Physiology of Muscle
Physiology of Muscle
Humaryanto
TIPE OTOT
TIPE OTOT
Otot Skeletal
Otot Skeletal
(lurik/striata)
(lurik/striata)
Otot Jantung
Otot Jantung
(lurik/striata)
(lurik/striata)
Otot Polos (polos)
Otot Polos (polos)
(GI, VU, Vascular)
Extrafusal Muscle Fibers
Extrafusal Muscle Fibers
Striate muscle
Striate muscle
Force for limb
Force for limb
movements
movements
–
flexion - closes joint
flexion - closes joint
–
extension - opens joint
extension - opens joint
OTOT SKELETAL
OTOT SKELETAL
40%
40% BB tubuh BB tubuh Fungsi
Fungsi : mengatur posisi : mengatur posisi dan gerak rangka
dan gerak rangka
Melekat ke tulang melalui
Melekat ke tulang melalui
tendo
tendo
Origo
Origo : perlekatan pada : perlekatan pada bag. proksimal, bersifat
bag. proksimal, bersifat
stasioner
stasioner
Insersio
Insersio : perlekatan pada : perlekatan pada bag. distal, bersifat mobil
TIPE OTOT SKELETAL
TIPE OTOT SKELETAL
Berdasarkan kecepatan kontraksi dan daya
Berdasarkan kecepatan kontraksi dan daya
tahan terhadap fatigue.
tahan terhadap fatigue.
Fast-twitch glycolitic fibers (putih)
Fast-twitch glycolitic fibers (putih)
Fast-twitch oxidative fibers (merah)
Fast-twitch oxidative fibers (merah)
Slow twitch oxidative fibers (merah)
Slow twitch oxidative fibers (merah)
Setiap orang punya 3 tipe otot, tapi berbeda
Setiap orang punya 3 tipe otot, tapi berbeda
pada komposisi dominan
pada komposisi dominan
(Jauhari Johan vs John Murray/ Ben Johnson)
Type 1 Fibers
Type 1 Fibers
Slow fibers
Slow fibers
dark red dark red
– slow, sustained contraction slow, sustained contraction
– slow to fatigue slow to fatigue
Aerobic metabolism
Aerobic metabolism
– many capillaries & mitochondriamany capillaries & mitochondria
– oxygen required for ATP synthesis oxygen required for ATP synthesis
– myoglobin myoglobin
Type 2b Fibers
Type 2b Fibers
Fast fatigable fibers
Fast fatigable fibers
white fibers white fibers
– rapid, brief contraction rapid, brief contraction – fast to fatiguefast to fatigue
– produce about 10x force of Type 1 produce about 10x force of Type 1
Anaerobic metabolism
Anaerobic metabolism
– fewer capillaries & mitochondriafewer capillaries & mitochondria – ATP generated by glycolysisATP generated by glycolysis
Type 2a Fibers
Type 2a Fibers
Fast fatigue-resistant fibers
Fast fatigue-resistant fibers
pale red pale red
–
properties intermediate to types 1 & 2b
properties intermediate to types 1 & 2b
–
rapid, brief contraction
rapid, brief contraction
–
slow to fatigue
slow to fatigue
–
produce least force
produce least force
Aerobic & Anaerobic metabolism
Neuromuscular Junction
Neuromuscular Junction
Synapse between neuron & effector
Synapse between neuron & effector
Cholinergic (ACh)
Cholinergic (ACh)
–
nicotinic receptors
nicotinic receptors
Motor end-plate
Motor end-plate
–
postsynaptic membrane
postsynaptic membrane
–
folds packed with receptors
folds packed with receptors
increased surface area ~
Global view of a Global view of a neuromuscular
neuromuscular
junction:
junction:
1.
1. AxonAxon
2. Motor end-plate
2. Motor end-plate
3.
3. Muscle fiberMuscle fiber 4.
Detailed view of a
Detailed view of a
neuromuscular junction:
neuromuscular junction:
1.
1. PresynapticPresynaptic terminal terminal 2.
2. SarcolemmaSarcolemma 3. Synaptic vesicle
3. Synaptic vesicle
4. Nicotinic acetylcholine
4. Nicotinic acetylcholine
receptor
receptor
5. Mitochondrion
Mechanism of action
Mechanism of action
Upon the arrival of an action potential at the axon terminal, Upon the arrival of an action potential at the axon terminal,
voltage-dependent calcium channels open and Ca2+ ions voltage-dependent calcium channels open and Ca2+ ions
flow from the extracellular fluid into the motor neuron's flow from the extracellular fluid into the motor neuron's
cytosol. This influx of Ca2+ triggers
cytosol. This influx of Ca2+ triggers excitation-contraction excitation-contraction coupling
coupling, a biochemical cascade that causes , a biochemical cascade that causes
neurotransmitter-containing vesicles to fuse to the motor neurotransmitter-containing vesicles to fuse to the motor
neuron's cell membrane and release acetylcholine into the neuron's cell membrane and release acetylcholine into the
synaptic cleft. synaptic cleft.
Acetylcholine diffuses across the synaptic cleft and binds to Acetylcholine diffuses across the synaptic cleft and binds to
the nicotinic acetylcholine receptors that dot the motor end the nicotinic acetylcholine receptors that dot the motor end
plate. plate.
The receptors are ligand-gated ion channels, and when The receptors are ligand-gated ion channels, and when bound by acetylcholine, they open, allowing sodium and bound by acetylcholine, they open, allowing sodium and
potassium ions to flow in and out of the muscle's cytosol, potassium ions to flow in and out of the muscle's cytosol,
Mechanism of action
Mechanism of action
Because of the differences in electrochemical gradients Because of the differences in electrochemical gradients
across the plasma membrane, more sodium moves in across the plasma membrane, more sodium moves in
than potassium out, producing a local depolarization of than potassium out, producing a local depolarization of
the motor end plate known as an end-plate potential the motor end plate known as an end-plate potential
(EPP). (EPP).
This depolarization spreads across the surface of the This depolarization spreads across the surface of the
muscle fiber into transverse tubules, eliciting the release muscle fiber into transverse tubules, eliciting the release
of calcium from the sarcoplasmic reticulum, thus initiating of calcium from the sarcoplasmic reticulum, thus initiating
muscle contraction. muscle contraction.
The action of acetylcholine is terminated when the The action of acetylcholine is terminated when the
enzyme acetylcholinesterase degrades the enzyme acetylcholinesterase degrades the
neurotransmitter and the unhydrolysed neurotransmitter neurotransmitter and the unhydrolysed neurotransmitter
Neurotransmitters and
Neurotransmitters and
Neuromodulators
Neuromodulators
Neuromodulators modify the postsynaptic cell's response to
Neuromodulators modify the postsynaptic cell's response to
neurotransmitters or change the presynaptic cell's synthesis, release or
neurotransmitters or change the presynaptic cell's synthesis, release or
metabolism of the neurotransmitter.
metabolism of the neurotransmitter.
Acetylcholine (Ach)
Acetylcholine (Ach)
Major neurotransmitter. Fibers that release ACh are called cholinergic fibers.
Major neurotransmitter. Fibers that release ACh are called cholinergic fibers.
Acetylcholine is degraded by the enzyme, acetylcholinesterase.
Acetylcholine is degraded by the enzyme, acetylcholinesterase.
Biogenic Amines
Biogenic Amines
Biogenic amines are neurotransmitters containing an amino group.
Biogenic amines are neurotransmitters containing an amino group.
Catecholamines such as dopamine, norepinephrine and epinephrine,
Catecholamines such as dopamine, norepinephrine and epinephrine,
serotonin. Nerve fibers that release epinephrine and norepinephrine are
serotonin. Nerve fibers that release epinephrine and norepinephrine are
called adrenergic and noradrenergic fibers respectively.
Neurotransmitters and
Neurotransmitters and
Neuromodulators
Neuromodulators
Amino Acid Neurotransmitters
Amino Acid Neurotransmitters
Amino acid neurotransmitters are the most prevalent
Amino acid neurotransmitters are the most prevalent
neurotransmitters in CNS. Glutamate, aspartate GABA (gamma
neurotransmitters in CNS. Glutamate, aspartate GABA (gamma
aminobutyric acid), glycine,
aminobutyric acid), glycine,
Neuropeptides
Neuropeptides
Neuropeptides are composed of two or more amino acids. Neurons
Neuropeptides are composed of two or more amino acids. Neurons
releasing neuropeptides are called
releasing neuropeptides are called peptidergicpeptidergic. Beta-endorphin, . Beta-endorphin, dynorphin, enkephalins.
dynorphin, enkephalins.
Nitric oxide, ATP, adenine also act as neurotransmitters.
Nitric oxide, ATP, adenine also act as neurotransmitters.
Neuroeffector Communication
Neuroeffector Communication
Many neurons of peripheral nervous system end at neuroeffector
Many neurons of peripheral nervous system end at neuroeffector
junctions on muscle and gland cells. Neurotransmitters released by
junctions on muscle and gland cells. Neurotransmitters released by
these efferent neurons then activate the target cell.
Muscle Contraction
Muscle Contraction
AP generated in muscle fiber (cell)
AP generated in muscle fiber (cell)
Ca++ released from internal stores
Ca++ released from internal stores
Muscle fiber contracts
Muscle fiber contracts
–
continues while Ca++ & ATP available
continues while Ca++ & ATP available
Relaxation
Relaxation
Muscle Fiber Structure
Muscle Fiber Structure
Multinucleated
Multinucleated
– fusion of multiple precursor cellsfusion of multiple precursor cells
Sarcolemma Excitable membrane
Sarcolemma Excitable membrane
Myofibrils: contractile units
Myofibrils: contractile units
Sarcopasmic reticulum (SR)
Sarcopasmic reticulum (SR)
– sequesters Ca++ sequesters Ca++
T tubules
T tubules
Miofibril
Miofibril
struktur kontraksi otot
struktur kontraksi otot
1 Serat otot, tdd: ribuan miofibril
1 Serat otot, tdd: ribuan miofibril
1 miofibril tdd:
1 miofibril tdd:
Aktin & miosin
Aktin & miosin (protein kontraksi) (protein kontraksi) Troponin & tropomiosin
Troponin & tropomiosin (protein pengatur) (protein pengatur) Titin & nebulin
Titin & nebulin (protein asessoris besar) (protein asessoris besar) Miosin
Miosin thick filament, punya kepala thick filament, punya kepala
Motor protein, E kimia
Motor protein, E kimia E mekanik, mgd ATP-ase (hidrolisis) E mekanik, mgd ATP-ase (hidrolisis)
Aktin
Aktin thin filament, melekat troponin & tropomiosin thin filament, melekat troponin & tropomiosin Titin
Titin molekul elastis (protein terbesar) molekul elastis (protein terbesar)
stabilitas & elastisistas ototstabilitas & elastisistas otot Nebulin
Sarcolemma
Myofibrils
Sarcoplasmic
Myofibril: structure &
Myofibril: structure &
function
function
Sarcomeres
Sarcomeres
– repeating sectionsrepeating sections
Z lines
Z lines
dividers between sarcomeres
dividers between sarcomeres
thin filaments anchored to Z lines
thin filaments anchored to Z lines
– actin & troponinactin & troponin
Thick filaments between thin filaments
Thick filaments between thin filaments
– myosinmyosin
Contraction:filaments slide by each
Contraction:filaments slide by each
Sarcomere
Z line
Thin filaments
Z line
Thick
KONTRAKSI OTOT
KONTRAKSI OTOT
Menghasilkan force / gaya
Menghasilkan force / gaya muscle tension muscle tension Melawan beban/ load
Melawan beban/ load
Memerlukan energi (dari ATP)
Memerlukan energi (dari ATP)
Pencetus kontraksi otot
Pencetus kontraksi otot
1. Neuromuscular junction :
1. Neuromuscular junction :
Rangsang somatik
Rangsang somatik rangsang listrik rangsang listrik 2. Excitation-contraction coupling
2. Excitation-contraction coupling
Potensial aksi
Potensial aksi signal Ca++ signal Ca++ siklus kontr-relaks siklus kontr-relaks
SIKLUS KONTRAKSI DAN RELAKSASI
SIKLUS KONTRAKSI DAN RELAKSASI
Contraction
Contraction
Excitation-contraction coupling
Excitation-contraction coupling
Myosin “heads” crossbridges w/ actin
Myosin “heads” crossbridges w/ actin
–
Ca++ dependent
Ca++ dependent
–
binds to troponin, reveals binding site
binds to troponin, reveals binding site
Myosin head rotates
Myosin head rotates
Contraction
Contraction
ATP binds to myosin ---> detachment
ATP binds to myosin ---> detachment
–
cocks myosin ---> binds again
cocks myosin ---> binds again
–
rigor mortis: no ATP
rigor mortis: no ATP
fibers remain crosslinked
fibers remain crosslinked
Repeats as long as Ca++ present
Repeats as long as Ca++ present
SLIDING FILAMENT THEORY
SLIDING FILAMENT THEORY
Serat
Serat otot memendekotot memendek (overlapping thick & thin filament) (overlapping thick & thin filament) Sliding aktin terhadap miosin
Sliding aktin terhadap miosin
Gaya dari crossbridge miosin mendorong aktin
Gaya dari crossbridge miosin mendorong aktin
(
(power strokepower stroke))
Crossbridge miosin mendorong aktin
Crossbridge miosin mendorong aktin menuju pusatmenuju pusat sarkomer
sarkomer
Setelah
Setelah power stroke power stroke kepala miosin melepas aktin untuk kepala miosin melepas aktin untuk mengikat bagian aktin yang lain, demikian seterusnya
mengikat bagian aktin yang lain, demikian seterusnya
jadi siklus.
jadi siklus.
Analogi :
In the absence of calcium ions, tropomyosin
In the absence of calcium ions, tropomyosin
blocks access to the mysosin binding site of
blocks access to the mysosin binding site of
actin.
actin.
When calcium binds to troponin, the positions of
When calcium binds to troponin, the positions of
troponin and tropomyosin are altered on the the
troponin and tropomyosin are altered on the the
thin flament and myosin then has access to its
thin flament and myosin then has access to its
binding site on actin.
binding site on actin.
Myosin hydolyzes ATP and undergoes a
Myosin hydolyzes ATP and undergoes a
conformational change into a high-energy state.
conformational change into a high-energy state.
The head group of myosin binds to actin forming
The head group of myosin binds to actin forming
a cross-bridge between the thick and thin
a cross-bridge between the thick and thin
filaments.
Role of Ca
Role of Ca
+2+2in Muscle Contraction
in Muscle Contraction
Ca+2 Ca++
Ca++
* Actin-binding sites are exposed as a result of Ca+2 binding to
troponin complex that causes a
The energy stored by myosin is released, and
The energy stored by myosin is released, and
ADP and inorganic phosphate dissociate from
ADP and inorganic phosphate dissociate from
myosin.
myosin.
The resulting relaxation of the myosin molecule
The resulting relaxation of the myosin molecule
entails rotation of the globular head, which
entails rotation of the globular head, which
induces longitudinal sliding of the filaments.
induces longitudinal sliding of the filaments.
When the calcium level decreases, troponin
When the calcium level decreases, troponin
locks tropomyosin in the blocking position and
locks tropomyosin in the blocking position and
the thin filament slides back to the resting state.
Sliding-Filament Mechanism
Sliding-Filament Mechanism
Muscle contraction is produced by cross bridge cycles.
Muscle contraction is produced by cross bridge cycles.
A cycle has 4 steps:
A cycle has 4 steps:
(1) Energizing of myosin cross bridge
(1) Energizing of myosin cross bridge
A + M•ATP —> A + M*•ADP•Pi (ATP is energizer here) A + M•ATP —> A + M*•ADP•Pi (ATP is energizer here) (2) Attachment of cross bridge to a thin filament
(2) Attachment of cross bridge to a thin filament
A + M*•ADP•Pi —> A•M*•ADP•Pi A + M*•ADP•Pi —> A•M*•ADP•Pi
(3) Movement of cross bridge, producing tension
(3) Movement of cross bridge, producing tension
A•M*•ADP•Pi —> A•M + ADP + Pi A•M*•ADP•Pi —> A•M + ADP + Pi
(4) Detachment of cross bridge from thin filament
(4) Detachment of cross bridge from thin filament
A•M + ATP —> A + M•ATP (ATP is modulator here) A•M + ATP —> A + M•ATP (ATP is modulator here)
Movement of the cross bridges make the overlapping
Movement of the cross bridges make the overlapping
thick and thin filaments slide past each other (they do not
thick and thin filaments slide past each other (they do not
change in length) to produce a contraction.
Actin Myofilament
Actin Myofilament
During
contraction,
calcium binds to troponin
Cross-Bridge Formation
Cross-Bridge Cycle
Cross-bridge Cycle
This animation by Mike Geeves,
SIKLUS KONTRAKSI
SIKLUS KONTRAKSI
1.
1. Rigor state: Rigor state: Kepala miosin terikat dg molekul G-aktin.Kepala miosin terikat dg molekul G-aktin.
2.
2. ATP menempel ke miosin, kepala miosin lepas dari ATP menempel ke miosin, kepala miosin lepas dari
aktin.
aktin.
3.
3. Hidrolisis ATP: Hidrolisis ATP: jadi ADP + Pi (masih menempel) jadi ADP + Pi (masih menempel)
4.
4. Miosin melekat ke G-aktin yang baruMiosin melekat ke G-aktin yang baru, energi dari , energi dari
pecahnya ATP, saat ada potensial energi di kepala
pecahnya ATP, saat ada potensial energi di kepala
miosin untuk power stroke.
miosin untuk power stroke.
5.
5. Pi lepas & power strokePi lepas & power stroke: Kepala miosin berotasi : Kepala miosin berotasi
mendorong aktin mendekati pusat sarkomer
mendorong aktin mendekati pusat sarkomer
(crossbridge tilting)
(crossbridge tilting)
6.
6. ADP lepasADP lepas: kepala miosin tetap melekat ke aktin, siap : kepala miosin tetap melekat ke aktin, siap
untuk siklus berikut bila ada ATP yang baru
Excitation-Contraction Coupling
Excitation-Contraction Coupling
Excitation-Contraction (EC) Coupling:
1. An AP travels down a motor (somatic neuron).
2. The AP causes the release of the neurotransmitter acetylcholine into the synapse at the neuromuscular junction.
3. The acetylcholine binds to the acetylcholine receptors on the muscle fiber and cause an EPSP.
4. If the EPSP reaches threshold, an AP is produced on the sarcolemma of the muscle fiber. Meanwhile, the acetylcholine attached to the receptor is destroyed. 5. The AP travels rapidly along the sarcolemma and
Excitation-Contraction Coupling
Excitation-Contraction Coupling
6. As the AP travels through the t-tubule, it causes the Ca++ gates to open and Ca++ flows from the SR into the sarcoplasm. The Ca++ gates close when the AP ends.
7. The increased [Ca++] in the sarcoplasm results in Ca++ binding to troponin. This induces an allosteric change, the tropomyosin is pulled out of the way and steric inhibition is removed. The result is crossbridges begin to form, rotate and break (provided there is plenty of ATP).
8. Cross-bridge cycling continues as long as sarcoplasmic [Ca++] remains high.
9. However, if the Ca++ gates close, the action of the Ca++
ATPase (pump) begins to predominate and sarcoplasmic [Ca+ +]] drops. When it drops low enough, the troponin loses its Ca++ and changes shape the next time a crossbridge is not in the way. Steric inhibition is quickly re-established and the muscle
Exitation-Contraction Coupling
Exitation-Contraction Coupling
Dirangsang oleh asetilkolin/achetylcholine
Dirangsang oleh asetilkolin/achetylcholine
Tahap
Tahap
:
:
Asetilkolin (Ach) lepas dari motor neuron
Asetilkolin (Ach) lepas dari motor neuron
somatik
somatik
Ach merangsang potensial aksi serat otot
Ach merangsang potensial aksi serat otot
PA, m’rsg Ca++ lepas dr Ret.Sarkoplasma
PA, m’rsg Ca++ lepas dr Ret.Sarkoplasma
Ca++ me’ikat troponin dan m’rsg kontraksi
DHP:
Dihydropiridine
Saat PA: Ca 100x
Relaksasi: Ca masuk RS krn enzim
PERIODE KONTRAKSI/ TWITCH
PERIODE KONTRAKSI/ TWITCH
1.
1.
Periode Laten
Periode Laten
(Antara potensial aksi-kontraksi)
(Antara potensial aksi-kontraksi)
2. Periode kontraksi
2. Periode kontraksi
3. Periode relaksasi
3. Periode relaksasi
Lama periode kontraksi tergantung tipe otot
SUMBER ENERGI KONTRAKSI
SUMBER ENERGI KONTRAKSI
ATP (Adenosine Tri Phosphate)
ATP (Adenosine Tri Phosphate)
1.
1.
Kontraksi: gerakan crossbridge
Kontraksi: gerakan crossbridge
2.2.
Relaksasi: Ca++ masuk lagi ke RS
Relaksasi: Ca++ masuk lagi ke RS
3.3.
Relaksasi: melepas ikatan aktin dan miosin
Relaksasi: melepas ikatan aktin dan miosin
4.4.
Diluar periode kontraksi : restore Na-K
Diluar periode kontraksi : restore Na-K
SUMBER ATP
SUMBER ATP
1.
1.
Konversi posfo-kreatin (8 twitch)
Konversi posfo-kreatin (8 twitch)
2.2.
An-aerobik glikolisis
An-aerobik glikolisis
3.KELELAHAN OTOT
KELELAHAN OTOT
Fatigue:
Fatigue:
Kondisi dimana otot tidak mampu lagi
Kondisi dimana otot tidak mampu lagi
melakukan / mempertahankan kontraksi
melakukan / mempertahankan kontraksi
Jenis Fatigue
Jenis Fatigue
:
:
Sentral: SSP
Sentral: SSP
Perifer: NM-Junction – elemen kontraksi
Perifer: NM-Junction – elemen kontraksi
E/ >>
Lelah Sentral SSP Psikologis
Refleks Proteksi
Asidosis (as. Laktat)
NM-Junction Pelepasan
Neurotransmitter dan sensitivitas reseptor
Daya kontraksi (tension) maksimal tjd pada
Daya kontraksi (tension) maksimal tjd pada
Tension juga meningkat bila stimulus dilakukan
Tension juga meningkat bila stimulus dilakukan
berulang kali sebelum mencapai relaksasi
berulang kali sebelum mencapai relaksasi
maksimum (Stimulus Summation)
maksimum (Stimulus Summation)
Akan tetapi, bila stimulus (potensial aksi) berlangsung terus menerus dg cepat
(frekuensi tinggi), tanpa fase relaksasi terjadi Tetanus
Tetanus
-Komplet/ fused
Muscle Adaptation to Exercise
Muscle Adaptation to Exercise
Increased amount of contractile activity
Increased amount of contractile activity
(exercise) increases size (hypertrophy) of
(exercise) increases size (hypertrophy) of
muscle fibers and capacity for ATP production.
muscle fibers and capacity for ATP production.
Low intensity exercise affects oxidative fibers,
Low intensity exercise affects oxidative fibers,
increasing the number of mitochondria and
increasing the number of mitochondria and
capillaries.
capillaries.
High intensity exercise affects glycolytic fibers,
High intensity exercise affects glycolytic fibers,
increasing their diameter by an increased
increasing their diameter by an increased
synthesis of actin and myosin filaments, and an
synthesis of actin and myosin filaments, and an
increased synthesis of glycolytic enzymes.
MOTOR UNIT
MOTOR UNIT
Unit dasar kontraksi
Unit dasar kontraksi
, tdd: bbrp serat otot + motor
, tdd: bbrp serat otot + motor
neuron somatik
neuron somatik
Motor neuron mencetuskan potensial aksi
Motor neuron mencetuskan potensial aksi
kontraksi 1 motor unit.
kontraksi 1 motor unit.
1 motor neuron
1 motor neuron
bbrp otot; 1 serat otot
bbrp otot; 1 serat otot
dipersyarafi 1 neuron
dipersyarafi 1 neuron
Otot kecil (gerak halus; tangan, wajah)
Otot kecil (gerak halus; tangan, wajah)
1 motor unit = 3-5 serat otot
1 motor unit = 3-5 serat otot
Otot besar (gerak kasar; tungkai, trunkus)
Otot besar (gerak kasar; tungkai, trunkus)
1 motor unit = 100an- 1000an serat otot
Motor Pool
Motor Pool
all a motor neurons that innervate a single all a motor neurons that innervate a single muscle
muscle
An a motor neuron and
An a motor neuron and
all the muscle fibers that it innervates all the muscle fibers that it innervates
1:3 to 1:100
1:3 to 1:100
fewer muscle fibers ---> finer control
fewer muscle fibers ---> finer control
– 3 types3 types based on speed of contraction & fatigue based on speed of contraction & fatigue
~
~
Motor Pools & Motor Units
Types of Motor Units
Types of Motor Units
Most muscle contain both slow- &
Most muscle contain both slow- &
fast-twitch fibers
twitch fibers
– ratio depends on functionratio depends on function
e.g. ankle extensors
e.g. ankle extensors
– Soleus active during standing Soleus active during standing
hi ratio of slow fibers
hi ratio of slow fibers
– Medial Gastrocnemius: active during running & Medial Gastrocnemius: active during running &
jumping
jumping
hi ratio of fast fibers ~
Variasi gradasi, gaya & durasi kontrksi
Variasi gradasi, gaya & durasi kontrksi
ditentukan oleh :
ditentukan oleh :
Jumlah & jenis motor unit yang aktif
Jumlah & jenis motor unit yang aktif
(‘Recruitment’ dikontrol oleh SSP)
(‘Recruitment’ dikontrol oleh SSP)
Kontraksi lemah Kontraksi lemah SSP m’rsg sedikit motor unit SSP m’rsg sedikit motor unit
Motor unit yang t’rsg Ix nilai ambang rendah Motor unit yang t’rsg Ix nilai ambang rendah slow-
slow-twitch
twitch
Stimulus Stimulus m’rsg motor neuron dg nilai ambang tinggi m’rsg motor neuron dg nilai ambang tinggi
fast-twitch fast-twitch
Jumlah motor unit Jumlah motor unit daya kontraksi daya kontraksi
Asynchronous Recruitment
Asynchronous Recruitment
Pada kontraksi lama, SSP m’rsg bbrp motor unit scr
Pada kontraksi lama, SSP m’rsg bbrp motor unit scr
bergantian
bergantian 1 serat kontraksi, serat lain istirahat 1 serat kontraksi, serat lain istirahat
Hanya terjadi pada kontraksi sub-maksimal, why ?
BIOMEKANIKA GERAK TUBUH
BIOMEKANIKA GERAK TUBUH
Fs otot: menggerakkan rangka
Fs otot: menggerakkan rangka
KONTRAKSI ISOTONIK (Iso;=, teinein; stretch)
KONTRAKSI ISOTONIK (Iso;=, teinein; stretch)
Kontraksi
Kontraksi gaya + menggerakkan beban gaya + menggerakkan beban
Sarkomer menarik beban dan serat elastisSarkomer menarik beban dan serat elastis Konsentrik
Konsentrik arah gerak = pemendekan otot arah gerak = pemendekan otot
Eksentrik
Eksentrik arah gerak = pemanjangan otot arah gerak = pemanjangan otot
>> m’rusak otot (DOMS)>> m’rusak otot (DOMS)
KONTRAKSI ISOMETRIK (Iso;=, metric;ukuran)
KONTRAKSI ISOMETRIK (Iso;=, metric;ukuran)
Kontraksi
Kontraksi gaya + tanpa menggerakkan beban gaya + tanpa menggerakkan beban
USAHA OTOT
USAHA OTOT
Lever/ lengan
Lever/ lengan dibentuk oleh rangkadibentuk oleh rangka Fulcrum/ sumbu
Fulcrum/ sumbu dibentuk sendidibentuk sendi
W = F x d
W = F x d W
W (otot) = W (otot) = W (beban) (beban)
Insersi bisep 5 cm dari siku
Insersi bisep 5 cm dari siku
Panjang lengan 20 cm
Panjang lengan 20 cm
Berat beban 5 kg
Berat beban 5 kg
Berapa usaha otot bisep
Berapa usaha otot bisep
mengangkat beban ?
mengangkat beban ?
Semakin dekat insersi ke fulcrum
Semakin dekat insersi ke fulcrum
Refleks Otot Skeletal
Refleks Otot Skeletal
Berfungsi utk
Berfungsi utk::
1.
1. Mengatur keseimbanganMengatur keseimbangan
2.
2. Gerak spesifik (keselamatan)Gerak spesifik (keselamatan)
3.
3. Optimalisasi gerakOptimalisasi gerak
Komponen Refleks
Komponen Refleks
1.Reseptor sensoris (proprioceptors)
1.Reseptor sensoris (proprioceptors)
Spindle otot, organ tendo Golgi & reseptor sendi
Spindle otot, organ tendo Golgi & reseptor sendi
2. Neuron sensoris (transfer input)
2. Neuron sensoris (transfer input)
3. SSP
3. SSP
4. Motor neuron somatik (alfa motor neuron)
4. Motor neuron somatik (alfa motor neuron)
5. Serat otot (serat ekstrafusal