menghasilkan force / gaya  muscle tension muscle tension Melawan beban/ load

Melawan beban/ load

Memerlukan energi (dari ATP)

Memerlukan energi (dari ATP)

Pencetus kontraksi otot

Pencetus kontraksi otot

1. Neuromuscular junction :

1. Neuromuscular junction :

Rangsang somatik

Rangsang somatik  rangsang listrik rangsang listrik 2. Excitation-contraction coupling

2. Excitation-contraction coupling

Potensial aksi

Potensial aksi  signal Ca++ signal Ca++  siklus kontr-relaks siklus kontr-relaks

SIKLUS KONTRAKSI DAN RELAKSASI

SIKLUS KONTRAKSI DAN RELAKSASI

(28)

Contraction

Contraction

Excitation-contraction coupling

Excitation-contraction coupling

Myosin “heads” crossbridges w/ actin

Myosin “heads” crossbridges w/ actin

Ca++ dependent

Ca++ dependent

binds to troponin, reveals binding site

binds to troponin, reveals binding site

Myosin head rotates

Myosin head rotates

(29)

Contraction

Contraction

ATP binds to myosin ---> detachment

ATP binds to myosin ---> detachment

cocks myosin ---> binds again

cocks myosin ---> binds again

rigor mortis: no ATP

rigor mortis: no ATP

fibers remain crosslinked

fibers remain crosslinked

Repeats as long as Ca++ present

Repeats as long as Ca++ present

(30)

SLIDING FILAMENT THEORY

SLIDING FILAMENT THEORY

Serat

Serat otot memendekotot memendek (overlapping thick & thin filament) (overlapping thick & thin filament) Sliding aktin terhadap miosin

Sliding aktin terhadap miosin

Gaya dari crossbridge miosin mendorong aktin

Gaya dari crossbridge miosin mendorong aktin

(

(power strokepower stroke))

Crossbridge miosin mendorong aktin

Crossbridge miosin mendorong aktin menuju pusatmenuju pusat sarkomer

sarkomer

Setelah

Setelah power stroke power stroke kepala miosin melepas aktin untuk kepala miosin melepas aktin untuk mengikat bagian aktin yang lain, demikian seterusnya

mengikat bagian aktin yang lain, demikian seterusnya

jadi siklus.

jadi siklus.

Analogi :

(31)
(32)

In the absence of calcium ions, tropomyosin

In the absence of calcium ions, tropomyosin

blocks access to the mysosin binding site of

blocks access to the mysosin binding site of

actin.

actin.

When calcium binds to troponin, the positions of

When calcium binds to troponin, the positions of

troponin and tropomyosin are altered on the the

troponin and tropomyosin are altered on the the

thin flament and myosin then has access to its

thin flament and myosin then has access to its

binding site on actin.

binding site on actin.

Myosin hydolyzes ATP and undergoes a

Myosin hydolyzes ATP and undergoes a

conformational change into a high-energy state.

conformational change into a high-energy state.

The head group of myosin binds to actin forming

The head group of myosin binds to actin forming

a cross-bridge between the thick and thin

a cross-bridge between the thick and thin

filaments.

(33)

Role of Ca

Role of Ca

+2+2

in Muscle Contraction

in Muscle Contraction

Ca+2 Ca++

Ca++

* Actin-binding sites are exposed as a result of Ca+2 binding to

troponin complex that causes a

(34)
(35)

The energy stored by myosin is released, and

The energy stored by myosin is released, and

ADP and inorganic phosphate dissociate from

ADP and inorganic phosphate dissociate from

myosin.

myosin.

The resulting relaxation of the myosin molecule

The resulting relaxation of the myosin molecule

entails rotation of the globular head, which

entails rotation of the globular head, which

induces longitudinal sliding of the filaments.

induces longitudinal sliding of the filaments.

When the calcium level decreases, troponin

When the calcium level decreases, troponin

locks tropomyosin in the blocking position and

locks tropomyosin in the blocking position and

the thin filament slides back to the resting state.

(36)
(37)

Sliding-Filament Mechanism

Sliding-Filament Mechanism

Muscle contraction is produced by cross bridge cycles.

Muscle contraction is produced by cross bridge cycles.

A cycle has 4 steps:

A cycle has 4 steps:

(1) Energizing of myosin cross bridge

(1) Energizing of myosin cross bridge

A + M•ATP —> A + M*•ADP•Pi (ATP is energizer here) A + M•ATP —> A + M*•ADP•Pi (ATP is energizer here) (2) Attachment of cross bridge to a thin filament

(2) Attachment of cross bridge to a thin filament

A + M*•ADP•Pi —> A•M*•ADP•Pi A + M*•ADP•Pi —> A•M*•ADP•Pi

(3) Movement of cross bridge, producing tension

(3) Movement of cross bridge, producing tension

A•M*•ADP•Pi —> A•M + ADP + Pi A•M*•ADP•Pi —> A•M + ADP + Pi

(4) Detachment of cross bridge from thin filament

(4) Detachment of cross bridge from thin filament

A•M + ATP —> A + M•ATP (ATP is modulator here) A•M + ATP —> A + M•ATP (ATP is modulator here)

Movement of the cross bridges make the overlapping

Movement of the cross bridges make the overlapping

thick and thin filaments slide past each other (they do not

thick and thin filaments slide past each other (they do not

change in length) to produce a contraction.

(38)

Actin Myofilament

Actin Myofilament

During

contraction,

calcium binds to troponin

(39)

Cross-Bridge Formation

(40)

Cross-Bridge Cycle

(41)

Cross-bridge Cycle

This animation by Mike Geeves,

(42)

SIKLUS KONTRAKSI

SIKLUS KONTRAKSI

1.

1. Rigor state: Rigor state: Kepala miosin terikat dg molekul G-aktin.Kepala miosin terikat dg molekul G-aktin.

2.

2. ATP menempel ke miosin, kepala miosin lepas dari ATP menempel ke miosin, kepala miosin lepas dari

aktin.

aktin.

3.

3. Hidrolisis ATP: Hidrolisis ATP: jadi ADP + Pi (masih menempel) jadi ADP + Pi (masih menempel)

4.

4. Miosin melekat ke G-aktin yang baruMiosin melekat ke G-aktin yang baru, energi dari , energi dari

pecahnya ATP, saat ada potensial energi di kepala

pecahnya ATP, saat ada potensial energi di kepala

miosin untuk power stroke.

miosin untuk power stroke.

5.

5. Pi lepas & power strokePi lepas & power stroke: Kepala miosin berotasi : Kepala miosin berotasi

mendorong aktin mendekati pusat sarkomer

mendorong aktin mendekati pusat sarkomer

(crossbridge tilting)

(crossbridge tilting)

6.

6. ADP lepasADP lepas: kepala miosin tetap melekat ke aktin, siap : kepala miosin tetap melekat ke aktin, siap

untuk siklus berikut bila ada ATP yang baru

(43)

(44)

Excitation-Contraction Coupling

Excitation-Contraction Coupling

Excitation-Contraction (EC) Coupling:

1. An AP travels down a motor (somatic neuron).

2. The AP causes the release of the neurotransmitter acetylcholine into the synapse at the neuromuscular junction.

3. The acetylcholine binds to the acetylcholine receptors on the muscle fiber and cause an EPSP.

4. If the EPSP reaches threshold, an AP is produced on the sarcolemma of the muscle fiber. Meanwhile, the acetylcholine attached to the receptor is destroyed. 5. The AP travels rapidly along the sarcolemma and

(45)

Excitation-Contraction Coupling

Excitation-Contraction Coupling

6. As the AP travels through the t-tubule, it causes the Ca++ gates to open and Ca++ flows from the SR into the sarcoplasm. The Ca++ gates close when the AP ends.

7. The increased [Ca++] in the sarcoplasm results in Ca++ binding to troponin. This induces an allosteric change, the tropomyosin is pulled out of the way and steric inhibition is removed. The result is crossbridges begin to form, rotate and break (provided there is plenty of ATP).

8. Cross-bridge cycling continues as long as sarcoplasmic [Ca++] remains high.

9. However, if the Ca++ gates close, the action of the Ca++

ATPase (pump) begins to predominate and sarcoplasmic [Ca+ +]] drops. When it drops low enough, the troponin loses its Ca++ and changes shape the next time a crossbridge is not in the way. Steric inhibition is quickly re-established and the muscle

(46)
(47)

Exitation-Contraction Coupling

Exitation-Contraction Coupling

Dirangsang oleh asetilkolin/achetylcholine

Dirangsang oleh asetilkolin/achetylcholine

Tahap

Tahap

:

:

Asetilkolin (Ach) lepas dari motor neuron

Asetilkolin (Ach) lepas dari motor neuron

somatik

somatik

Ach merangsang potensial aksi serat otot

Ach merangsang potensial aksi serat otot

PA, m’rsg Ca++ lepas dr Ret.Sarkoplasma

PA, m’rsg Ca++ lepas dr Ret.Sarkoplasma

Ca++ me’ikat troponin dan m’rsg kontraksi

(48)

DHP:

Dihydropiridine

Saat PA: Ca  100x

Relaksasi: Ca masuk RS krn enzim

(49)

PERIODE KONTRAKSI/ TWITCH

PERIODE KONTRAKSI/ TWITCH

1.

1.

Periode Laten

Periode Laten

(Antara potensial aksi-kontraksi)

(Antara potensial aksi-kontraksi)

2. Periode kontraksi

2. Periode kontraksi

3. Periode relaksasi

3. Periode relaksasi

Lama periode kontraksi tergantung tipe otot

(50)
(51)

SUMBER ENERGI KONTRAKSI

SUMBER ENERGI KONTRAKSI

ATP (Adenosine Tri Phosphate)

ATP (Adenosine Tri Phosphate)

1.

1.

Kontraksi: gerakan crossbridge

Kontraksi: gerakan crossbridge

2.

2.

Relaksasi: Ca++ masuk lagi ke RS

Relaksasi: Ca++ masuk lagi ke RS

3.

3.

Relaksasi: melepas ikatan aktin dan miosin

Relaksasi: melepas ikatan aktin dan miosin

4.

4.

Diluar periode kontraksi : restore Na-K

Diluar periode kontraksi : restore Na-K

SUMBER ATP

SUMBER ATP

1.

1.

Konversi posfo-kreatin (8 twitch)

Konversi posfo-kreatin (8 twitch)

2.

2.

An-aerobik glikolisis

An-aerobik glikolisis

3.

(52)
(53)

KELELAHAN OTOT

KELELAHAN OTOT

Fatigue:

Fatigue:

Kondisi dimana otot tidak mampu lagi

Kondisi dimana otot tidak mampu lagi

melakukan / mempertahankan kontraksi

melakukan / mempertahankan kontraksi

Jenis Fatigue

Jenis Fatigue

:

:

Sentral: SSP

Sentral: SSP

Perifer: NM-Junction – elemen kontraksi

Perifer: NM-Junction – elemen kontraksi

E/ >>

(54)

Lelah Sentral SSP Psikologis

Refleks Proteksi

Asidosis (as. Laktat)

NM-Junction  Pelepasan

Neurotransmitter dan sensitivitas reseptor

(55)

Daya kontraksi (tension) maksimal tjd pada

Daya kontraksi (tension) maksimal tjd pada

(56)

Tension juga meningkat bila stimulus dilakukan

Tension juga meningkat bila stimulus dilakukan

berulang kali sebelum mencapai relaksasi

berulang kali sebelum mencapai relaksasi

maksimum (Stimulus Summation)

maksimum (Stimulus Summation)

Akan tetapi, bila stimulus (potensial aksi) berlangsung terus menerus dg cepat

(frekuensi tinggi), tanpa fase relaksasi  terjadi Tetanus

Tetanus

-Komplet/ fused

(57)

Muscle Adaptation to Exercise

Muscle Adaptation to Exercise

Increased amount of contractile activity

Increased amount of contractile activity

(exercise) increases size (hypertrophy) of

(exercise) increases size (hypertrophy) of

muscle fibers and capacity for ATP production.

muscle fibers and capacity for ATP production.

Low intensity exercise affects oxidative fibers,

Low intensity exercise affects oxidative fibers,

increasing the number of mitochondria and

increasing the number of mitochondria and

capillaries.

capillaries.

High intensity exercise affects glycolytic fibers,

High intensity exercise affects glycolytic fibers,

increasing their diameter by an increased

increasing their diameter by an increased

synthesis of actin and myosin filaments, and an

synthesis of actin and myosin filaments, and an

increased synthesis of glycolytic enzymes.

(58)
(59)

MOTOR UNIT

MOTOR UNIT

Unit dasar kontraksi

Unit dasar kontraksi

, tdd: bbrp serat otot + motor

, tdd: bbrp serat otot + motor

neuron somatik

neuron somatik

Motor neuron mencetuskan potensial aksi

Motor neuron mencetuskan potensial aksi

kontraksi 1 motor unit.

kontraksi 1 motor unit.

1 motor neuron

1 motor neuron

bbrp otot; 1 serat otot

bbrp otot; 1 serat otot

dipersyarafi 1 neuron

dipersyarafi 1 neuron

Otot kecil (gerak halus; tangan, wajah)

Otot kecil (gerak halus; tangan, wajah)

1 motor unit = 3-5 serat otot

1 motor unit = 3-5 serat otot

Otot besar (gerak kasar; tungkai, trunkus)

Otot besar (gerak kasar; tungkai, trunkus)

1 motor unit = 100an- 1000an serat otot

(60)

Motor Pool

Motor Pool

all a motor neurons that innervate a single all a motor neurons that innervate a single muscle

muscle

An a motor neuron and

An a motor neuron and

all the muscle fibers that it innervates all the muscle fibers that it innervates

1:3 to 1:100

1:3 to 1:100

fewer muscle fibers ---> finer control

fewer muscle fibers ---> finer control

3 types3 types based on speed of contraction & fatigue based on speed of contraction & fatigue

~

~

Motor Pools & Motor Units

(61)

Types of Motor Units

Types of Motor Units

Most muscle contain both slow- &

Most muscle contain both slow- &

fast-twitch fibers

twitch fibers

ratio depends on functionratio depends on function

e.g. ankle extensors

e.g. ankle extensors

Soleus active during standing Soleus active during standing

hi ratio of slow fibers

hi ratio of slow fibers

Medial Gastrocnemius: active during running & Medial Gastrocnemius: active during running &

jumping

jumping

hi ratio of fast fibers ~

(62)
(63)

Variasi gradasi, gaya & durasi kontrksi

Variasi gradasi, gaya & durasi kontrksi

ditentukan oleh :

ditentukan oleh :

Jumlah & jenis motor unit yang aktif

Jumlah & jenis motor unit yang aktif

(‘Recruitment’ dikontrol oleh SSP)

(‘Recruitment’ dikontrol oleh SSP)

Kontraksi lemah Kontraksi lemah SSP m’rsg sedikit motor unit SSP m’rsg sedikit motor unit

Motor unit yang t’rsg Ix nilai ambang rendah Motor unit yang t’rsg Ix nilai ambang rendah slow-

slow-twitch

twitch

Stimulus Stimulus m’rsg motor neuron dg nilai ambang tinggi m’rsg motor neuron dg nilai ambang tinggi

 fast-twitch fast-twitch

Jumlah motor unit Jumlah motor unit daya kontraksi daya kontraksi

Asynchronous Recruitment

Asynchronous Recruitment

Pada kontraksi lama, SSP m’rsg bbrp motor unit scr

Pada kontraksi lama, SSP m’rsg bbrp motor unit scr

bergantian

bergantian  1 serat kontraksi, serat lain istirahat 1 serat kontraksi, serat lain istirahat

Hanya terjadi pada kontraksi sub-maksimal, why ?

(64)

BIOMEKANIKA GERAK TUBUH

BIOMEKANIKA GERAK TUBUH

Fs otot: menggerakkan rangka

Fs otot: menggerakkan rangka

KONTRAKSI ISOTONIK (Iso;=, teinein; stretch)

KONTRAKSI ISOTONIK (Iso;=, teinein; stretch)

Kontraksi

Kontraksi  gaya + menggerakkan beban gaya + menggerakkan beban

 Sarkomer menarik beban dan serat elastisSarkomer menarik beban dan serat elastis Konsentrik

Konsentrik arah gerak = pemendekan otot arah gerak = pemendekan otot

Eksentrik

Eksentrik arah gerak = pemanjangan otot arah gerak = pemanjangan otot

 >> m’rusak otot (DOMS)>> m’rusak otot (DOMS)

KONTRAKSI ISOMETRIK (Iso;=, metric;ukuran)

KONTRAKSI ISOMETRIK (Iso;=, metric;ukuran)

Kontraksi

Kontraksi  gaya + tanpa menggerakkan beban gaya + tanpa menggerakkan beban

(65)
(66)
(67)
(68)

USAHA OTOT

USAHA OTOT

Lever/ lengan

Lever/ lengan  dibentuk oleh rangkadibentuk oleh rangka Fulcrum/ sumbu

Fulcrum/ sumbu  dibentuk sendidibentuk sendi

W = F x d

W = F x d W

W (otot) = W (otot) = W (beban) (beban)

Insersi bisep 5 cm dari siku

Insersi bisep 5 cm dari siku

Panjang lengan 20 cm

Panjang lengan 20 cm

Berat beban 5 kg

Berat beban 5 kg

Berapa usaha otot bisep

Berapa usaha otot bisep

mengangkat beban ?

mengangkat beban ?

Semakin dekat insersi ke fulcrum

Semakin dekat insersi ke fulcrum

(69)

Refleks Otot Skeletal

Refleks Otot Skeletal

Berfungsi utk

Berfungsi utk::

1.

1. Mengatur keseimbanganMengatur keseimbangan

2.

2. Gerak spesifik (keselamatan)Gerak spesifik (keselamatan)

3.

3. Optimalisasi gerakOptimalisasi gerak

Komponen Refleks

Komponen Refleks

1.Reseptor sensoris (proprioceptors)

1.Reseptor sensoris (proprioceptors)

Spindle otot, organ tendo Golgi & reseptor sendi

Spindle otot, organ tendo Golgi & reseptor sendi

2. Neuron sensoris (transfer input)

2. Neuron sensoris (transfer input)

3. SSP

3. SSP

4. Motor neuron somatik (alfa motor neuron)

4. Motor neuron somatik (alfa motor neuron)

5. Serat otot (serat ekstrafusal

(70)
(71)

Reseptor Sendi

Reseptor Sendi

Terdapat di kapsul sendi dan ligamen

Terdapat di kapsul sendi dan ligamen

Distimulasi oleh distorsi mekanik krn

Distimulasi oleh distorsi mekanik krn

perubahan sudut, beban dan posisi sendi

perubahan sudut, beban dan posisi sendi

& tulang

& tulang

Pusat pengaturan di cerebellum

(72)

Spindle Otot

Spindle Otot

Reseptor regangan otot

Reseptor regangan otot

Mengirim impuls ke Med. Spinalis & otak

Mengirim impuls ke Med. Spinalis & otak

Responsif thd perubahan panjang otot

Responsif thd perubahan panjang otot

1 otot memiliki bbrp spindle otot, kec,

1 otot memiliki bbrp spindle otot, kec,

rahang

rahang

Terletak di sisi dalam otot ekstrafusal,

Terletak di sisi dalam otot ekstrafusal,

mengelilingi otot intrafusal

mengelilingi otot intrafusal

Akibat dari rangsangan menghasilkan

Akibat dari rangsangan menghasilkan

refleks kontraksi

(73)

Organ Tendo Golgi

Organ Tendo Golgi

Terletak di sambungan tendo dan otot

Terletak di sambungan tendo dan otot

Responsif terhadap tegangan otot

Responsif terhadap tegangan otot

Menghasilkan refleks relaksasi

Menghasilkan refleks relaksasi

Terdiri dari ujung syaraf bebas

Terdiri dari ujung syaraf bebas

Refleks menghambat interneuron di MS,

Refleks menghambat interneuron di MS,

interneuron menghambat alfa motor

interneuron menghambat alfa motor

neuron sehingga kontraksi berkurang.

(74)
(75)

Knee Jerk reflexes;

Knee Jerk reflexes;

merangsang spindle otot

merangsang spindle otot

Flexion reflexes;

Flexion reflexes;

menghindari bahaya

(76)

Movement Disorders of

Movement Disorders of

(77)

Duchenne’s Muscular

Duchenne’s Muscular

Dystrophy

Dystrophy

Muscular Dystrophies

Muscular Dystrophies

wasting away of muscles

wasting away of muscles

metabolic / structural abnormalities

metabolic / structural abnormalities

Duchenne’s

Duchenne’s

(78)

Duchenne’s Muscular

Duchenne’s Muscular

Dystrophy

Dystrophy

Cause

Cause

hereditary - maternal X chromosome

hereditary - maternal X chromosome

single gene ---> protein

single gene ---> protein

dystrophin

dystrophin

maybe involved in Ca++ regulation

maybe involved in Ca++ regulation

Treatment

Treatment

Inject dystrophin or mRNA

Inject dystrophin or mRNA

(79)

Myasthenia Gravis

Myasthenia Gravis

Severe muscle weakness

Severe muscle weakness

rapid fatigue following exercise

rapid fatigue following exercise

Develops in people of all ages

Develops in people of all ages

Most common: women in 30s

Most common: women in 30s

Risk of respiratory paralysis

Risk of respiratory paralysis

Autoimmune disorder

Autoimmune disorder

(80)

Myasthenia Gravis:

Myasthenia Gravis:

Treatment

Treatment

AChE inhibitors

AChE inhibitors

¯ degradation of ACh

¯ degradation of ACh

narrow therapeutic window

narrow therapeutic window

too much ACh ---> paralysis

too much ACh ---> paralysis

Reduce immune response

Reduce immune response

remove thymus

remove thymus

filtering antibodies from blood

filtering antibodies from blood

Referensi

Dokumen terkait

Setelah diketahui ada hubungan yang signifikan antara kemampuan memahami bacaan dengan prestasi siswa, maka dari Tabel 6 dapat dilihat bahwa koefisien korelasi antara

Dalam hal Saya tidak menyediakan informasi dan dokumen-dokumen sebagaimana yang dipersyaratkan oleh Prudential dalam jangka waktu tertentu atau jika salah satu dari informasi

Pembuatan Sirup Herbal dari ekstrak daun sangkobak ini dapat membuka peluang bisnis baru yang mempunyai nilai ekonomis yang cukup tinggi karena merupakan terobosan baru dalam

Source: Investor Daily Ciputra Development (CTRA) membukukan marketing sales Rp 5 triliun sepanjang tahun 2020 (-18% YoY), capaian tersebut melebihi target perusahaan yang sebesar

Metode tahlily ialah menafsirkan ayat-ayat al-Qur’an dengan memaparkan segala aspek yang terkandung di dalam ayat-ayat yang ditafsirkan itu, serta

Perhitungan analisis data dalam penelitian ini tidak dilakukan secara manual baik dalam perhitungan statistik deskriptif dan analisis uji hipotesis melainkan

Hukum kedua Mendel menyatakan bahwa bila dua individu mempunyai dua pasang atau lebih sifat, maka diturunkannya sepasang sifat secara bebas, tidak bergantung pada pasangan sifat

Selanjutnya faktor masyarakat juga dirasakan menjadi kendala dalam penegakan hukum terhadap tindak pidana penipuan berbasis e-commerce dimana Masih banyak masyarakat yang