• Tidak ada hasil yang ditemukan

METODOLOGI PENELITIAN

N/A
N/A
Protected

Academic year: 2021

Membagikan "METODOLOGI PENELITIAN"

Copied!
10
0
0

Teks penuh

(1)

13

III. METODOLOGI PENELITIAN

A. Waktu dan Tempat

Kegiatan penelitian dilaksanakan mulai bulan Februari 2012 sampai dengan Juni 2012 di Lab. Surya Departemen Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian, IPB.

B. Alat dan Bahan

1. Alat

1. Perangkat komputer merk Samsung tipe N148 (windows os 7 dan microsoft office 2007) Perangkat komputer digunakan untuk melakukan proses pengolahan data.

2. Perangkat lunak CFD (ANSYS Ver.13)

Perangkat lunak digunakan untuk melakukan simulasi numerik yang di-install pada perangkat komputer.

3. Thermorecorder hybrid merk Yokogawa tipe 30813

Thermorecorder hybrid digunakan untuk pembacaan data pada saat melakukan pengukuran

suhu.

4. Thermorecorder chino merk Yokogawa tipe 3058

Thermorecorder chino kegunaannya sama dengan hybrid untuk pembacaan data pengukuran

suhu. Chino digunakan karena titik pembacaan suhu di hybrid masih kurang.

5. Thermocouple tipe Chromel-Constantan (CC)

Thermocouple tipe CC merupakan sensor untuk pengukuran suhu yang dihubungkan ke recorder.

6. Anemometer merk Kanomax

Anemometer digunakan untuk melakukan pengukuran kecepatan angin. 7. Pyranometer model EKO tipe MS-401

Pyranometer merupakan alat untuk pengukuran iradiasi matahari 8. Multimeter digital model YEW tipe 2506A

Multimeter digunakan untuk pembacaan iradiasi matahari yang dihubungkan ke pyranometer.

2. Bahan

Bahan yang digunakan dalam penelitian ini adalah model kolektor surya tipe back-pass. Desain kolektor berbentuk persegi panjang berupa cover, pelat absorber, insulasi dan kerangka kolektor. Kolektor memiliki dua bagian utama yaitu air gap dan aliran udara dibawah pelat absorber. Desain kolektor dapat dilihat pada Lampiran 9-10 halaman 82 dan 83. Bagian kolektor dilakukan modifikasi terhadap persentase panjang cover, sehingga ada bagian pelat absorber yang tidak tertutup oleh cover. Modifikasi berjumlah 5 desain kolektor yaitu kolektor cover 80%, cover 60%, cover 40%, cover 20%,

cover 0% (tanpa cover), sedangkan desain kolektor yang tidak dimodifikasi adalah kolektor ditutup cover penuh (cover 100%). Sehingga dalam penelitian ini terdapat 6 desain kolektor yang akan di

analisis.

Desain kolektor surya terdiri dari :

1. Pelat absorber berupa pelat aluminium lembaran tebal 0.5 mm, berukuran 1000 x 300 mm. 2. Insulasi berupa armaflex (busa insulasi) jenis lembaran buatan Armacell dengan tebal 25.4 mm.

(2)

14

mm, bagian depan dan belakang dengan ukuran 300 x 20 mm, dan bagian bawah dengan ukuran 1000 x 300 mm.

3. Cover terbuat dari kaca es merk Indofigur tipe mislite FM5. Kaca yang dipakai memiliki tebal 5

mm. Ukuran cover dari 6 desain kolektor berbeda-beda. Cover 100% memiliki ukuran 1000 x 300 mm, cover 80% memiliki ukuran 800 x 300 mm, cover 60% memiliki ukuran 600 x 300 mm, cover 40% memiliki ukuran 400 x 300 mm, cover 20% memiliki ukuran 200 x 300 mm dan

cover 0% tidak menggunakan cover.

4. Rangka kolektor memiliki ukuran 1000 x 300 x 70 mm dengan bahan berupa besi siku 20 x 20 mm.

Model selanjutnya yang digunakan adalah kotak pengering. Desain kotak pengering dapat dilihat pada Lampiran 11 halaman 84. Kotak pengering merupakan kotak yang memiliki kerangka dari besi siku dan penutup insulasi untuk setiap sisi kotak. Penutup terbuat dari bahan triplex yang dilapisi dengan armaflex dan aluminium foil. Bahan-bahan tersebut berfungsi sebagai insulasi kotak pengering untuk mengurangi kehilangan panas pada sisi-sisi kotak. Kotak pengering ini nantinya akan dihubungkan dengan kolektor. Kolektor berfungsi untuk memanaskan udara di kotak pengering. Udara hasil pemanasan akan dimanfaatkan untuk keperluan pengeringan bahan pertanian.

Desain kotak pengering terdiri dari:

1. Rangka kotak dengan ukuran 300 x 300 x 300 mm, kerangka terbuat dari besi siku 20 x 20 mm. 2. Penutup kotak terbuat dari triplex dengan ukuran 300 x 300 mm untuk setiap sisi kotak

pengering. Triplex memiliki tebal 5 mm.

3. Setiap sisi kotak dilapisi oleh armaflex dan aluminium foil. armaflex memiliki tebal 25.4 mm dan alumnium foil memiliki tebal 0.05 mm.

4. Cerobong pengeluaran kotak terbuat dari pipa PVC berdiameter 100 mm dan panjang 150 mm. Cerobong kotak juga dilapisi oleh armaflex dan aluminium foil.

C. Prosedur Penelitian

Prosedur penelitian dilakukan meliputi 5 tahapan yaitu:

1. Penentuan rancangan kolektor yang merupakan pembuatan desain dan simulasi sebaran suhu kolektor. Proses rancangan ini meliputi penggambaran model geometri, pembuatan mesh, pendefenisian domain, dan simulasi menggunakan perangkat lunak ansys. Hasil yang didapat berupa laju aliran massa dan sebaran suhu kolektor. Hasil ini akan dilakukan untuk setiap kolektor pada sudut kemiringan 6o, 15o, 30o, 45o, dan 60o.

2. Pembuatan dan menghitung biaya konstruksi pabrikasi kolektor, kemudian melakukan pengujian kolektor di lapang. Pengujian kolektor dengan melakukan pengukuran suhu di kolektor, perhitungan laju aliran massa dan perhitungan kehilangan panas bagian atas kolektor.

3. Validasi data simulasi dan pengujian kolektor dilakukan untuk membandingkan data hasil simulasi dan pengukuran terhadap sebaran suhu dan laju aliran massa. Tujuan validasi adalah untuk melihat akurasi data simulasi dan data pengujian.

4. Pemilihan kolektor berdasarkan pertimbangan suhu outlet kolektor, laju aliran massa serta biaya konstruksi.

5. Penentuan rancangan kotak pengering yang akan dihubungkan dengan kolektor. Proses rancangan terdiri dari proses pembuatan desain, pengujian, simulasi, dan validasi sebaran suhu pada kotak pengering.

(3)

15

Tahapan ini dapat dilihat pada Gambar 9 yang merupakan diagram alir dari penelitian yang telah dilakukan. Secara lengkap tahapan penelitian yang dilakukan dijelaskan di paragraf berikut:

Gambar 9. Diagram Tahapan Penelitian. Mulai

Pembuatan desain dan simulasi kolektor

Rancang bangun kolektor

Pengujian kolektor

Validasi data simulasi dan data pengujian

Pemilihan kolektor

Desain dan simulasi sebaran suhu kotak pengering

Rancang bangun dan pengujian terhadap sebaran suhu kotak

pengering

Validasi data simulasi dan data pengujian Selesai Validasi baik Validasi baik ya Tidak ya Tidak

(4)

16

1. Penentuan Rancangan Kolektor

a. Geometri, Meshing dan Penentuan Kondisi Batas Kolektor

Metode yang digunakan dalam penelitian ini adalah simulasi numerik menggunakan perangkat lunak CFD. Tahap awal sebelum melakukan proses simulasi adalah pembuatan desain kolektor. Pembuatan desain kolektor menggunakan perangkat lunak ansys geometry. Ansys geometri merupakan perangkat lunak untuk membuat desain suatu bangun ruang. Setiap jenis kolektor mulai dari cover 0%, cover 20%, cover 40%, cover 60%, cover 80%, dan cover 100% didesain dengan 5 variasi sudut kemiringan kolektor (β) yaitu 6o, 15o, 30o, 45o, dan 60o. Geometri kolektor dan sudut

kemiringan kolektor dapat dilihat pada Gambar 10 dan 11. .

Gambar 10. Kolektor Surya Cover 100% (1), Cover 80% (2), Cover 60% (3), Cover 40% (4), Cover 20% (5), Cover 0% (6).

Gambar 11. Analisis Kolektor Kemiringan 6o (1), Kemiringan 15o (2), Kemiringan 30o (3), Kemiringan 45o (4), Kemiringan 60o (5).

Geometri yang telah dibuat akan dilakukan proses pembuatan Grid/Mesh. Pembuatan mesh dilakukan menggunakan perangkat lunak ansys meshing. Meshing merupakan proses pembagian geometri menjadi ruang yang memiliki ukuran lebih kecil yang disebut dengan cell. Fungsi dari mesh adalah untuk melakukan perhitungan dalam proses numerik. Mesh yang digunakan untuk penyelesaian dipilih jenis mesh fine dengan bentuk mesh tetrahedral dan hexahedral. Tipe mesh fine digunakan karena memiliki jumlah cell yang lebih banyak dari pada mesh tipe lain, sehingga dapat menjaga akurasi simulasi.

6

5

4

3

2

1

1

1

2 4 3 5 β β β β β

(5)

17

Selanjutnya dilakukan penentuan kondisi batas simulasi. Penentuan kondisi batas bertujuan untuk membatasi bagian yang akan dianalisis oleh perangkat lunak. Kondisi batas yang dipakai ada 3 jenis yaitu dinding, pressure inlet dan pressure outlet. Kondisi batas dinding berfungsi untuk memisahkan antara regional fluida dan solid, sedangkan pressure inlet dan pressure outlet untuk mendefenisikan masuk dan keluarnya aliran udara di kolektor. Kondisi batas dinding yaitu pada dinding insulasi,

cover, dan absorber. Sedangkan pressure inlet dan pressure outlet sebagai inlet dan outlet kolektor.

Gambar 12 menunjukkan pendefenisian kondisi batas pada geometri kolektor. Hasil dari pembuatan

mesh dan pendefenisian kondisi batas disebut dengan domain. Domain merupakan bagian dari

geometri yang akan dianalisis.

Gambar 12 Kondisi Batas pada Kolektor Surya.

b. Pembuatan Simulasi Kolektor Surya

Proses pembuatan simulasi dilakukan menggunakan perangkat lunak ansys fluent. Sebelum dilakukan proses simulasi, perlu ditentukan fenomena-fenomena yang terjadi dan yang akan dianalisis dari domain. Dengan demikian akan memudahkan dalam hal analisis dari hasil pemodelan. Tahap simulasi adalah sebagai berikut:

1. Penentuan sifat material

Sifat material perlu ditentukan untuk mendefenisikan kriteria dinding domain. Jenis dinding yang dipakai ada tiga, yaitu dinding absorber, dinding insulasi dan dinding cover. Absorber terbuat dari bahan aluminium, insulasi terbuat dari bahan armaflex dan cover terbuat dari bahan kaca. Berikut pada Tabel 1 merupakan penentuan sifat material dari dinding domain. Sifat material hasil input di

fluent dapat dilihat pada jurnal file di Lampiran 4 halaman 55 dan 56. Jurnal file adalah file berekstensi *.txt yang merupakan hasil pengerjaan yang telah dilakukan pada proses simulasi di fluent.

Tabel 1. Sifat Material dari Bahan

Material ρ (kg/m3) Cp (J/kg.K) k (W/m.K) Ketebalan (m)

Kaca* 2700 840 0.78 0.005

Armaflex** 50 800 0.038 0.0254

Aluminum* 2719 871 202.4 0.0005

Keterangan:*Sumber: ASHRAE 2001 **Sumber: Katalog Armaflex 2. Pengaktifan Model Penyelesaian

Model penyelesaian yang dipakai dalam sebuah simulasi menentukan output yang diinginkan dari simulasi yang akan dilakukan. Maka perlu diaktifkan persamaan energi untuk menghitung terjadinya perpindahan panas. Model aliran fluida yang dipakai adalah Standard K-Epsilon (SKe),

Dinding cover

Dinding absorber

Pressure inlet

Preesure outlet

(6)

18

pemodelan radiasi menggunakan Solar Load Model, sedangkan udara di kolektor dimodelkan menggunakan buossinesq model . Ske digunakan untuk memodelkan aliran yang terjadi dan mengantisipasi adanya turbulensi pada domain, sedangkan Solar Load Model digunakan untuk melihat pengaruh iradiasi matahari pada waktu tertentu. Iradiasi yang mengenai permukaan domain dimodelkan dengan S2S (surface to surface) radiation, sedangkan posisi matahari ditentukan melalui input longitude, latitude, zona waktu, tanggal simulasi, dan orientasi mesh. Orientasi mesh berguna untuk menentukan letak suatu domain pada koordinat simulasi berdasarkan arah mata angin.

Buossinesq model digunakan untuk menentukan model konveksi alami udara di domain. Suhu udara

lingkungan diasumsikan konstan. Sedangkan massa jenis udara bervariasi berdasarkan perubahan massa jenis awal akibat naiknya suhu dan koefisien ekspansi termal udara. Hasil setting berupa jurnal file di fluent dapat dilihat pada Lampiran 4 halaman 55.

3. Memasukkan nilai-nilai input kondisi batas pada domain

Parameter input kondisi batas pada domain adalah dinding, pressure inlet dan pressure outlet. Kondisi batas dinding berupa kondisi batas termal dan kondisi batas radiasi. Untuk setting nilai kondisi batas termal dan kondisi batas radiasi dapat dilihat pada tabel 2-4.

Tabel 2.Kondisi Batas Termal pada Dinding.

Dinding Kondisi termal Data Input

Cover Kombinasi radiasi dan konveksi Koefisien pindah panas

konveksi, Tlingkungan, ketebalan

Insulasi Adiabatik Fluks panas =0

Absorber Coupled, Kombinasi radiasi dan

konveksi

Koefisien pindah panas

konveksi, Tlingkungan, ketebalan

Tabel 3. Tipe kondisi batas Radiasi pada Cover dan Absorber.

Dinding Tipe Dinding Data Input

Cover Semi transparent transmisivitas (0.9)

Absorber Opaque absorpsivitas (0.95)

Tabel 4. Kondisi Batas Radiasi.

Waktu Vektor arah matahari (x,y,z) Iradiasi (W/m2) Tlingkungan (oC) Kecepatan Angin (m/s)

09.00 (-0.707,0.701,0.0846) 431.684 30 0.1

12.00 (-0.0006,0.993,0.120) 604.388 33 0.1

15.00 (0.707,0.702,0.086) 262.426 30 0.1

*Orientasi Mesh : Utara (0,0,1), Timur (-1,0,0); Bogor (longitude: 106.78. Latitude: -6.58); 21 Juli. Vektor arah matahari merupakan hasil perhitungan dari Solar Ray Tracing berdasarkan input

longitude, latitiude, zona waktu dan orientasi mesh. Vektor arah matahari dapat menentukan posisi

matahari berdasarkan vektor satuan pada koordinat x,y,z. Data iradiasi, tanggal simulasi, Tlingkungan dan

kecepatan angin merupakan nilai asumsi yang digunakan untuk menentukan kondisi batas radiasi. Asumsi kondisi batas yang digunakan merupakan data pengujian kolektor dari penelitian Karnasaputra (2008) yang telah melakukan pengukuran iradiasi pada tanggal 21 Juli. Data waktu simulasi dipilih 3 waktu yaitu pukul 09.00 untuk mewakili posisi matahari pagi hari, pukul 12.00 untuk mewakili posisi matahari siang hari dan pukul 15.00 untuk mewakili posisi matahari sore hari.

(7)

19

Pemilihan waktu tersebut bertujuan untuk melihat perbedaan sebaran suhu di domain pada posisi matahari yang berbeda.

Kondisi batas pressure inlet digunakan untuk menentukan tekanan aliran fluida saat masuk ke

domain. Kondisi batas digunakan untuk mengamati terjadinya efek buoyancy pada kolektor. Untuk setting kondisi batas pada pressure inlet disumsikan dengan tekanan gauge total 0 atm dan tekanan

gauge awal 0 atm. Sedangkan kondisi batas pressure outlet pada aliran fluida merupakan keluaran dari

pressure inlet pada domain. Kondisi batas ini diasumsikan dengan tekanan gauge 0 atm. Hasil inputan

dari setting nilai kondisi batas fluent dapat dilihat pada jurnal file di Lampiran 4 halaman 57. 4. Penyelesaian Pemodelan

Penyelsaian pemodelan dilakukan dengan kondisi steady state. Solver yang dipakai adalah

pressure based solver. Iterasi yang dilakukan sebanyak 3000 sampai dengan 5000 iterasi hingga

mencapai nilai konvergen. Data yang disajikan berupa 3 jenis yaitu grafik, kontur dan tabel dari sebaran suhu simulasi.

2. Pembuatan dan Pengujian Kolektor

Pembuatan kolektor merupakan kegiatan rancang bangun kolektor (pabrikasi). Proses pembuatan ini memerlukan biaya konstruksi. Biaya konstruksi kolektor merupakan fungsi dari komponen biaya. Komponen biaya tersebut adalah biaya rangka, biaya pelat absorber, biaya insulasi, biaya cover dan biaya upah kerja pembuatan. Kolektor yang dipabrikasi berjumlah 6 buah rancangan desain, yaitu kolektor cover 100%, cover 80%, cover 60%, cover 40%, cover 20%, dan cover 0%. Biaya pembuatan kolektor dapat dilihat pada Lampiran 2 halaman 50.

Setelah dilakukan pembuatan kolektor maka diperlukan pengujian lapang. Pengujian diperlukan untuk pembanding dengan data simulasi. Pengujian dilakukan selama 5 hari dengan sudut kemiringan yang berbeda pada setiap harinya. Sudut kemiringan kolektor mulai dari hari pertama hingga hari kelima adalah 6o, 15o, 30o, 45o, dan 60o untuk setiap jenis kolektor. Pengukuran dilakukan mulai pukul 08.00 hingga pukul 15.00 dengan pengambilan data setiap 15 menit. Apabila terjadi cuaca buruk seperti hujan dan tidak memungkinkan untuk terus melakukan pengambilan data, maka pengukuran akan diselesaikan, karena intensitas iradiasi matahari tidak mencukupi. Data yang diambil berupa suhu lingkungan, suhu absorber, suhu udara kolektor (dibawah pelat absorber), iradiasi matahari dan kecepatan angin. Titik pengukuran suhu dapat dilihat pada Gambar 13.

Gambar 13. Titik Pengukuran Suhu Kolektor Surya Tipe Back-pass.

Keterangan: A: Kolektor Cover 100% B: Kolektor Cover 80% C: Kolektor Cover 60% D: Kolektor Cover 40% E: Kolektor Cover 20% F: Kolektor Cover 0% T:Penempatan Thermocouple β: Sudut kemiringan kolektor

(8)

20

Nilai hasil pengujian akan dihitung untuk menentukan laju aliran massa. Perhitungan menggunakan persamaaan 21 yang menghasilkan debit aliran (m3/s) sehingga untuk menentukan laju aliran massa dikalikan dengan massa jenis udara (kg/m3). Untuk menghitung kehilangan panas bagian atas masing-masing kolektor digunakan persamaan 9-20. Contoh perhitungan dapat dilihat pada Lampiran 1 halaman 47-48.

3. Validasi Data Simulasi dan Data Pengujian Kolektor

Skenario validasi dapat dilihat pada Tabel 5-9. Skenario validasi merupakan kondisi batas radiasi hasil pengukuran pada saat pengujian kolektor. Kondisi batas pada Tabel 2. akan diganti dengan skenario validasi dan dilakukan penghitungan ulang simulasi (pengulangan proses iterasi). Pemilihan data waktu simulasi dilakukan secara acak dari pengambilan data pengujian lapang. Pemilihan data tersebut karena validasi tidak melihat pengaruh perbedaan posisi matahari sehingga skenario validasi setiap sudut memiliki kondisi batas radiasi pada jam yang berbeda.

Tujuan dari validasi ini adalah melihat keakuratan data simulasi terhadap data pengujian. Dengan membandingkan data hasil pengukuran dengan data hasil simulasi pada titik-titik validasi maka dibuat korelasi antara suhu ukur (T-Ukur) dan suhu CFD (T-CFD) pada bidang XY (Widodo, 2009). Hubungan tersebut dibuat regresi linear dan didapatkan nilai koefisien determinasi (R2). Simulasi dianggap layak apabila R2 lebih besar dari 0.8 (Puslitbang fisika terapan-LIPI, 1990 didalam Puspitojati, 2003). Simulasi semakin akurat apabila nilai R2 mendekati 1.

Perhitungan terhadap nilai kesalahan (error) dilakukan dengan membandingkan besarnya nilai di masing-masing titik pengukuran dan simulasi. Besarnya error dapat dinyatakan dalam bentuk kesalahan relatif yaitu dengan membandingkan kesalahan simulasi yang terjadi dengan nilai pengukuran sebenarnya (Puspitojati, 2003). Kriteria hasil validasi tersebut ditentukan dengan persamaan sebagai berikut:

Error =

x 100%. (23)

Tabel 5. Skenario Validasi Kemiringan 6o (Data Pengujian 11 April). Waktu Vektor arah matahari (x,y,z) Iradiasi (W/m2) Tlingkungan ( o

C) Kecepatan Angin (m/s)

08.00 (-0.844, 0.498,0.202) 114.29 26 0.3

10.00 (-0.472,0.847,0.243) 857.14 34 0.19

12.15 (0.090,0.962,0.257) 742.86 34 0.2

Tabel 6. Skenario Validasi Kemiringan 15o (Data Pengujian 4 April).

Waktu Vektor arah matahari (x,y,z) Iradiasi (W/m2) Tlingkungan (oC) Kecepatan Angin (m/s)

10.00 ( -0.482,0.853,0.198) 800 36 0.37

12.00 (0.0177,0.977,0.213) 914.286 34 0.17

(9)

21

Tabel 7. Skenario Validasi Kemiringan 30o (Data Pengujian 5 April).

Waktu Vektor arah matahari (x,y,z) Iradiasi (W/m2) Tlingkungan (oC) Kecepatan Angin (m/s)

08.45 (-0.735,0.653,0.181) 357.143 32 0.21

10.15 (-0.423,0.882,0.208) 414.286 30 0.18

11.30 (-0.111,0.969,0.218) 842.857 32 0.14

Tabel 8. Skenario Validasi Kemiringan 45o (Data Pengujian 9 April).

Waktu Vektor arah matahari (x,y,z) Iradiasi (W/m2) Tlingkungan (oC) Kecepatan Angin (m/s)

09.00 (-0.684,0.698,0.213) 600 31 0.23

12.00 (0.0237,0.970,0.245) 942.86 35.9 1.43

13.30 (0.401,0.885,0.236) 757.14 34.9 0.55

Tabel 9. Skenario Validasi Kemiringan 60o (Data Pengujian 10 April). Waktu Vektor arah matahari

(x,y,z)

Iradiasi (W/m2) Tlingkungan (oC) Kecepatan Angin (m/s)

08.45 (-0.728,0.651,0.214) 642.86 31.9 0.38

12.30 (0.154,0.956,0.250) 457.14 31.9 0.38

15.00 (0.717,0.662,0.217) 357.14 33.95 0.55

4. Pemilihan Kolektor

Pemilihan kolektor dilakukan berdasarkan pertimbangan suhu outlet dan laju aliran massa yang telah memadai untuk proses pengeringan bahan pertanian. Biaya konstruksi dari masing-masing jenis kolektor juga dipertimbangkan dalam melakukan pemilihan kolektor. Suhu yang diharapkan adalah suhu udara outlet diatas 40oC. Laju aliran massa yang diharapkan dari variasi kemiringan dipilih kemiringan yang memiliki laju aliran massa tertinggi dari hasil simulasi. Sedangkan biaya konstruksi dipilih kolektor yang memiliki harga yang rendah dengan mempertimbangkan laju aliran massa dan suhu outlet kolektor.

5. Penentuan Rancangan dan Simulasi Kotak Pengering

Setelah didapatkan kolektor surya yang optimal maka dilakukan pembuatan desain kotak pengering. Geometri kotak pengering dihubungkan dengan kolektor surya. Hasil dari pembuatan geometri ini akan dilakukan proses rancang bangun dan pengujian. Pengujian dilakukan dengan dua tahap, pertama pada kondisi kolektor bagian atas ditutup/diinsulasi sehingga kolektor tidak terkena iradiasi matahari. Kemudian pada kondisi kolektor terkena iradiasi. Pengujian dilakukan untuk melihat sebaran suhu kotak pengering dalam keadaan tanpa beban (kotak tanpa diisi bahan pertanian yang akan dikeringkan). Data yang diambil pada pengujian kolektor berupa sebaran suhu, kecepatan angin, dan iradiasi matahari. Titik pengukuran suhu kotak pengering dapat dilihat pada Gambar 14.

(10)

22

Gambar 14. Titik Pengukuran Suhu Kolektor dan Kotak Pengering.

Hasil dari desain yang telah dibuat juga dilakukan simulasi sebaran suhu. Pembuatan simulasi bertujuan untuk melihat aliran udara panas yang berasal dari kolektor memanaskan kotak pengering. Penentuan pemodelan simulasi sama dengan simulasi kolektor. Hasil simulasi juga divalidasi dengan data pengujian lapang dengan tujuan untuk melihat akurasi data simulasi dan data pengukuran. Skenario validasi dapat dilihat pada Tabel 10.

Tabel 10. Skenario Validasi Kotak Pengering Tanpa Beban (Data Pengujian 22 Juni) Waktu Vektor arah matahari (x,y,z) Iradiasi (W/m2) Tlingkungan (

o C) Kecepatan Angin (m/s) 09.00 (-0.633,0.614,0.471) 471.429 36.7 0.30 12.00 (0.0208,0.866,0.500) 828.571 32.2 0.37 15.00 (0.663,0.585,0.468) 471.429 38.7 0.34 Keterangan Gambar: T:Penempatan Thermocouple β: Sudur kemiringan kolektor

Gambar

Gambar 9. Diagram Tahapan Penelitian.
Gambar 10. Kolektor Surya Cover 100% (1), Cover 80% (2), Cover 60% (3), Cover 40% (4), Cover  20% (5), Cover 0% (6)
Tabel 2.Kondisi Batas Termal pada Dinding.
Tabel 8. Skenario Validasi Kemiringan 45 o  (Data Pengujian 9 April).
+2

Referensi

Dokumen terkait

kanan: “Hal yang paling mempengaruhi pada dinas kelautan dan perikanan adalah ku- rangnya sumber daya. Hal ini menyebabkan kurangnya pengawasan langsung dilapangan. Baik itu

Manfaat geladikarya yang diharapkan bagi perusahaan adalah diketahuinya struktur permodalan yang optimal guna mencari sumber pembiayaan yang memiliki biaya paling minimum,

Judul Skripsi : PENGARUH PERUBAHAN KURS (RUPIAH TERHADAP USD) TERHADAP PERUBAHAN RETURN PASAR DI BEI SEBELUM DAN SESUDAH KRISIS GLOBAL TAHUH 2008 Menyatakan bahwa skripsi

Penelitian ini bertujuan untuk membuat suatu software tutorial yang dapat digunakan untuk membantu mengenalkan aksara Jawa dengan menggunakan interface yang dapat menarik

Memberi pertanyaan sederhana kepada pasien tentang pengunaan obat yang diberikan menerapkan nilai dasar Komitmen mutu dengan indikator Efektif, sebelum saya

5.18 Perhitungan Faktor Konversi Waktu Proses Tiap Obat Per Outer Dengan Mesin Sama untuk Proses. Pengisian 5

- Pengalaman kerja diutamakan dibidangnya - Familiar dengan bidang pemasaran property - Memiliki kemampuan negosiasi/presentasi - Networking luas, berpenampilan menarik,

Meski demikian, upaya mencapai pro-poor growth, tidak dapat dilepaskan dari kandungan unsur strategi pembangunan yang pro-growth, pro-job, pro-poor, dan pro-environment,