• Tidak ada hasil yang ditemukan

BAB II

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB II"

Copied!
20
0
0

Teks penuh

(1)

Pengendapan lapisan tipis adalah suatu proses yang digunakan di industri Pengendapan lapisan tipis adalah suatu proses yang digunakan di industri semikonduktor untuk mengembangkan material elektronik, di industri penerbangan semikonduktor untuk mengembangkan material elektronik, di industri penerbangan untuk membentuk lapisan pelindung termal atau kimia untuk melindungi permukaan untuk membentuk lapisan pelindung termal atau kimia untuk melindungi permukaan dari lingkungan yang bersifat korosif, pada optik dapat memberikan sifat reflektif  dari lingkungan yang bersifat korosif, pada optik dapat memberikan sifat reflektif  yang diinginkan dan sifat tranmisi pada substrat dan dimana saja pada industri untuk  yang diinginkan dan sifat tranmisi pada substrat dan dimana saja pada industri untuk  mengubah permukaan yang bermacam-macam sesuai sifat yang diinginkan. Proses mengubah permukaan yang bermacam-macam sesuai sifat yang diinginkan. Proses  pengendapan

 pengendapan secara secara luas luas dapat dapat di di klasifikasikan klasifikasikan yaituyaitu physical  physical vapor vapor  deposition

deposition (PVD) dan(PVD) danchemical vapor depositionchemical vapor deposition (CVD). Pada CVD, pengembangan(CVD). Pada CVD, pengembangan lapisan membutuhkan temperatur yang tinggi, yang utama berdasarkan bentuk dari lapisan membutuhkan temperatur yang tinggi, yang utama berdasarkan bentuk dari ha

hasisil l gagas s kokororosisif, f, dan dan akakan an memengnghahasisilklkan an kokototoraran n papada da lalapipisasan. n. PrPrososes es PVPVDD dilakukan pada temperatur pengendapan yang rendah dan tanpa hasil yang korosif  dilakukan pada temperatur pengendapan yang rendah dan tanpa hasil yang korosif  tetapi laju pengendapan rendah.

tetapi laju pengendapan rendah.

2.

2.1.1. PhPhysiysical cal VaVapopor Der Deposposititioionn

 Physical

 Physical Vapor Vapor DepositionDeposition adaadalalah h teteknknik ik dadasasar r pepelalapipisasan n dedengangan n cacarara  penguapan,

 penguapan, yang yang melibatkan melibatkan transfer transfer material material pada pada skala skala atomik. atomik. PVD PVD merupakanmerupakan  proses

 proses alternativealternative dari elektroplating.dari elektroplating. Physical  Physical Vapor Vapor DepositionDeposition terdapat beberapaterdapat beberapa metode, diantaranya:

metode, diantaranya: 1.

1. SiSiststem em pepengnguauapapann

• PenguapanPenguapanThermal Thermal /arus panas/arus panas •

• Penguapan sinar elektron atau plasmaPenguapan sinar elektron atau plasma

2.

2. SiSiststem em PePercrcikikan an (( sputtering  sputtering ))

• DCDCdiodediode •

• DCDCtriodetriode

(2)

• RF DiodaRF Dioda •

• DCDCmagnetronmagnetron

Pada sistem percikan lebih serikali digunakan DC

Pada sistem percikan lebih serikali digunakan DCmagnetronmagnetronkarena hasilkarena hasil lapisan lebuh baik dan lebih seragam.

lapisan lebuh baik dan lebih seragam. Semua

Semua proses ini proses ini terjadi di terjadi di dalam ruang hampa dalam ruang hampa udara pada tekanan kerja udara pada tekanan kerja 10-210-2 sam

sampai 10-4 mbar dan pai 10-4 mbar dan secsecara umum meliara umum melibatbatkan pemecakan pemecahan dari substhan dari substrat rat untuntuk uk  dilapisi dengan ion bermuatan positif yang reaktif selama proses pelapisan untuk  dilapisi dengan ion bermuatan positif yang reaktif selama proses pelapisan untuk  menai

menaikan kan densidensitas tas tinggtinggi. i. TambaTambahan han pula, gas-gas pula, gas-gas reaktreaktif if sepertseperti i nitrnitrogen, ogen, asetiasetilenalena atau oksigen bisa dimuat ke dalam ruang vakum selama pengendapan logam untuk  atau oksigen bisa dimuat ke dalam ruang vakum selama pengendapan logam untuk  menciptakan berbagai komposisi-komposisi pelapisan. Hasilnya adalah suatu ikatan menciptakan berbagai komposisi-komposisi pelapisan. Hasilnya adalah suatu ikatan sangat kuat antara pelapis dan substrat pembuatan alat dan secara fisik, struktural sangat kuat antara pelapis dan substrat pembuatan alat dan secara fisik, struktural yang dikhususkan dan

yang dikhususkan dantribological tribological kekayaan lapisan.kekayaan lapisan. Car

Cara a kerkerjaja  Physical  Physical Vapor Vapor DepositionDeposition (PVD)(PVD) melimeliputi puti tahapatahapan n evaporevaporasi,asi, transportasi, reaksi dan deposisi.

transportasi, reaksi dan deposisi. 11.. EEvvaappoorraassii

Pad

Pada a tatahahap p inini, i, sesebubuah ah tatargrget et yayang ng memengnganandundung g mamateteririal al yayang ng iningiginn diendapkan, dibombardir menjadi bagian-bagian kecil akibat sumber energi diendapkan, dibombardir menjadi bagian-bagian kecil akibat sumber energi yang tinggi seperti penembakan sinar elektron. Atom-atom yang keluar  yang tinggi seperti penembakan sinar elektron. Atom-atom yang keluar  tersebut akhirnya menguap.

tersebut akhirnya menguap. 22.. TTrraannssppoorrttaassii

Pr

Prososes es inini i sesecacara ra sesedederhrhanana a memerurupapakakan n pepergrgererakakan an atatomom-a-atotom m yayangng menguap dari target menuju substrat yang ingin dilapisi dan

menguap dari target menuju substrat yang ingin dilapisi dan secarsecara a umumumum  bergerak lurus.

 bergerak lurus. 33.. RReeaakkssii

Pada beberapa kasus pelapisan mengandung logam oksida, nitrida, karbida Pada beberapa kasus pelapisan mengandung logam oksida, nitrida, karbida da

dan n mamateteririal al sesejejeninisnsnya. ya. AtAtom om dardari i lologagam m akakan an berbereaeaksksi i dedengangan n gagass tertentu selama proses perpindahan atom. Untuk permasalahan ini, gas tertentu selama proses perpindahan atom. Untuk permasalahan ini, gas

(3)

reaktif yang mungkin adalah oksigen, nitrogen dan metana. Merupakan  proses terjadinya pelapisan pada permukaan substrat.

4. Deposisi

Beberapa reaksi terjadi antara logam target dan gas reaktif mungkin juga terjadi pada permukaan substrat yang terjadi serempak dengan proses deposisi.

 Physical Vapor Deposition merupakan deposisi uap dengan reaksi fisika yang dapat dikategorikan menjadi dua jenis:

1. Sputtering (DC atau RF)

Sputerring adalah proses pengeluaran atom dari permukaan suatu material yang dihasilkan dari benturan antar partikel dengan energi yang besar. Atom-atom dari permukaan target dapat terlepas akibat ion yang dipercepat menumbuk   permukaan target melalui proses transfer momentum. Pada system sputtering model  planar dua elektroda yaitu katoda dan anoda anoda dalam vakum chamber berada  pada posisi berhadapan dan Katoda dihubungkan dengan sumber RF (radio frekuensi) atau DC dengan tegangan negatif sedangkan anoda tegangan positif. Antara katoda dan anoda terbentuk medan elektromagnet yang berperan menginduksi gas-gas membentuk plasma.

(4)

Sputtering  sebagai teknik pengendapan yang memiliki langkah-langkah sebagai  berikut:

1. Penghasilan dan pengendapan ion-ion kepada material 2. Percikan ion-ion atom dari target material

3. atom yang dipercikan berpindah ke substrate yang bertekana rendah 4. atom yang dipercikan mengendap ke substrat, berubah jadi lapisan tipis

Dalam pembuatan VLSI, sputtering memiliki keuntungan yang lebih dibanding metode PVD yang lain, seperti:

1. Sputtering dapat dilakukan dengan ukuran target yang besar, pengendapan yang tipis dengan ketebalan yang seragam.

2. Ketebalan lapisan mudah ditentukan dengan parameter pengoperasian yang tepat dan waktu pengendapan yang sesuai

3. Pengendalian komposisi paduan dapat dilakukan dengan mudah dibandingkan proses evaporasi.

4. Substrat sputter-cleaning terbentuk dalam ruang hampa sebelum  pengendapan lapisan.

5. Kerusakan dari pengoperasian sinar X dapat dihindari

 Namunsputtering juga memiliki beberapa kekurangan, seperti: 1. Biaya awal yang mahal.

2. Beberapa material padatan didapatkan dengan peledakan ion.

3. Sputtering  lebih cenderung memberikan kemurnian yang lebih kurang dibandingkan proses evaporasi.

2. Evaporasi

Evaporasi dibagi menjadi dua tipe: a. Thermal Evaporation

• Meletakkan material target yang ingin diendapkan pada sebuah container .

(5)

• Panaskancontainer tersebut hingga suhu yang tinggi. • Material pelapis menguap

• Uap dari material target tersebut bergerak dan menempel pada  permukaan substrat.

• Uap pelapis akan menurun suhunya sehingga akan mengeras dan

melekat dipermukaan substrat

Gambar 2. Skema Proses Evaporasi secara umum

Gambar 3. Skema proses penguapanthermal  pada uap Alumunium Pada proses penguapan thermal  diatas sebagai contoh pada uap alumunium pelapis komponen yang diatas diistilahkan wafers. Batang

(6)

alumunium ditempatkan diantara filamen tungsten yang keduanya akan dialiri arus listrik. Arus listrik yang dibutuhkan besar. Ketika dialiri oleh arus listrik, filamen tungsten tersebut mengalami pemanasan begitu pula pada batang alumunium. Panas dari filamen dan alumunium tersebut menimbulkan  perpindahan konduktifitas panas dimana ion alumunium akan melepaskan elektronnya sehingga membentuk lapisan uap alumunium. Tekanan panas  pada tungsten dan batang alumunium sangat tinggi sehingga elekton uap akan

naik sehingga memembentuk permukaanwafers.

Kondisi wafers yang mendapatkan hantaran panas dari filamen dan  batang alumunium akan sedikit mengubah karakterisrik permukaan benda kerja. Partikel elektron uap alumunium tersebut akan mengisi sedikit demi sedikit permukaan lapisan wafers sehingga permukaan benda kerja akan terselimuti oleh endapan dari elektron alumunium. Prinsip kerja ini sama halnya seperti eletrolisis, namun yang jadi perbedaan adalah ukuran dari ion yang melapisi dan melibatkan uap dari material logam.

b.  Electron Beam Evaporation

Teknik ini menyebabkan penguapan dari material oleh tembakan sinar  elektron yang dipusatkan pada permukaan dari material. Uap dari material tersebut akan terurai dan akan menuju permukaan dari substrat.

Dipanaskan pada tekanan uap yang tinggi oleh penembakan elektron pada keadaan vakum.

(7)

Gambar 4. Skema Electron Beam Evaporationsecara umum

Tak jauh berbeda dengan proses penguapan thermal yang membedakan adalah cara menghasilkan uap logam yang dicontohkan oleh alumunium. Uap alumunium dihasilkan dari tembakan 9lectron untuk mengeluarkan partikel 9lectron pada alumunium sehingga dapat dijadikan uap. Partikel 9lectron alumunium akan membentuk endapan yang akan menyelimuti benda kerja

Gambar 5. Skema proses penguapan Electron Beam Evaporation pada uap Alumunium

Berikut Perbandingan antaraThermal Evaporation dan Electron Beam  Evaporation dapat dijelaskan melalui tabel dibawah ini.

(8)

2.2. Chemical Vapor Deposition

Chemical Vapour Deposition (CVD) merupakan reaksi kimia yang dimaksudkan untuk meningkatkan kemurnian dan hasil yang tinggi dari suatu material padat. Proses ini sering digunakan dalam industri semikonduktor untuk 

(9)

menghasilkan lapisan yang tipis. Dalam beberapa tipe CVD, substrat diarahkan ke satu atau beberapa bagian yang mudah menguap, sehingga reaksi terjadi pada bagian  permukaan substrat untuk menghasilkan endapan yang diinginkan. Seringkali dihasilkan produk sampingan yang mudah menguap yang terdistribusi oleh gas yang mengalir dalam ruang reaksi.

Proses microfabrication kebanyakan menggunakan CVD untuk  mengendapakan material dalam berbagai bentuk, seperti monocrystalline,  polycrystalline,amorphous, andepitaxial . Material yang diendapkan biasanya silikon, serat

karbon, carbon nanofibers, filaments, carbon nanotubes , SiO2, silikon-germanium,

tungsten, silicon nitride, silikon oxinitrit, titanium nitrit. CVD juga biasa digunakan untuk pembuatan berlian sintetik.

Jenis-Jenis Deposisi Uap Kimia

Gambar 6. Hot-wall thermal CVD (batch jenis operasi)

Gambar 7. Plasma assisted CVD

Beberapa proses CVD sering digunakan dan literaturnya sering disesuaikan. Proses-proses ini dibedakan dari reaksi kimia yang aktif dan kondisi proses.

(10)

a)  Atmoshpheric pressure CVD (APCVD) dimana proses CVD terjadi  pada tekanan atmosfer.

 b)  Low-pressure CVD (LPCVD) dimana proses CVD terjadi pada tekanan rendah. Pengurangan tekanan biasanya ditujukan untuk  mengurangi reaksi-reaksi fasa gas yang tak diinginkan dan memperbaiki pendistribusian lapisan pada target. Proses ini pun termasuk yang paling modern diantara yang lain.

c) Ultrahigh vacuum CVD (UVCVD) dimana CVD terjadi pada tekanan yang sangat rendah, pada umumnya di bawah 10-6 Pa (~10-8 torr). 2. Penggolongan Berdasarkan Ciri-ciri Fisik Dari Uap Air 

a)  Aerosol assisted  CVD (AACVD) dimana proses CVD terjadi dengan ditandai pendistribusian ke substrat dengan aerosol liquid ataupun gas. Teknik ini cocok untuk material yang tidak mudah menguap.

 b)  Direct liquid injection CVD (DLICVD) dimana CVD terjadi dengan ditandai dengan panyisipan zat cair. Larutan disuntikan pada ruang  penguapan, lalu uap air didistribusikan ke substrat .

 Diklasifikasikan oleh tekanan operasi

 Tekanan atmosfer CVD (APCVD) Proses CVD pada tekanan atmosfer.  Tekanan rendah CVD (LPCVD)

Proses CVD pada tekanan  sub atmospheric. Mengurangi tekanan cenderung mengurangi gas yang tidak diinginkan fase reaksi dan meningkatkan keseragaman film di wafer. Paling modern proses CVD baik  LPCVD atau UHVCVD.

(11)

Proses CVD pada tekanan sangat rendah, biasanya di bawah 10 -6 Pa (~ 10 -8 torr ). Perhatikan bahwa dalam bidang lain, sebuah divisi yang lebih rendah antara tinggi dan vakum ultra-tinggi adalah umum, seringkali 10 -7 Pa.

 Diklasifikasikan oleh karakteristik fisik dari uap  Aerosol dibantu CVD (AACVD)

Sebuah proses CVD di mana prekursor diangkut ke substrat dengan cara aerosol cair / gas, yang dapat dihasilkan ultrasonically. Teknik ini cocok untuk  digunakan dengan non-volatile prekursor.

  Direct Liquid InnjectionCVD (DLICVD)

Sebuah proses CVD di mana prekursor dalam bentuk cair (cairan atau  padatan terlarut dalam pelarut yang sesuai). Solusi cair yang disuntikkan di ruang penguapan menuju injector  (biasanya injector  mobil). Kemudian uap  prekursor diangkut ke substrat seperti dalam proses CVD klasik. Teknik ini cocok untuk digunakan pada prekursor cair atau padat.Tingkat pertumbuhan yang tinggi dapat dicapai dengan menggunakan teknik ini.

 Metode plasma

  Microwaveplasma dibantu CVD (MPCVD)   Plasma Enhanced CVD (PECVD)

CVD proses yang memanfaatkan plasma . untuk meningkatkan laju reaksi kimia dari prekursor [2] proses deposisi PECVD memungkinkan pada temperatur rendah, yang sering kritis dalam pembuatan semikonduktor.

  Remote Plasma Enhanced CVD (RPECVD)

Serupa dengan PECVD kecuali bahwa substrat wafer tidak langsung di wilayah debit plasma. Menghapus wafer dari wilayah plasma memungkinkan  pengolahan suhu turun ke suhu kamar.

(12)

Simpanan lapisan yang berurut dari zat yang berbeda untuk menghasilkan  berlapis, kristalin film. Lihatepitaksi lapisan Atom .

 PembakaranChemical Vapor Deposition(CCVD)

Pembakaran Chemical Vapor Deposition adalah proses suasana terbuka, api berbasis teknik untuk menyimpan film berkualitas tinggi tipis dan  Nanomaterials.

 Kawat panas CVD (HWCVD)

Dikenal sebagai CVD katalitik (Cat-CVD) atau filamen panas CVD (HFCVD). Menggunakan filamen panas untuk menguraikan kimia gas sumber. [3]

 Deposisi uap kimia metalorganik (MOCVD)

Proses CVD berdasarkan metalorganik prekursor.

 Hybrid Fisik-Kimia Vapor Deposition (HPCVD)

Proses deposisi uap yang melibatkan kedua dekomposisi kimia gas  prekursor dan penguapan dari sumber yang solid.

 CVD termal cepat (RTCVD)

Proses CVD yang menggunakan lampu pemanas atau metode lain untuk  cepat panas substrat wafer.Pemanasan hanya substrat daripada dinding kamar  gas atau membantu mengurangi reaksi fasa gas yang tidak diinginkan yang dapat menyebabkan partikel formasi.

 Epitaksi fase uap (VPE)

Bahan Yang digunakan Dalam CVD Untuk  Intergrated Circuits

Bagian ini membahas proses CVD sering digunakan untuk sirkuit terpadu (IC). Bahan tertentu yang disimpan terbaik dalam kondisi tertentu.

(13)

Silikon polikristal diendapkan dari silan (SiH4), dengan menggunakan reaksi

 berikut:

SiH4→ H + 2 Si2

Reaksi ini biasanya dilakukan dalam sistem LPCVD, baik dengan bahan baku silan murni, atau larutan silan dengan 70-80 % nitrogen . Suhu antara 600 dan 650° C dan tekanan antara 25 dan 150 Pa menghasilkan tingkat pertumbuhan antara 10 dan 20 nm per menit. Sebuah proses alternative menggunakan hidrogen solusi  berbasis. Hidrogen mengurangi tingkat pertumbuhan, tetapi suhu dinaikkan sampai

850 atau bahkan 1050°C untuk mengkompensasi.

 Polysilicon dapat ditanam langsung dengan doping, jika gas seperti fosfin ,arsine ataudiboraneditambahkan ke ruang CVD. Diborane meningkatkan tingkat pertumbuhan, namun arsine dan fosfin menguranginya.

 Silikon dioksida

Silikon dioksida (biasanya disebut hanya "oksida" dalam industri semikonduktor) dapat disimpan oleh proses yang berbeda. Sumber gas umum termasuk silan dan oksigen ,dichlorosilane (SiCl2H2) dan oksida nitrogen (N2O), atau

tetraethylorthosilicate (TEOS: Si (OC2H5) 4). Reaksi adalah sebagai berikut:

SiH4+ O2→ SiO2+ 2 H2

SiCl2H2+ 2 N2O → SiO2+ 2 N2+ 2 HCl

Si (OC2H5)4→ SiO2+ sampingan

Pemilihan sumber gas tergantung pada stabilitas termal dari substrat, misalnya, aluminium sensitif terhadap suhu tinggi. Deposito silan antara 300 dan 500°C, dichlorosilane pada sekitar 900°C, dan TEOS antara 650 dan 750°C, menghasilkan lapisan oksida suhu rendah (KPP). Namun, silan menghasilkan oksida kualitas lebih rendah daripada metode lain (lebih rendah kekuatan dielektrik , misalnya), dan deposito non conformally. Setiap reaksi ini dapat digunakan dalam

(14)

LPCVD, namun reaksi silan juga dilakukan di APCVD. CVD oksida selalu memiliki kualitas lebih rendah dari oksida termal , tetapi oksidasi termal hanya dapat digunakan pada tahap awal pembuatan IC.

Oksida juga dapat ditanam dengan kotoran ( paduan atau " doping "). Ini mungkin memiliki dua tujuan. Selama langkah proses lebih lanjut yang terjadi pada suhu tinggi, kotoran dapat berdifusi dari oksida ke dalam lapisan yang berdekatan (terutama silikon) dan obat bius mereka.Oksida mengandung kotoran 5-15% massa sering digunakan untuk tujuan ini. Selain itu, silikon dioksida paduan dengan fosfor   pentoksida("P-kaca") dapat digunakan untuk kelancaran keluar permukaan yang tidak  rata. P-kaca melembutkan dan reflows pada suhu di atas 1000°C. Proses ini memerlukan konsentrasi fosfor minimal 6%, tetapi konsentrasi di atas 8% dapat menimbulkan korosi aluminium. Fosfor diendapkan dari gas phosphin dan oksigen:

4 PH3+ 5 O2→ 2 P2O5+ 6 H2

Kacamata yang mengandung boron dan fosfor (kaca borophosphosilicate, BPSG) menjalani aliran viskos pada suhu yang lebih rendah; sekitar 850°C adalah dicapai dengan gelas mengandung sekitar 5% berat dari kedua konstituen, tapi stabilitas di udara bisa sulit untuk dicapai. Fosfor oksida dalam konsentrasi tinggi kelembaban ambien berinteraksi dengan untuk menghasilkan asam fosfat. Kristal BPO4juga dapat endapan dari gelas mengalir pada pendinginan, ini kristal tidak 

mudah tergores dalam plasma reaktif standar yang digunakan untuk pola oksida, dan akan mengakibatkan kerusakan sirkuit dalam pembuatan sirkuit terpadu.

Selain itu kotoran yang disengaja, oksida CVD mungkin berisi produk  sampingan dari proses pengendapan. TEOS menghasilkan oksida relatif murni, sedangkan silan memperkenalkan kotoran hidrogen, dan dichlorosilane memperkenalkan klorin .

(15)

Menurunkan suhu deposisi dari silikon dioksida dan gelas doped dari TEOS menggunakan ozon bukan oksigen juga telah dieksplorasi (350 sampai 500°C). Gelas ozon telah conformality sangat baik tetapi cenderung higroskopis - yaitu, mereka menyerap air dari udara karena penggabungan silanol (Si-OH) di kaca. Spektroskopi inframerah dan regangan mekanik sebagai fungsi temperatur adalah alat diagnostik  yang berharga untuk mendiagnosis masalah seperti itu.

 Silikon nitrida

Silikon nitrida sering digunakan sebagai insulator dan hambatan kimia di  bidang manufaktur IC. Dua berikut reaksi deposito nitrida dari fase gas:

3 SiH4+ 4 NH3→ Si3 N4+ 12 H2

3 SiCl2H2+ 4 NH3→ Si3 N4+ 6 HCl H2

Silikon nitrida yang disimpan oleh LPCVD berisi hingga 8% hidrogen. Ini  juga pengalaman tarik yang kuat stres , yang dapat retak film tebal dari 200 nm. Namun, memiliki tinggi resistivitas dan kekuatan dielektrik dari isolator yang  paling umum tersedia dalam microfabrication (10 16 Ω ·cm dan 10 M V / cm,

masing-masing).

Dua reaksi dapat digunakan dalam plasma untuk deposit Sinh: 2 SiH 4 + N 2 → 2 H + 3 Sinh 2

SiH 4 + NH 3 → H + 3 Sinh 2

Film-film ini memiliki stres jauh lebih sedikit tarik, tapi sifat listrik lebih  buruk (resistivitas 6 - 15 Ω. cm, dan kekuatan dielektrik 1 sampai 5 MV / cm).

 Logam

Beberapa logam (terutama aluminium dan tembaga ) jarang atau tidak pernah disimpan oleh CVD. Tembaga pengendapan logam telah dilakukan kebanyakan

(16)

oleh elektroplating, dalam rangka untuk mengurangi biaya. Aluminium dapat disimpan dari tri- isobutil aluminium (TIBAL), tri etil/metil aluminium (TEA, TMA), atau hidrida dimethylaluminum (DMAH), namun fisik deposisi uap metode biasanya disukai.

 Namun demikian, CVD proses untuk molibdenum , tantalum , titanium , nikel, dan tungsten banyak digunakan. Logam ini dapat membentuk silisida ketika disimpan ke silikon. Mo, Ta dan Ti yang disimpan oleh LPCVD, dari pentachlorides mereka. Nikel, molibdenum, dan tungsten dapat disimpan pada suhu rendah dari  prekursor karbonil mereka. Secara umum, untuk sebuah M logam sewenang-wenang,

reaksi adalah sebagai berikut:

2 MCL5+ 5 H2→ 2 M + 10 HCl

Sumber biasa untuk tungsten heksafluorida , yang dapat disimpan dalam dua cara: WF6→ W + 3 F2

WF6+ 3 H2→ W + 6 HF

 Semprot elektrostatik dibantu deposisi uap (ESAVD)

Semprot elektrostatik dibantu deposisi uap (ESAVD) adalah teknik (yang dikembangkan oleh sebuah perusahaan bernama IMPT) untuk deposit kedua lapisan tipis dan tebal pelapisan ke berbagai substrat . Dalam istilah yang sederhana prekursor kimia yang disemprotkan di sebuah elektrostatik medan menuju substrat dipanaskan, bahan kimia menjalani reaksi kimia terkontrol dan diendapkan pada substrat sebagai pelapis yang diperlukan. Teknik penyemprotan elektrostatik dikembangkan pada 1950-an untuk penyemprotan partikel terionisasi pada substrat dibebankan atau dipanaskan.

ESAVD digunakan untuk banyak aplikasi di banyak pasar termasuk:

(17)

Berbagai lapisan tipis dalam pembuatan panel layar datar  dan photovoltaic panel :

a. Komponen elektronik   b. Pelapis Biomedis

c. Kaca pelapis (seperti membersihkan diri) d. Korosi perlindungan lapisan

Proses ini memiliki keunggulan dibandingkan teknik lain untuk deposisi lapisan (Plasma,  Electron-Beam) karena tidak memerlukan penggunaan setiap vakum , sinar elektron atau plasma sehingga mengurangi biaya  produksi. Hal ini juga menggunakan daya yang lebih kecil dan bahan baku sehingga lebih ramah lingkungan. Juga menggunakan medan elektrostatik   berarti bahwa proses dapat melapisi bagian 3D yang kompleks dengan mudah.  ALD ( Atomic Layer Depositiion)

ALD adalah  self-limiting (jumlah bahan film disimpan di masing-masing siklus reaksi adalah konstan), kimia permukaan sekuensial yang deposito konformal film tipis bahan ke substrat komposisi yang bervariasi. ALD adalah serupa dalam kimia untuk deposisi uap kimia (CVD), kecuali bahwa reaksi ALD istirahat reaksi CVD menjadi dua setengah-reaksi , menjaga bahan prekursor terpisah selama reaksi. Karena karakteristik membatasi diri dan reaksi permukaan, pertumbuhan film ALD membuat skala kontrol deposisi atom mungkin. Dengan menjaga prekursor  terpisah selama proses pelapisan, lapisan kontrol atom pertumbuhan film dapat diperoleh sehalus ~ 0,1 Å (10 pm ) per siklus.Pemisahan dilakukan dengan prekursor   berdenyut gas pembersihan (biasanya nitrogen atau argon ) setelah setiap pulsa  prekursor untuk menghapus kelebihan prekursor dari ruang proses dan mencegah

(18)

ALD pertama kali diterbitkan di bawah nama "Layering Molekuler" di awal tahun 1960 oleh Prof SI Kol'tsov dari Leningrad (Lensovet) Institut Teknologi (LTI). Percobaan ini dilakukan ALD di bawah pengawasan ilmiah sesuai anggota dari Akademi Ilmu Pengetahuan Rusia Prof VB Aleskovskii. Konsep proses ALD pertama kali diusulkan oleh Prof VB Aleskovskii di gelar Ph.D. tesis diterbitkan  pada tahun 1952. ALD telah dikembangkan dan diperkenalkan di seluruh dunia dengan nama epitaksi lapisan atom (ALE) pada akhir tahun 1970. Untuk film tipis electroluminescent (TFEL) display panel datar, berkualitas tinggi dan dielektrik  film bercahaya yang diperlukan pada besar-daerah substrat, sehingga metode deposisi ALD dikembangkan. Minat ALD telah meningkat dalam langkah-langkah pada  pertengahan 1990-an dan 2000-an, dengan kepentingan terfokus pada silikon  berbasis mikroelektronika. ALD adalah dianggap sebagai salah satu metode deposisi dengan potensi terbesar untuk memproduksi sangat tipis, film konformal dengan kontrol dari ketebalan dan komposisi film yang mungkin pada tingkat atom. Sebuah kekuatan pendorong utama untuk kepentingan terakhir adalah calon dilihat ALD di skala bawah perangkat mikroelektronik.

ALD dapat digunakan untuk deposit beberapa jenis film tipis, termasuk   berbagai oksida (misalnya Al2O3, TiO2, SnO 2, ZnO, HFO2), logamnitrida (misalnya

TiN, Tan, WN, NbN), logam (misalnya Ru, Ir, Pt), dan logam sulfida (ZnS misalnya).  Proses ALD

Pertumbuhan lapisan material oleh ALD terdiri dari mengulangi karakteristik berikut empat langkah:

• Paparan dari prekursor pertama.

• Bersihkan atau evakuasi dari ruang reaksi untuk menghapus prekursor 

(19)

• Paparan dari prekursor kedua - atau pengobatan lain untuk 

mengaktifkan permukaan lagi untuk reaksi dari prekursor pertama.

• Bersihkan atau evakuasi dari ruang reaksi.

Setiap siklus reaksi menambah jumlah tertentu dari bahan ke  permukaan, disebut sebagai pertumbuhan per siklus. Untuk 

menumbuhkan lapisan bahan, siklus reaksi diulang sebanyak yang diperlukan untuk ketebalan film yang diinginkan. Satu siklus dapat mengambil waktu dari 0,5 s untuk beberapa detik dan deposito antara 0,1 dan 3 Å ketebalan film. Sebelum memulai proses ALD, permukaan stabil untuk sebuah negara, yang dikenal dikendalikan, biasanya dengan  perlakuan panas. Karena reaksi diri mengakhiri, ALD adalah suatu proses

yang dikendalikan permukaan, di mana parameter proses selain prekursor, substrat, dan suhu memiliki pengaruh sedikit atau tidak ada. Dan, karena kontrol permukaan, ALD-tumbuh sangat film konformal dan seragam ketebalan. Ini film tipis juga dapat digunakan dalam korelasi dengan metode fabrikasi lainnya umum.

 Keuntungan Dan Keterbatasan

 Keuntungan

Menggunakan ALD, ketebalan film hanya bergantung pada jumlah siklus reaksi, yang membuat kontrol ketebalan yang akurat dan sederhana. Tidak seperti CVD, ada kurang perlu homogenitas fluks reaktan, yang memberikan area yang luas (batch yang besar dan skala up-mudah) kemampuan, conformality sangat baik dan reproduktifitas, dan menyederhanakan penggunaan prekursor padat. Juga, pertumbuhan struktur multilayer berbeda adalah lurus ke depan. Keunggulan ini membuat metode ALD menarik untuk mikroelektronika untuk pembuatan sirkuit terpadu generasi masa depan. Keuntungan lain dari ALD adalah

(20)

 berbagai macam bahan film yang tersedia, kepadatan tinggi dan tingkat kenajisan rendah. Juga, suhu deposisi yang lebih rendah dapat digunakan dalam agar tidak mempengaruhi substrat sensitif.

 Keterbatasan

Keterbatasan utama dari ALD adalah kelambatan; biasanya hanya sebagian kecil dari monolayer disimpan dalam satu siklus. Untungnya, film-film yang dibutuhkan untuk masa depan generasi IC sangat tipis dan dengan demikian lambatnya ALD bukanlah suatu isu penting.

Meskipun pemilihan bahan film tumbuh dengan ALD adalah luas,  bahan teknologi penting ( Si , Ge , Si 3 N 4 , beberapa multi-komponen oksida, logam tertentu) saat ini tidak dapat disimpan oleh ALD dengan cara yang hemat biaya.

ALD adalah teknik kimia dan dengan demikian selalu ada risiko residu yang tersisa dari prekursor. Isi pengotor dari film tergantung pada kelengkapan reaksi. Dalam proses oksida logam halida khas di mana senyawa alkil yang digunakan bersama dengan air sebagai prekursor, kotoran ditemukan dalam film berada pada tingkat 0,1-1% atom.

Gambar

Gambar 1. Skema Proses Sputtering 
Gambar 3. Skema proses penguapan thermal   pada uap Alumunium Pada  proses  penguapan thermal  diatas  sebagai  contoh  pada  uap alumunium  pelapis  komponen  yang  diatas  diistilahkan wafers
Gambar 4. Skema  Electron Beam Evaporation secara umum
Gambar 6.  Hot-wall thermal  CVD (batch jenis operasi)

Referensi

Dokumen terkait

data dan informasi tersebut, antara lain: langsung sebagai penari pada waktu itu, mendatangi pustaka daerah Provinsi Sumatra Utara, bahkan mengunjungi dan

Berdasarkan hasil wawancara yang telah di lakukan dengan salah satu karyawan di PT PLN (PERSERO) AREA CIMAHI dan juga dengan melihat tabel 1.1 terdapat kenaikan jumlah

Berdasarkan hasil wawancara, obsevasi dan analisis data pada penelitian ini dapat diketahui hasil secara keseluruhan bahwa proses pengambilan keputusan dalam

Temuan dari penelitian tersebut adalah (1) persepsi mahasiswa mengenai citra program studi tidak berpengaruh positif terhadap loyalitas mahasiswa, (2) persepsi mahasiswa

Dengan demikian pada level tiga tersebut akan diperoleh sejumlah angka indeks konsistensi yang banyaknya sama dengan unsur-unsur dalam level dua. Langkah selanjutnya adalah

Kesimpulan hasil penelitian ini adalah (1) Melalui siklus tindakan kemampuan membaca dapat ditemukan langkah-langkah yang efektif dalam meningkatkan kemampuan

Sudah saatnya UU Darurat tersebut direvisi atau di tinjau ulang kembali karena sudah tidak sesuai lagi dengan perkembangan zaman jika memang hendak menjerat Airsoft Gun

Hipotesis kedua yang diuji dalam penelitian ini adalah keyakinan, praktik agama, pengalaman, pengetahuan dan pengamalan secara parsial berpengaruh signifikan