• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB II TINJAUAN PUSTAKA"

Copied!
70
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA

2.2. Tinjauan Umum

Tiang pancang adalah bagian-bagian konstruksi yang dibuat dari kayu, beton, dan atau baja, yang digunakan untuk meneruskan (mentransmisikan) beban-beban permukaan ke tingkat-tingkat permukaan yang lebih rendah di dalam massa tanah (Bowles, J. E., 1991).

Penggunaan pondasi tiang pancang sebagai pondasi bangunan apabila tanah yang berada dibawah dasar bangunan tidak mempunyai daya dukung (bearing capacity) yang cukup untuk memikul berat bangunan dan beban yang bekerja padanya (Sardjono, H. S., 1988). Atau apabila tanah yang mempunyai daya dukung yang cukup untuk memikul berat bangunan dan seluruh beban yang bekerja berada pada lapisan yang sangat dalam dari permukaan tanah kedalaman > 8 m (Bowles, J. E., 1991).

Fungsi dan kegunaan dari pondasi tiang pancang adalah untuk memindahkan atau mentransfer beban-beban dari konstruksi di atasnya (super struktur) ke lapisan tanah keras yang letaknya sangat dalam.

Dalam pelaksanaan pemancangan pada umumnya dipancangkan tegak lurus dalam tanah, tetapi ada juga dipancangkan miring (battle pile) untuk dapat menahan gaya-gaya horizontal yang bekerja. Sudut kemiringan yang dapat dicapai oleh tiang tergantung dari alat yang dipergunakan serta disesuaikan pula dengan perencanaannya.

(2)

Tiang Pancang umumnya digunakan :

1. Untuk mengangkat beban-beban konstruksi diatas tanah kedalam atau melalui sebuah stratum/lapisan tanah. Didalam hal ini beban vertikal dan beban lateral boleh jadi terlibat.

2. Untuk menentang gaya desakan keatas, gaya guling, seperti untuk telapak ruangan bawah tanah dibawah bidang batas air jenuh atau untuk menopang kaki-kaki menara terhadap guling.

3. Memampatkan endapan-endapan tak berkohesi yang bebas lepas melalui kombinasi perpindahan isi tiang pancang dan getaran dorongan. Tiang pancang ini dapat ditarik keluar kemudian.

4. Mengontrol lendutan/penurunan bila kaki-kaki yang tersebar atau telapak berada pada tanah tepi atau didasari oleh sebuah lapisan yang kemampatannya tinggi.

5. Membuat tanah dibawah pondasi mesin menjadi kaku untuk mengontrol amplitudo getaran dan frekuensi alamiah dari sistem tersebut.

6. Sebagai faktor keamanan tambahan dibawah tumpuan jembatan dan atau pir, khususnya jika erosi merupakan persoalan yang potensial. 7. Dalam konstruksi lepas pantai untuk meneruskan beban-beban diatas

permukaan air melaui air dan kedalam tanah yang mendasari air tersebut. Hal seperti ini adalah mengenai tiang pancang yang ditanamkan sebagian dan yang terpengaruh oleh baik beban vertikal (dan tekuk) maupun beban lateral (Bowles, J. E., 1991).

(3)

2.2. Penyelidikan Tanah (Soil Investigation)

Dalam Perencanaan pondasi konstruksi bangunan diperlukan adanya penelitian untuk mengetahui parameter-parameter tanah yang akan digunakan dalam perhitungan daya dukung tanah pondasi. Daya dukung tanah sangat berpengaruh pada bentuk dan dimensi pondasi serta sistem perbaikan tanah agar diperoleh perencanaan yang optimal dan efisien.

Pondasi adalah suatu bagian konstruksi bangunan bawah (sub structure) yang berfungsi untuk meneruskan badan konstruksi atas (upper structure) yang harus kuat dan aman untuk mendukung beban dari konstruksi atas (upper structure) serta berat sendiri pondasi.

Untuk dapat memenuhi hal terssebut diatas, dilaksanakan penelitian tanah (soil investigation) di lapangan dan laboratorium untuk memperoleh parameter-parameter tanah berupa perlawanan ujung/konus (cone resistance) dan hambatan lekat (skin friction) yang di peroleh dari hasil pengujian sondir, jenis dan sifat tanah dari pengujian pengeboran tanah pondasi serta dari hasil pengujian Laboratorium yang digunakan dalam perhitungan daya dukung pondasi dan cara perbaikan tanah.

2.2.1. Sondering Test/Cone Penetration Test (CPT)

Pengujian CPT atau sondir adalah pengujian dengan menggunakan alat sondir type Dutch Cone Penetration yang mempunyai konus seluas 10 cm2, sudut lancip kerucut 60o untuk mengukur perlawanan ujung, dan dilengkapi mantel (sleave) yang berdiameter sama dengan konus dan luas selimut 100 cm2, untuk mengukur lekatan (friction) dari lapisan tanah. Alat ini digunakan dengan cara ditekan ke dalam tanah terus menerus dengan kecepatan maksimum 1 cm/detik,

(4)

sementara itu besarnya perlawanan tanah terhadap kerucut penetrasi (qc) juga terus diukur.

Dilihat dari kapasitasnya, alat sondir dapat dibedakan menjadi dua jenis, yaitu sondir ringan (2 ton) dan sondir berat (10 ton). Sondir ringan digunakan untuk mengukur tekanan konus sampai 150 kg/cm², atau kedalam maksimal 30 m, dipakai untuk penyelidikan tanah yang terdiri dari lapisan lempung, lanau dan pasir halus. Sondir berat dapat mengukur tekanan konus 500 kg/cm² atau kedalaman maksimal 50 m, dipakai untuk penyelidikan tanah di daerah yang terdiri dari lempung padat, lanau padat dan pasir kasar.

Keuntungan utama dari penggunaan alat ini adalah tidak perlu diadakan pemboran tanah untuk penyelidikan. Tetapi tidak seperti pada pengujian SPT, dengan alat sondir sampel tanah tidak dapat diperoleh untuk penyelidikan langsung ataupun untuk uji laboratorium. Tujuan dari pengujian sondir ini adalah untuk mengetahui perlawanan penetrasi konus dan hambatan lekat tanah yang merupakan indikator dari kekuatan tanahnya dan juga dapat menentukan dalamnya berbagai lapisan tanah yang berbeda.

Dari alat penetrometer yang lazim dipakai, sebagian besar mempunyai selubung geser (bikonus) yang dapat bergerak mengikuti kerucut penetrasi tersebut. Jadi pembacaan harga perlawanan ujung konus dan harga hambatan geser dari tanah dapat dibaca secara terpisah. Ada 2 tipe ujung konus pada sondir mekanis yaitu pada (Gambar 2. 1) :

(5)

(a). Konus (b). Bikonus

Gambar 2.1 Dimensi Alat Sondir Mekanis (Sardjono, 1991)

1. Konus biasa, yang diukur adalah perlawanan ujung konus dan biasanya digunakan pada tanah yang berbutir kasar, dimana besar perlawanan lekatnya kecil;

2. Bikonus, yang diukur adalah perlawanan ujung konus dan hambatan lekatnya dan biasanya digunakan pada tanah yang berbutir halus.

Hasil penyelidikan dengan alat sondir ini pada umumnya digambarkan dalam bentuk grafik yang menyatakan hubungan antara kedalaman setiap lapisan tanah dengan besarnya nilai sondir yaitu perlawanan penetrasi konus atau perlawanan tanah terhadap ujung konus yang dinyatakan dalam gaya per satuan luas. Hambatan lekat adalah perlawanan geser tanah terhadap selubung bikonus

(6)

jumlah perlawanan (JP) dan nilai perlawanan konus (PK), sehingga hambatan lekat (HL) dapat dihitung sebagai berikut :

1. Hambatan Lekat (HL) B A x PK JP HL(  ) ... (2.1) 2. Jumlah Hambatan Lekat (JHL)

  n i JHL JHL 0 ... (2.2) dimana :

JP = Jumlah perlawanan, perlawanan ujung konus + selimut (kg/cm²) PK = Perlawanan penetrasi konus, qc (kg/cm²)

A = Interval pembacaan (setiap kedalaman 20 cm) B = Faktor alat = luas konus/luas torak = 10 cm I = Kedalaman lapisan tanah yang ditinjau (m)

Data sondir tersebut digunakan untuk mengidentifikasikan dari profil tanah terhadap kedalaman. Hasil akhir dari pengujian sondir ini dibuat dengan menggambarkan variasi tahanan ujung (qc) dengan gesekan selimut (fs) terhadap kedalamannya. Bila hasil sondir diperlukan untuk mendapatkan daya dukung tiang, maka diperlukan harga kumulatif gesekan (jumlah hambatan lekat), yaitu dengan menjumlahkan harga gesekan selimut terhadap kedalaman, sehingga pada kedalaman yang ditinjau dapat diperoleh gesekan total yang dapat digunakan untuk menghitung gesekan pada kulit tiang.

Besaran gesekan kumulatif (total friction) diadaptasikan dengan sebutan jumlah hambatan lekat (JHL). Bila hasil sondir digunakan untuk klasifikasi tanah,

(7)

maka cara pelaporan hasil sondir yang diperlukan adalah menggambarkan tahanan ujung (qc), gesekan selimut (fs) dan ratio gesekan (fR) terhadap kedalaman tanah. 2.2.2. Standard Penetration Test (SPT)

Standard Penetration Test (SPT) sering digunakan untuk mendapatkan

daya dukung tanah secara langsung di lokasi. Metode SPT merupakan percobaan dinamis yang dilakukan dalam suatu lubang bor dengan memasukkan tabung sampel yang berdiameter dalam 35 mm sedalam 305 mm dengan menggunakan massa pendorong (palu) seberat 63, 5 kg yang jatuh bebas dari ketinggian 760 mm. Banyaknya pukulan palu tersebut untuk memasukkan tabung sampel sedalam 305 mm dinyatakan sebagai nilai N.

Tujuan dari percobaan SPT ini adalah untuk menentukan kepadatan relatif lapisan tanah dari pengambilan contoh tanah dengan tabung sehingga diketahui jenis tanah dan ketebalan tiap-tiap lapisan kedalaman tanah dan untuk memperoleh data yang kualitatif pada perlawanan penetrasi tanah serta menetapkan kepadatan dari tanah yang tidak berkohesi yang biasa sulit dia mbil sampelnya. Percobaan SPT ini dilakukan dengan cara sebagai berikut :

1. Siapkan peralatan SPT yang dipergunakan seperti : mesin bor, batang bor, split spoon sampler, hammer, dan lain – lain;

2. Letakkan dengan baik penyanggah tempat bergantungnya beban penumbuk;

3. Lakukan pengeboran sampai kedalaman testing, lubang dibersihkan dari kotoran hasil pengeboran dari tabung segera dipasangkan pada bagian dasar lubang bor;

(8)

5. Dengan pertolongan mesin bor, tumbuklah batang bor ini dengan pukulan palu seberat 63,5 kg dan ketinggian jatuh 76 cm hingga kedalaman tersebut, dicatat jumlah pukulan untuk memasukkan penetrasi setiap 15 cm (N value);

Contoh : N1 = 10 pukulan/15 cm N2 = 5 pukulan/15 cm N3 = 8 pukulan/15 cm

Maka total jumlah pukulan adalah jumlah N2 dengan N3 adalah 5 + 8 = 13 pukulan = nilai N. N1 tidak diperhitungkan karena dianggap 15 cm pukulan pertama merupakan sisa kotoran pengeboran yang tertinggal pada dasar lubang bor, sehingga perlu dibersihkan untuk memperkecil efisiensi gangguan;

6. Hasil pengambilan contoh tanah dari tabung tersebut dibawa ke permukaan dan dibuka. Gambarkan contoh jenis - jenis tanah yang meliputi komposisi, struktur, konsistensi, warna dan kemudian masukkan ke dalam botol tanpa dipadatkan atau kedalaman plastik, lalu ke core box; 7. Gambarkan grafik hasil percobaan SPT;

Catatan : Pengujian dihentikan bila nilai SPT ≥ 50 untuk 4x interval.

2.3. Macam-macam Pondasi

Pondasi adalah bagian terendah bangunan yang meneruskan beban bangunan ke tanah atau batuan yang berada dibawahnya. Klasifikasi pondasi dibagi 2 (dua) yaitu:

(9)

a. Pondasi dangkal

Pondasi dangkal adalah pondasi yang mendukung beban secara langsung seperti :

1. Pondasi telapak yaitu pondasi yang berdiri sendiri dalam mendukung kolom (Gambar 2.2b).

2. Pondasi memanjang yaitu pondasi yang digunakan untuk mendukung sederetan kolom yang berjarak dekat sehingga bila dipakai pondasi telapak sisinya akan terhimpit satu sama lainnya (Gambar 2.2a).

3. Pondasi rakit (raft foundation) yaitu pondasi yang digunakan untuk mendukung bangunan yang terletak pada tanah lunak atau digunakan bila susunan kolom-kolom jaraknya sedemikian dekat disemua arahnya, sehingga bila dipakai pondsi telapak, sisi-sisinya berhimpit satu sama lainnya (Gambar 2.2c).

b. Pondasi dalam

Pondasi dalam adalah pondasi yang meneruskan beban bangunan ke tanah keras atau batu yang terletak jauh dari permukaan, seperti:

1. Pondasi sumuran (pier foundation) yaitu pondasi yang merupakan peralihan antara pondasi dangkal dan pondsi tiang (Gambar 2.2d), digunakan bila tanah dasar yang kuat terletak pada kedalaman yang relatif dalam, dimana pondasi sumuran Df/B > 4 sedangkan pondasi dangkal Df/B ≤ 1, kedalaman (Df) dan lebar (B).

(10)

2. Pondasi tiang (pile foundation), digunakan bila tanah pondasi pada kedalaman yang normal tidak mampu mendukung bebannya dan tanah kerasnya terletak pada kedalaman yang sangat dalam (Gambar 2.2e). Pondasi tiang umumnya berdiameter lebih kecil dan lebih panjang dibanding dengan pondasi sumuran (Bowles, J. E., 1991).

Gambar 2.2. Macam-macam tipe pondasi: (a) Pondasi memanjang, (b) Pondasi telapak , (c) Pondasi rakit, (d) Pondasi sumuran, (e) Pondasi tiang (Hardiyatmo, H. C.,1996)

(a) (b)

(c)

(11)

2.4. Penggolongan Pondasi Tiang Pancang

Pondasi tiang pancang dapat digolongkan berdasarkan pemakaian bahan, cara tiang meneruskan beban dan cara pemasangannya, berikut ini akan dijelaskan satu persatu.

1. Pondasi tiang pancang menurut pemakaian bahan dan karakteristik strukturnya

Tiang pancang dapat dibagi kedalam beberapa kategori (Bowles, J. E., 1991), antara lain :

A. Tiang pancang kayu

Tiang pancang kayu dibuat dari kayu yang biasanya diberi pengawet dan dipancangkan dengan ujungnya yang kecil sebagai bagian yang runcing. Tapi biasanya apabila ujungnya yang besar atau pangkal dari pohon di pancangkan untuk tujuan maksud tertentu, seperti dalam tanah yang sangat lembek dimana tanah tersebut akan kembali memberikan perlawanan dan dengan ujungnya yang tebal terletak pada lapisan yang keras untuk daya dukung yang lebih besar.

Tiang pancang kayu akan tahan lama dan tidak mudah busuk apabila tiang pancang kayu tersebut dalam keadaan selalu terendam penuh dibawah muka air tanah dan tiang pancang kayu akan lebih cepat rusak apabila dalam keadaan kering dan basah selalu berganti-ganti, sedangkan pengawetan dengan pemakaian obat pengawet pada kayu hanya akan menunda dan memperlambat kerusakan dari kayu, dan tidak dapat melindungi kayu dalam jangka waktu yang lama.

Oleh karena itu pondasi untuk bangunan-bangunan permanen (tetap) yang didukung oleh tiang pancang kayu, maka puncak dari pada tiang pancang kayu tersebut diatas harus selalu lebih rendah dari pada ketinggian dari pada muka air

(12)

tanah terendah. Pada pemakaian tiang pancang kayu biasanya tidak diizinkan untuk menahan muatan lebih tinggi 25 sampai 30 ton untuk satu tiang.

B. Tiang pancang beton

Tiang pancang jenis ini terbuat dari beton seperti biasanya. Tiang pancang ini dapat dibagi dalam 3 macam berdasarkan cara pembuatannya (Bowles, J. E., 1991), yaitu:

a. Precast Reinforced Concrete Pile

Precast Reinforced Concrete Pile adalah tiang pancang beton bertulang yang

dicetak dan dicor dalam acuan beton (bekisting) yang setelah cukup keras kemudian diangkat dan dipancangkan. Karena tegangan tarik beton kecil dan praktis dianggap sama dengan nol, sedangkan berat sendiri beton besar, maka tiang pancang ini harus diberikan penulangan yang cukup kuat untuk menahan momen lentur yang akan timbul pada waktu pengangkatan dan pemancangan.

Tiang pancang ini dapat memikul beban yang lebih besar dari 50 ton untuk setiap tiang, hal ini tergantung pada jenis beton dan dimensinya. Precast Reinforced Concrete Pile penampangnya dapat berupa lingkaran, segi empat, segi

(13)

b. Precast Prestressed Concrete Pile

Tiang pancang Precast Prestressed Concrete Pile adalah tiang pancang beton yang dalam pelaksanaan pencetakannya sama seperti pembuatan beton prestess, yaitu dengan menarik besi tulangannya ketika dicor dan dilepaskan setelah beton mengeras seperti dalam (Gambar 2.5). Untuk tiang pancang jenis ini biasanya dibuat oleh pabrik yang khusus membuat tiang pancang, untuk ukuran dan panjangnya dapat dipesan langsung sesuai dengan yang diperlukan.

Gambar 2.4 Tiang pancang Precast Prestressed Concrete Pile (Bowles, J. E., 1991)

c. Cast in Place

Cast in Place merupakan tiang pancang yang dicor ditempat dengan cara

membuat lubang ditanah terlebih dahulu dengan cara melakukan pengeboran. Pada Cast in Place ini dapat dilakukan dengan 2 cara yaitu :

1. Dengan pipa baja yang dipancangkan ke dalam tanah, kemudian diisi dengan beton dan ditumbuk sambil pipa baja tersebut ditarik keatas.

(14)

2. Dengan pipa baja yang dipancang ke dalam tanah, kemudian diisi dengan beton sedangkan pipa baja tersebut tetap tinggal di dalam tanah.

Gambar 2.5 Tiang pancang Cast in place pile (Sardjono, 1991)

C. Tiang pancang baja

Kebanyakan tiang pancang baja ini berbentuk profil H. Karena terbuat dari baja maka kekuatan dari tiang ini sendiri sangat besar sehingga dalam pengangkutan dan pemancangan tidak menimbulkan bahaya patah seperti halnya pada tiang beton precast. Jadi pemakaian tiang pancang baja ini akan sangat bermanfaat apabila kita memerlukan tiang pancang yang panjang dengan tahanan ujung yang besar.

Tingkat karat pada tiang pancang baja sangat berbeda-beda terhadap tekstur tanah, panjang tiang yang berada dalam tanah dan keadaan kelembaban tanah.

(15)

a. Pada tanah yang memiliki tekstur tanah yang kasar/kesap, maka karat yang terjadi karena adanya sirkulasi air dalam tanah tersebut hampir mendekati keadaan karat yang terjadi pada udara terbuka;

b. Pada tanah liat ( clay ) yang mana kurang mengandung oksigen maka akan menghasilkan tingkat karat yang mendekati keadaan karat yang terjadi karena terendam air;

c. Pada lapisan pasir yang dalam letaknya dan terletak dibawah lapisan tanah yang padat akan sedikit sekali mengandung oksigen maka lapisan pasir tersebut juga akan akan menghasilkan karat yang kecil sekali pada tiang pancang baja.

Pada umumnya tiang pancang baja akan berkarat di bagian atas yang dekat dengan permukaan tanah. Hal ini disebabkan karena Aerated-Condition ( keadaan udara pada pori-pori tanah ) pada lapisan tanah tersebut dan adanya bahan-bahan organis dari air tanah. Hal ini dapat ditanggulangi dengan memoles tiang baja tersebut dengan ter ( coaltar ) atau dengan sarung beton sekurang-kurangnya 20” ( ± 60 cm ) dari muka air tanah terendah.

Karat/korosi yang terjadi karena udara (atmosphere corrosion) pada bagian tiang yang terletak di atas tanah dapat dicegah dengan pengecatan seperti pada konstruksi baja biasa.

(16)

Gambar 2.6 Tiang pancang baja (Sardjono, 1991)

D. Tiang pancang komposit

Tiang pancang komposit adalah tiang pancang yang terdiri dari dua bahan yang berbeda yang bekerja bersama-sama sehingga merupakan satu tiang. Kadang-kadang pondasi tiang dibentuk dengan menghubungkan bagian atas dan bagian bawah tiang dengan bahan yang berbeda, misalnya dengan bahan beton di atas muka air tanah dan bahan kayu tanpa perlakuan apapun disebelah bawahnya. Biaya dan kesulitan yang timbul dalam pembuatan sambungan menyebabkan cara ini diabaikan.

1. Water Proofed Steel and Wood Pile.

Tiang ini terdiri dari tiang pancang kayu untuk bagian yang di bawah permukaan air tanah sedangkan bagian atas adalah beton. Kita telah mengetahui bahwa kayu akan tahan lama/awet bila terendam air, karena itu bahan kayu disini diletakan di bagian bawah yang mana selalu terletak dibawah air tanah.

(17)

Kelemahan tiang ini adalah pada tempat sambungan apabila tiang pancang ini menerima gaya horizontal yang permanen. Adapun cara pelaksanaanya secara singkat sebagai berikut:

a. Casing dan core ( inti ) dipancang bersama-sama dalam tanah hingga mencapai kedalaman yang telah ditentukan untuk meletakan tiang pancang kayu tersebut dan ini harus terletak dibawah muka air tanah yang terendah.

b. Kemudian core ditarik keatas dan tiang pancang kayu dimasukan dalam casing dan terus dipancang sampai mencapai lapisan tanah keras.

c. Secara mencapai lapisan tanah keras pemancangan dihentikan dan core ditarik keluar dari casing. Kemudian beton dicor kedalam casing sampai penuh terus dipadatkan dengan menumbukkan core ke dalam casing. 2. Composite Dropped in – Shell and Wood Pile

Tipe tiang ini hampir sama dengan tipe diatas hanya bedanya di sini memakai shell yang terbuat dari bahan logam tipis permukaannya di beri alur spiral. Secara singkat pelaksanaanya sebagai berikut:

a. Casing dan core dipancang bersama-sama sampai mencapai kedalaman yang telah ditentukan di bawah muka air tanah.

b. Setelah mencapai kedalaman yang dimaksud core ditarik keluar dari casing dan tiang pancang kayu dimasukkan dalam casing terus dipancang sampai mencapai lapisan tanah keras. Pada pemancangan tiang pancang kayu ini harus diperhatikan benar-benar agar kepala tiang tidak rusak atau pecah.

(18)

d. Kemudian shell berbentuk pipa yang diberi alur spiral dimasukkan dalam casing. Pada ujung bagian bawah shell dipasang tulangan berbentuk sangkar yang mana tulangan ini dibentuk sedemikian rupa sehingga dapat masuk pada ujung atas tiang pancang kayu tersebut. e. Beton kemudian dicor kedalam shell. Setelah shell cukup penuh dan

padat casing ditarik keluar sambil shell yang telah terisi beton tadi ditahan terisi beton tadi ditahan dengan cara meletakkan core diujung atas shell.

3. Composit Ungased – Concrete and Wood Pile. Dasar pemilihan tiang composit tipe ini adalah:

 Lapisan tanah keras dalam sekali letaknya sehingga tidak memungkinkan untuk menggunakan cast in place concrete pile, sedangkan kalau menggunakan precast concrete pile terlalu panjang, akibatnya akan susah dalam transport dan mahal.

 Muka air tanah terendah sangat dalam sehingga bila menggunakan tiang pancang kayu akan memerlukan galian yang cukup dalam agar tiang pancang kayu tersebut selalu berada dibawah permukaan air tanah terendah.

Adapun prinsip pelaksanaan tiang composite ini adalah sebagai berikut: a. Casing baja dan core dipancang bersama-sama dalam tanah sehingga

sampai pda kedalaman tertentu ( di bawah m.a.t )

b. Core ditarik keluar dari casing dan tiang pancang kayu dimasukkan casing terus dipancang sampai kelapisan tanah keras.

(19)

c. Setelah sampai pada lapisa tanah keras core dikeluarkan lagi dari casing dan beton sebagian dicor dalam casing. Kemudian core dimasukkan lagi dalam casing.

d. Beton ditumbuk dengan core sambil casing ditarik ke atas sampai jarak tertentu sehingga terjadi bentuk beton yang menggelembung seperti bola diatas tiang pancang kayu tersebut.

e. Core ditarik lagi keluar dari casing dan casing diisi dengan beton lagi sampai padat setinggi beberapa sentimeter diatas permukaan tanah. Kemudian beton ditekan dengan core kembali sedangkan casing ditarik keatas sampai keluar dari tanah.

f. Tiang pancang composit telah selesai

Tiang pancang composit seperti ini sering dibuat oleh The Mac Arthur Concrete Pile Corp.

4. Composite Dropped – Shell and Pipe Pile Dasar pemilihan tipe tiang seperti ini adalah:

 Lapisan tanah keras letaknya terlalu dalam bila digunakan cast in place concrete.

 Muka air tanah terendah terlalu dalam kalau digunakan tiang composit yang bagian bawahnya terbuat dari kayu.

Cara pelaksanaan tiang tipe ini adalah sebagai berikut:

a. Casing dan core dipasang bersama-sama sehingga casing seluruhnya masuk dalam tanah. Kemudian core ditarik.

(20)

b. Tiang pipa baja dengan dilengkapi sepatu pada ujung bawah dimasukkan dalam casing terus dipancang dengan pertolongan core sampai ke tanah keras.

c. Setelah sampai pada tanah keras kemudian core ditarik keatas kembli. d. Kemudian shell yang beralur pada dindingnya dimasukkan dalam casing

hingga bertumpu pada penumpu yang terletak diujung atas tiang pipa baja.bila diperlukan pembesian maka besi tulangan dimasukkan dalam shell dan kemudian beton dicor sampai padat.

e. Shell yang telah terisi dengan beton ditahan dengan core sedangkan casing ditarik keluar dari tanah. Lubang disekeliling shell diisi dengan tanah atau pasir. Variasi lain pada tipe tiang ini dapat pula dipakai tiang pemancang baja H sebagai ganti dari tiang pipa.

5. Franki Composite Pile

Prinsip tiang hampir sama dengan tiang franki biasa hanya bedanya disini pada bagian atas dipergunakan tiang beton precast biasa atau tiang profil H dari baja.

Adapun cara pelaksanaan tiang composit ini adalah sebagai berikut:

a. Pipa dengan sumbat beton dicor terlebih dahulu pada ujung bawah pipa baja dipancang dalam tanah dengan drop hammer sampai pada tanah keras. Cara pemasangan ini sama seperti pada tiang franki bias.

b. Setelah pemancangan sampai pada kedalaman yang telah direncanakan, pipa diisi lagi dengan beton dan terus ditumbuk dengan drop hammer sambil pipa ditarik lagi ke atas sedikit sehingga terjadi bentuk beton seperti bola.

(21)

c. Setelah tiang beton precast atau tiang baja H masuk dalam pipa sampai bertumpu pada bola beton pipa ditarik keluar dari tanah.

d. Rongga disekitar tiang beton precast atau tiang baja H diisi dengan kerikil atau pasir.

2. Pondasi tiang pancang menurut pemasangannya

Pondasi tiang pancang menurut cara pemasangannya dibagi dua bagian besar, yaitu :

A. Tiang pancang pracetak

Tiang pancang pracetak adalah tiang pancang yang dicetak dan dicor didalam acuan beton (bekisting), kemudian setelah cukup kuat lalu diangkat dan dipancangkan. Tiang pancang pracetak ini menurut cara pemasangannya terdiri dari :

1. Cara penumbukan, dimana tiang pancang tersebut dipancangkan kedalam tanah dengan cara penumbukan oleh alat penumbuk (hammer).

2. Cara penggetaran, dimana tiang pancang tersebut dipancangkan kedalam tanah dengan cara penggetaran oleh alat penggetar (vibrator).

3. Cara penanaman, dimana permukaan tanah dilubangi terlebih dahulu sampai kedalaman tertentu, lalu tiang pancang dimasukkan, kemudian lubang tadi ditimbun lagi dengan tanah.

Cara penanaman ini ada beberapa metode yang digunakan:

a. Cara pengeboran sebelumnya, yaitu dengan cara mengebor tanah sebelumnya lalu tiang dimasukkan kedalamnya dan ditimbun kembali. b. Cara pengeboran inti, yaitu tiang ditanamkan dengan mengeluarkan tanah

(22)

c. Cara pemasangan dengan tekanan, yaitu tiang dipancangkan kedalam tanah dengan memberikan tekanan pada tiang.

d. Cara pemancaran, yaitu tanah pondasi diganggu dengan semburan air yang keluar dari ujung serta keliling tiang, sehingga tidak dapat dipancangkan kedalam tanah.

B. Tiang yang dicor ditempat (cast in place pile)

Tiang yang dicor ditempat (cast in place pile) ini menurut teknik penggaliannya terdiri dari beberapa macam cara yaitu :

1. Cara penetrasi alas, yaitu pipa baja yang dipancangkan kedalam tanah kemudian pipa baja tersebut dicor dengan beton.

2. Cara penggalian, cara ini dapat dibagi lagi urut peralatan pendukung yang digunakan antara lain :

a. Penggalian dengan tenaga manusia, penggalian lubang pondasi tiang pancang dengan tenaga manusia adalah penggalian lubang pondasi yang masih sangat sederhana dan merupakan cara konvensional. Hal ini dapat dilihat dengan cara pembuatan pondasi dalam, yang pada umumnya hanya mampu dilakukan pada kedalaman tertentu.

b. Penggalian dengan tenaga mesin, penggalian lubang pondasi tiang pancang dengan tenaga mesin adalah penggalian lubang pondasi dengan bantuan tenaga mesin, yang memiliki kemampuan lebih baik dan lebih canggih.

2.5. Alat Tiang Pancang

Dalam pemasangan tiang kedalam tanah, tiang dipancang dengan alat pemukul yang dapat berupa pemukul (hammer) mesin uap, pemukul getar atau

(23)

pemukul yang hanya dijatuhkan. Skema dari berbagai macam alat pemukul diperlihatkan dalam Gambar 2.7a sampai dengan 2.7d. Pada gambar terebut diperlihatkan pula alat-alat perlengkapan pada kepala tiang dalam pemancangan. Penutup (pile cap) biasanya diletakkan menutup kepala tiang yang kadang-kadang dibentuk dalam geometri tertutup.

A. Pemukul Jatuh (drop hammer)

Pemukul jatuh terdiri dari blok pemberat yang dijatuhkan dari atas. Pemberat ditarik dengan tinggi jatuh tertentu kemudian dilepas dan menumbuk tiang. Pemakaian alat tipe ini membuat pelaksanaan pemancangan berjalan lambat, sehingga alat ini hanya dipakai pada volume pekerjaan pemancangan yang kecil

B. Pemukul Aksi Tiang (single-acting hammer)

Pemukul aksi tunggal berbentung memanjang dengan ram yang bergerak naik oleh udara atau uap yang terkompresi, sedangkan gerakan turun ram disebabkan oleh beratnya sendiri. Energi pemukul aksi tunggal adalah sama dengan berat ram dikalikan tinggi jatuh (Gambar 2.7a).

(24)

(c) (d)

Gambar 2.7 Skema pemukul tiang : (a) Pemukul aksi tunggal (single acting hammer), (b) Pemukul aksi double (double acting hammer), (c) Pemukul diesel (diesel hammer), (d) Pemukul getar (vibratory hammer) (Hardiyatmo, H. C., 2006)

C. Pemukul Aksi Double (double-acting hammer)

Pemukul aksi double menggunakan uap atau udara untuk mengangkat ram dan untuk mempercepat gerakan ke bawahnya (Gambar 2.7b). Kecepatan pukulan dan energi output biasanya lebih tinggi daripada pemukul aksi tunggal.

D. Pemukul Diesel (diesel hammer)

Pemukul diesel terdiri dari silinder, ram, balok anvil dan sistem injeksi bahan bakar. Pemukul tipe ini umumnya kecil, ringan dan digerakkan dengan menggunakan bahan bakar minyak. Energi pemancangan total yang dihasilkan adalah jumlah benturan dari ram ditambah energi hasil dari ledakan (Gambar2.7c).

E. Pemukul Getar (vibratory hammer)

Pemukul getar merupakan unit alat pancang yang bergetar pada frekuensi tinggi (Gambar 2.7d).

(25)

2.6. Hidrolik Sistem

Hidrolik Sistem adalah suatu metode pemancangan pondasi tiang dengan menggunakan mekanisme hydraulic jacking foundation system, dimana sistem ini telah mendapatkan hak paten dari United States, United Kingdom, China dan New Zealand.

Sistem ini terdiri dari suatu hydraulic ram yang ditempatkan pararel dengan tiang yang akan dipancang, dimana untuk menekan tiang tersebut ditempatkan sebuah mekanisme berupa plat penekan yang berada pada puncak tiang dan juga ditempatkan sebuah mekanisme pemegang (grip) tiang, kemudian tiang ditekan ke dalam tanah. Dengan sistem ini tiang akan tertekan secara kontiniu ke dalam tanah, tanpa suara, tanpa pukulan dan tanpa getaran.

Penempatan sistem penekan hydraulic yang senyawa dan menjepit pada dua sisi tiang menyebabkan didapatkannya posisi titik pancang yang cukup presisi dan akurat. Ukuran diameter piston mesin hydraulic jack tergantung dengan besar kapasitas daya dukung mesin tersebut. Sebagai pembebanan, ditempatkan balok – balok beton atau plat – plat besi pada dua sisi bantalan alat yang pembebanannya disesuaikan dengan muatan yang dibutuhkan tiang.

Keunggulan teknologi hidrolik sistem ini yang ditinjau dari beberapa segi, antara lain adalah :

1. Bebas getaran

Bila suatu proyek yang akan dikerjakan berdampingan dengan bangunan, pabrik atau instansi yang sarat akan peralatan instrumentasi yang sedang bekerja, maka teknologi hydraulic jacking system ini akan menyelesaikan masalah wajib bebas getaran terhadap instalasi yang ada tersebut.

(26)

2. Bebas pengotoran lokasi kerja dan udara serta bebas dari kebisingan Teknologi pemancangannya bersih dari asap dan partikel debu (jika menggunakan drop hammer) serta bebas dari unsur berlumpur (jika menggunakan bore piles). Karena sistem ini juga tidak bising akibat suara pukulan pancang (seperti pada drop hammer), maka untuk lokasi yang membutuhkan ketenangan seperti rumah sakit, sekolah dan bangunan di tengah kota, teknologi ini tidak akan membuat lingkungan sekitarnya terganggu. hydraulic jacking system ini juga disebut dengan teknologi berwawasan lingkungan (environment friendly).

3. Daya dukung aktual per tiang diketahui

Seperti kita ketahui bahwa kondisi tanah asli di bawah pondasi yang akan dibangun umumnya terdiri dari lapisan – lapisan yang berbeda ketebalannya, jenis tanah maupun daya dukungnya. Dengan hydraulic jacking system, daya dukung setiap tiang dapat diketahui dan dimonitor

langsung dari manometeryang dipasang pada peralatan hydraulic jacking system sepanjang proses pemancangan berlangsung.

4. Harga yang ekonomis

Teknologi hydraulic jacking ini tidak memerlukan pemasangan tulangan ekstra penahan impack pada kepala tiang pancang seperti pada tiang pancang umumnya. Disamping itu, dengan sistem pemancangan yang simpel dan cepat menyebabkan biaya operasional yang lebih hemat. 5. Lokasi kerja yang terbatas

Dengan tinggi alat yang relatif rendah, hydraulic jacking system ini dapat digunakan pada basement, ground floor atau lokasi kerja yang terbatas,

(27)

Alat hydraulic jacking system ini dapat dipisahkan menjadi beberapa komponan sehingga memudahkan untuk dapat dibawa masuk atau keluar lokasi kerja.

Kekurangan dari teknologi, hydraulic jacking system antara lain adalah : 1. Apabila terdapat batu atau lapisan tanah keras yang tipis pada ujung tiang

yang ditekan, maka hal tersebut akan mengakibatkan kesalahan pada saat pemancangan;

2. Sulitnya mobilisasi alat pada daerah lunak ataupun pada daerah berlumpur (biasanya pada areal tanah timbunan);

3. Karena hydraulic jacking ini mempunyai berat sekitar 320 ton dan saat permukaan tanah yang tidak sama daya dukungnya, maka hal tersebut akan dapat mengakibatkan posisi alat pancang menjadi miring bahkan tumbang. Kondisi ini akan sangat berbahaya terhadap keselamatan pekerja;

4. Pergerakan alat hydraulic jacking ini sedikit lambat, proses pemindahannya relatif lama untuk pemancangan titik yang berjauhan.

2.7. Metode Pelaksanaan Pondasi Tiang Pancang

Aspek teknologi sangat berperan dalam suatu proyek konstruksi. Umumnya, aplikasi teknologi ini banyak diterapkan dalam metode pelaksanaan pekerjaan konstruksi. Penggunaan metode yang tepat, praktis, cepat dan aman, sangat membantu dalam penyelesaian pekerjaan pada suatu proyek konstruksi. Sehingga target waktu, biaya dan mutu sebagaimana ditetapkan dapat tercapai.

(28)

A. Pekerjaan Persiapan

1. Membubuhi tanda, tiap tiang pancang harus dibubuhi tanda serta tanggal saat tiang tersebut dicor. Titik-titik angkat yang tercantum pada gambar harus dibubuhi tanda dengan jelas pada tiang pancang. Untuk mempermudah perekaan, maka tiang pancang diberi tanda setiap 1 meter.

2. Pengangkatan/pemindahan, tiang pancang harus dipindahkan/diangkat dengan hati-hati sekali guna menghindari retak maupun kerusakan lain yang tidak diinginkan.

3. Rencanakan final set tiang, untuk menentukan pada kedalaman mana pemancangan tiang dapat dihentikan, berdasarkan data tanah dan data jumlah pukulan terakhir (final set).

4. Rencanakan urutan pemancangan, dengan pertimbangan kemudahan manuver alat. Lokasi stock material agar diletakkan dekat dengan lokasi pemancangan. 5. Tentukan titik pancang dengan theodolith dan tandai dengan patok.

6. Pemancangan dapat dihentikan sementara untuk peyambungan batang berikutnya bila level kepala tiang telah mencapai level muka tanah sedangkan level tanah keras yang diharapkan belum tercapai.

Proses penyambungan tiang :

a. Tiang diangkat dan kepala tiang dipasang pada helmet seperti yang dilakukan pada batang pertama.

b. Ujung bawah tiang didudukkan diatas kepala tiang yang pertama sedemikian sehingga sisi-sisi pelat sambung kedua tiang telah berhimpit dan menempel menjadi satu.

(29)

7. Selesai penyambungan, pemancangan dapat dilanjutkan seperti yang dilakukan pada batang pertama. Penyambungan dapat diulangi sampai mencapai kedalaman tanah keras yang ditentukan.

8. Pemancangan tiang dapat dihentikan bila ujung bawah tiang telah mencapai lapisan tanah keras/final set yang ditentukan.

9. Pemotongan tiang pancang pada cut off level yang telah ditentukan.

B. Proses Pemancangan

1. Alat pancang ditempatkan sedemikian rupa sehingga as hammer jatuh pada patok titik pancang yang telah ditentukan.

2. Tiang diangkat pada titik angkat yang telah disediakan pada setiap lubang. 3. Tiang didirikan disamping driving lead dan kepala tiang dipasang pada helmet

yang telah dilapisi kayu sebagai pelindung dan pegangan kepala tiang.

4. Ujung bawah tiang didudukkan secara cermat diatas patok pancang yang telah ditentukan.

5. Penyetelan vertikal tiang dilakukan dengan mengatur panjang backstay sambil diperiksa dengan waterpass sehingga diperoleh posisi yang betul-betul vertikal. Sebelum pemancangan dimulai, bagian bawah tiang diklem dengan center gate pada dasar driving lead agar posisi tiang tidak bergeser selama

pemancangan, terutama untuk tiang batang pertama.

6. Pemancangan dimulai dengan mengangkat dan menjatuhkan hammer secara kontinyu ke atas helmet yang terpasang diatas kepala tiang.

C. Metodepengangkatan tiang pancang

(30)

Metode pengangkatan dengan dua tumpuan ini biasanya dilaksanakan pada saat penyusunan tiang pancang, baik itu dari pabrik ( PT. Wika Beton ) ke trailer ataupun dari Trailer ke penyusunan lapangan.

Persyaratan umum dari metode ini adalah jarak titik angkat dari kepala tiang adalah 1/5 L. Untuk mendapatkan jarak harus diperhatikan momen maksimum pada bentangan, haruslah sama dengan momen minimum pada titik angkat tiang sehingga dihasilkan momen yang sama.

Pada prinsipnya pengangkatan dengan dua tumpuan untuk tiang beton adalah dalam tanda pengangkatan dimana tiang beton pada titik angkat berupa kawat yang terdapat pada tiang beton yang telah ditentukan dan untuk lebih jelas dapat dilihat oleh gambar.

(31)

kepala tiang

permukaan tanah bantalan

titik angkat (garis rantai) Kabel baja pengangkat

Kabel baja pengangkat

1/5L 3/5L 1/5L

Gambar 2.8 Pengangkatan Tiang Dengan Dua tumpuan 2. Pengangkatan dengan satu tumpuan

Metode pengangkatan ini biasanya digunakan pada saat tiang sudah siap akan dipancang oleh mesin pemancangan sesuai dengan titik pemancangan yang telah ditentukan di lapangan.

Adapun persyaratan utama dari metode pengangkatan satu tumpuan ini adalah jarak antara kepala tiang dengan titik angker berjarak L/3. Untuk mendapatkan jarak ini, haruslah diperhatikan bahwa momen maksimum pada tempat pengikatan tiang sehingga dihasilkan nilai momen yang sama.

(32)
(33)

+

+

-+

Kepala tiang

Kabel baja pengangkat

Ujung tiang 1/3L 2/3L Permukaan tanah Diagram Lintang Diagram Momen

(34)

D. Quality Control

1. Kondisi fisik tiang

a. Seluruh permukaan tiang tidak rusak atau retak b. Umur beton telah memenuhi syarat

c. Kepala tiang tidak boleh mengalami keretakan selama pemancangan 2. Toleransi

Vertikalisasi tiang diperiksa secara periodik selama proses pemancangan berlangsung. Penyimpangan arah vertikal dibatasi tidak lebih dari 1:75 dan penyimpangan arah horizontal dibatasi tidak lebih dari 75 mm.

3. Penetrasi

Tiang sebelum dipancang harus diberi tanda pada setiap setengah meter di sepanjang tiang untuk mendeteksi penetrasi per setengah meter. Dicatat jumlah pukulan untuk penetrasi setiap setengah meter.

4. Final set

Pamancangan baru dapat dihentikan apabila telah dicapai final set sesuai perhitungan.

(a) (b) (c)

Gambar 2.11 Urutan pemancangan : (a) Pemancangan tiang, (b) Penyambungan tiang, (c) Calendering/final set

(35)

2.8. Tiang Dukung Ujung dan Tiang Gesek

Ditinjau dari cara mendukung beban, tiang dapat dibagi menjadi 2 (dua) macam (Hardiyatmo, H. C.,2002), yaitu :

1. Tiang dukung ujung (end bearing pile) adalah tiang yang kapasitas dukungnya ditentukan oleh tahanan ujung tiang. Umumnya tiang dukung ujung berada dalam zone tanah yang lunak yang berada diatas tanah keras. Tiang-tiang dipancang sampai mencapai batuan dasar atau lapisan keras lain yang dapat mendukung beban yang diperkirakan tidak mengakibatkan penurunan berlebihan. Kapasitas tiang sepenuhnya ditentukan dari tahanan dukung lapisan keras yang berada dibawah ujung tiang (Gambar 2.11a).

2. Tiang gesek (friction pile) adalah tiang yang kapasitas dukungnya lebih ditentukan oleh perlawanan gesek antara dinding tiang dan tanah disekitarnya (Gambar 2.11b). Tahanan gesek dan pengaruh konsolidasi lapisan tanah dibawahnya diperhitungkan pada hitungan kapasitas tiang.

(a) (b)

(36)

2.9. Kapasitas Daya Dukung

2.9.1. Kapasitas Daya Dukung Tiang Pancang dari Hasil Sondir

Diantara perbedaaan tes dilapangan, sondir atau cone penetration test (CPT) seringkali sangat dipertimbangkan berperanan dari geoteknik. CPT atau sondir ini tes yang sangat cepat, sederhana, ekonomis dan tes tersebut dapat dipercaya dilapangan dengan pengukuran terus-menerus dari permukaan tanah-tanah dasar. CPT atau sondir ini dapat juga mengklasifikasi lapisan tanah dan dapat memperkirakan kekuatan dan karakteristik dari tanah. Didalam perencanaan pondasi tiang pancang (pile), data tanah sangat diperlukan dalam merencanakan kapasitas daya dukung (bearing capacity) dari tiang pancang sebelum pembangunan dimulai, guna menentukan kapasitas daya dukung ultimit dari tiang pancang.

Untuk menghitung daya dukung tiang pancang berdasarkan data hasil pengujian sondir dapat dilakukan dengan menggunakan metode Aoki dan De Alencar dengan persamaan sebagai berikut :

Qu = Qb + Qs = qbAb + f.As ... …(2.3) dimana :

Qu = Kapasitas daya dukung aksial ultimit tiang pancang. Qb = Kapasitas tahanan di ujung tiang.

Qs = Kapasitas tahanan kulit.

qb = Kapasitas daya dukung di ujung tiang persatuan luas. Ab = Luas di ujung tiang.

f = Satuan tahanan kulit persatuan luas. A = Luas kulit tiang pancang.

(37)

Dalam menentukan kapasitas daya dukung aksial ultimit (Qu) dipakai Metode Aoki dan De Alencar.

Aoki dan Alencar mengusulkan untuk memperkirakan kapasitas dukung ultimit dari data Sondir. Kapasitas dukung ujung persatuan luas (qb) diperoleh sebagai berikut : qb = b ca F base q ( ) ... …(2.4) dimana :

qca (base) = Perlawanan konus rata-rata 1,5D diatas ujung tiang, 1,5D dibawah ujung tiang dan Fb adalah faktor empirik tergantung pada tipe tanah.

Tahanan kulit persatuan luas (f) diprediksi sebagai berikut : F = qc (side) s s F  ... …(2.5) dimana :

qc (side) = Perlawanan konus rata-rata pada masing lapisan sepanjang tiang.

Fs = Faktor empirik yang tergantung pada tipe tanah. Fb = Faktor empirik yang tergantung pada tipe tanah.

Faktor Fb dan Fs diberikan pada Tabel 2.1 dan nilai-nilai faktor empirik αs diberikan pada Tabel 2.1.

Tabel 2.1 Faktor empirik Fb dan Fs (Titi & Farsakh, 1999 )

Tipe Tiang Pancang Fb Fs

Tiang Bor 3,5 7,0

Baja 1,75 3,5

(38)

Tabel 2.2 Nilai faktor empirik untuk tipe tanah yang berbeda (Titi & Farsak1999 )

Tipe Tanah αs

(%) Tipe Tanah αs (%) Tipe Tanah αs (%)

Pasir 1,4 Pasir berlanau 2,2 Lempung

berpasir 2,4

Pasir kelanauan 2,0 Pasir berlanau

dengan lempung 2,8 Lempung berpasir dengan lanau 2,8 Pasir kelanauan dengan lempung 2,4 Lanau 3,0 Lempung berlanau dengan pasir 3,0 Pasir berlempung dengan lanau 2,8 Lanau berlempung dengan pasir 3,0 Lempung berlanau 4,0 Pasir berlempung 3,0 Lanau berlempung 3,4 Lempung 6,0

Pada umumnya nilai αs untuk pasir = 1,4 persen, nilai αs untuk lanau = 3,0 persen dan nilai αs untuk lempung = 6,0 persen.

Untuk menghitung daya dukung tiang pancang berdasarkan data hasil pengujian sondir dapat dilakukan dengan menggunakan metode Meyerhof.

Daya dukung ultimate pondasi tiang dinyatakan dengan rumus :

Qult = (qc x Ap)+(JHL x K11) ... …(2.6) dimana :

Qult = Kapasitas daya dukung tiang pancang tunggal. qc = Tahanan ujung sondir.

(39)

JHL = Jumlah hambatan lekat. K11 = Keliling tiang.

Daya dukung ijin pondasi dinyatakan dengan rumus : Qijin = 5 3 11 JHLxK xA qc c ... …(2.7) dimana :

Qijin = Kapasitas daya dukung ijin pondasi. qc = Tahanan ujung sondir.

Ap = Luas penampang tiang. JHL = Jumlah hambatan lekat. K11 = Keliling tiang.

2.9.2. Kapasitas Daya Dukung Tiang Pancang dari Hasil SPT

Standard Penetration Test (SPT) adalah sejenis percobaan dinamis dengan memasukkan suatu alat yang dinamakan split spoon kedalam tanah. Dengan percobaan ini akan diperoleh kepadatan relatif (relative density), sudut geser tanah (Ф) berdasarkan nilai jumlah pukulan (N). Hubungan kepadatan relatif, sudut geser tanah dan nilai N dari pasir dapat dilihat pada tabel dibawah ini.

Tabel 2.3 Hubungan Dr, Ф dan N dari pasir (Mekanika Tanah & Teknik Pondasi, Sosrodarsono Suyono Ir, 1983)

Nilai N Kepadatan Relative (Dr)

Sudut Geser Dalam Menurut Peck Menurut Meyerhof 0-4 0,0-0,2 Sangat lepas < 28,5 < 30 4-10 0,2-0,4 Lepas 28,5-30 30-35 10-30 0,4-0,6 Sedang 30-36 35-40

(40)

30-50 0,6-0,8 Padat 36-41 40-45 > 50 0,8-1,0 Sangat Padat < 41 > 45

Hasil uji SPT yang diperoleh dari lapangan perlu dilakukan koreksi. Pada data uji SPT terdapat dua jenis koreksi, yaitu koreksi efisiensi alat (cara pengujian) dan koreksi tegangan overburden efektif (kedalaman).

1. Skempton, 1986, mengembangkan koreksi nilai SPT sebagai berikut : N60 = 60 , 0 . . .CB CS CR Em ... …(2.8) dimana :

N60 = Nilai koreksi SPT terhadap cara pengujian. Em = Hammer eficiency (Tabel 2.4).

CB = Koreksi diameter bor (Tabel 2.5). CS = Koreksi sampler (Tabel 2.5). CR = Koreksi panjang tali (Tabel 2.5). N = Harga SPT lapangan.

2. Koreksi tegangan overburden efektif (kedalaman) sebagai berikut :

N’60 = CN . N60 ... …(2.9)

Pasir halus normal konsolidasi : CN = r v  ' 1 2  ... …(2.10)

Pasir kasar normal konsolidasi : CN = '

3

(41)

Pasir over konsolidasi : CN = r v  ' 7 , 0 7 , 1  ... …(2.12) dimana :

N’60 = Nilai SPT terkoreksi cara pengujian dan regangan overburden. σ'

v = Tegangan overburden efektif. σr = Reference stress = 100 kPa.

N60 = Nilai koreksi SPT terhadap cara pengujian. Tabel 2.4 SPT hammer efficiencies ( Clayton, 1990)

Country Hammer Type Hammer Release Mechanism

Hammer Effeciency, Em

Argentina Donut Cathead 0.45

Brazil Pin weight Hand dropped 0.72

China Automatic Donut Donut Trip Hand dropped Cathead 0.60 0.55 0.50

Colombia Donut Cathead 0.50

Japan Donut Donut Tombi trigger Cathead 2 turns + Special release 0.78-0.85 0.65-0.67 UK Automatic Trip 0.73 USA Safety Donut 2 turns on cathead 2 turns on cathead 0.55-0.60 0.45

Venezuela Donut Cathead 0.43

Tabel 2.5 Borehole, Sampler and Rod correction factors (Skempton, 1986)

Factor Equipment Variables Value

Borehole diameter factor,

CB 2.5-4.5 in (65-115 mm) 6 in (150 mm) 8 in (200 mm) 1.00 1.05 1.15

(42)

Sampling methode factor,

CS Standard sampler

Sampler without liner (not recommended)

1.00 1.20 Rod lenght factor,

CR 10-13 ft (3-4 m) 13-20 ft (4-6 m) 20-30 ft (6-10 m) > 30 ft (> 10 m) 0.75 0.85 0.95 1.00

Gambar 2.13 Grafik Variasi harga α berdasarkan kohesi tanah

Perkiraan kapasitas daya dukung pondasi tiang pancang pada tanah pasir dan silt didasarkan pada data uji lapangan SPT, ditentukan dengan perumusan sebagai berikut :

1. Kekuatan ujung tiang (end bearing), (Meyerhof, 1976). Untuk tanah pasir dan kerikil :

(43)

Untuk tahanan geser selimut tiang adalah: Qs = 2 N-SPT . p. L

Kekuatan ujung tiang (end bearing) untuk tanah kohesif plastis :

Qp = 9 . Cu . Ap ... …(2.14) Untuk tahanan geser selimut tiang adalah:

Qs = α . cu . p . Li Cu = N-SPT . 2/3 . 10

Dimana : α = Koefisien adhesi antara tanah dan tiang Cu = Kohesi Undrained

p = keliling tiang

Li = panjang lapisan tanah

2. Kekuatan Lekatan (skin friction), (Meyerhof, 1976).

Untuk pondasi tiang tipe large displacement (driven pile) : fs =

50

r

N60 ... …(2.15) Untuk pondasi tiang tipe small displacement (bored pile) :

fs = 100 r  N60 ... …(2.16) dan : Psu = As . fs ... …(2.17) dimana :

fs = Tahanan satuan skin friction, kN/m2. N60 = Nilai SPT N60.

As = Luas selimut tiang.

(44)

Untuk tahanan geser selimut tiang pancang pada tanah non-kohesif :

QS = 2 . N-SPT . p . Li ... …(2.18) dimana :

Li = Panjang lapisan tanah, m. p = Keliling tiang, m.

2.9.3. Kapasitas Daya Dukung Tiang Pancang Dari Hasil Bacaan Jack Manometer

Kapasitas daya dukung tiang pancang dapat diketahui berdasarkan bacaan manometer yang tersedia pada alat pancang hydraulic jack. Kapasitas daya dukung tiang dapat dihitung dengan rumus :

Q = P x A...(2.19) Keterangan;

Q = Daya dukung tiang pada saat pemancangan (Ton) P = Bacaan manometer (Kg/cm2)

A = Total luas efektif penampang piston (cm2) Pada setiap mesin mempunyai dua buah piston. Untuk mesin kapasitas 320 Ton :

Diameter piston hydraulic jack (1) = 180 mm = 18 cm (2) = 220 mm = 22 cm Luas penampang piston (1) = πr2

= π. 92 cm = 254,47 cm2

Luas penampang piston (2) = π.112 cm = 380,132 cm2 Total luas efektif penampang piston = (2 x 254,47) + (2 x 380,132)

(45)

2.10. Tiang Pancang Kelompok (Pile Group)

Pada keadaan sebenarnya jarang sekali didapatkan tiang pancang yang berdiri sendiri (Single Pile), akan tetapi kita sering mendapatkan pondasi tiang pancang dalam bentuk kelompok (Pile Group) seperti dalam (Gambar 2.14).

Untuk mempersatukan tiang-tiang pancang tersebut dalam satu kelompok tiang biasanya di atas tiang tersebut diberi poer (footing). Daya dukung kelompok tiang sangat bergantung pada penentuan bentuk pola dari susunan tiang pancang kelompok dan jarak antara satu tiang dengan tiang lainnya.

Bila beberapa tiang pancang dikelompokkan, maka intensitas tekanan bergantung pada beban dan jarak antar tiang pancang yang jika cukup besar sering kali tidak praktis karena poer di cor di atas kelompok tiang pancang (pile group) sebagai dasar kolom untuk menyebarkan beban pada beberapa tiang pancangdalam kelompok tersebut

Dalam perhitungan poer dianggap/dibuat kaku sempurna, sehingga:

1. Bila beban-beban yang bekerja pada kelompok tiang tersebut menimbulkan penurunan, maka setelah penurunan bidang poer tetap merupakan bidang datar.

(46)

Gambar 2.14 Pola-pola kelompok tiang pancang khusus : (a) Untuk kaki tunggal, (b) Untuk dinding pondasi ( Bowles, J. E., 1991)

(47)

Jarak antar tiang dalam kelompok yang diisyaratkan oleh Dirjen Bina Marga Departemen P.U.T.L. adalah:

S ≥ 2,5 D S ≥ 3 D

Gambar 2.15 Jarak antar tiang dalam kelompok (Bowles, J. E., 1991) dimana :

S = Jarak masing-masing tiang dalam kelompok (spacing) D = Diameter tiang.

Biasanya jarak antara 2 tiang dalam kelompok diisyaratkan minimum 0,60 m dan maximum 2,00 m. Ketentuan ini berdasarkan pada pertimbangan-pertimbangan sebagai berikut :

1. Bila S < 2,5 D

Pada pemancangan tiang no. 3 (Gambar 2.14) akan menyebabkan :

a. Kemungkinan tanah di sekitar kelompok tiang akan naik terlalu berlebihan karena terdesak oleh tiang-tiang yang dipancang terlalu berdekatan.

b. Terangkatnya tiang-tiang di sekitarnya yang telah dipancang lebih dahulu. 2. Bila S > 3 D

Apabila S > 3 D maka tidak ekonomis, karena akan memperbesar ukuran/dimensi dari poer (footing).

(48)

Pada perencanaan pondasi tiang pancang biasanya setelah jumlah tiang pancang dan jarak antara tiang-tiang pancang yang diperlukan kita tentukan, maka kita dapat menentukan luas poer yang diperlukan untuk tiap-tiap kolom portal.

Bila ternyata luas poer total yang diperlukan lebih kecil dari pada setengah luas bangunan, maka kita gunakan pondasi setempat dengan poer di atas kelompok tiang pancang.

Dan bila luas poer total diperlukan lebih besar daripada setengah luas bangunan, maka biasanya kita pilih pondasi penuh (raft fondation) di atas tiang-tiang pancang.

Gambar 2.16 Pengaruh tiang akibat pemancangan (Sardjono, H. S., 1988)

2.11. Perhitungan pembagian tekanan pada tiang pancang kelompok 2.11.1. Kelompok tiang pancang yang menerima beban normal sentris

Beban yang bekerja pada kelompok tiang pancang dinamakan bekerja secara sentris apabila titik rangkap resultan beban-beban yang bekerja berimpit dengan titik berat kelompok tiang pancang tersebut. Dalam hal ini beban yang diterima oleh tiap-tiap tiang pancang adalah :

(49)

Gambar 2.17 Beban mormal sentris pada kelompok tiang pancang (Sumber : Sardjono Hs, 1988) N = n V ... (2.20) dimana :

N = Beban yang diterima oleh tiap-tiap tiang pancang. V = Resultant gaya-gaya normal yang bekerja secara sentris. n = banyaknya tiang pancang

2.11.2. Kelompok tiang pancang yang menerima beban normal eksentris

Gambar 2.18 Beban normal eksentris pada kelompok tiang pancang (Sumber : Sardjono Hs, 1988)

(50)

Reaksi total atau beban aksial pada masing-masing tiang adalah jumlah dari reaksi akibat beban-beban V dan My, yaitu :

Qi = .2 x x M n V y i   ... (2.21) dimana :

Qi = Beban aksial pada tiang ke-i.

V = Jumlah beban vertikal yang bekerja pada pusat kelompok tiang. xi = Absis atau jarak tiang ke pusat berat kelompok tiang ke tiang

nomor-i.

My = Momen terhadap sumbu y. ∑x2

= Jumlah kuadrat jarak tiang-tiang ke pusat berat kelompok tiang.

2.11.3. Kelompok tiang yang menerima beban normal sentris dan momen yang bekerja pada dua arah

Kelompok tiang yang bekerja dua arah (x dan y), dipengaruhi oleh beban vertikal dan momen (x dan y) yang akan mempengaruhi terhadap kapasitas daya dukung tiang pancang.

(51)

Untuk menghitung tekanan aksial pada masing-masing tiang adalah sebagai berikut : Qi = 2 2 . . y y M x x M n V y i x i     ... (2.22) Dimana :

P1 =Beban yang diterima satu tiang pancang (ton)

= Jumlah beban vertikal (ton) N = Jumlah tiang pancang

Mx = Momen yang bekerja pada kelompok tiang searah sumbu x (tm) My = Momen yang bekerja pada kelompok tiang searah sumbu y (tm)

Xi = Jarak tiang pancang terhadap titik berat tiang kelompok pada arah X (m) Yi = Jarak tiang pancang terhadap titik berat tiang kelompok pada arah Y (m)

= Jumlah kuadrat tiang pancang pada arah x (m2) = Jumlah kuadrat tiang pancang pada arah y (m2)

2.12. Tiang Mendukung Beban Lateral 2.12.1. Metode Broms

a). Tiang dalam tanah kohesif

seperti yang telah dipelajari, tahanan tanah ultimit tiang yang terletak pada tanah kohesif atau lempung (φ = 0) bertambah dengan kedalamannya, yaitu dari 2cu dipermukaan tanah sampai 8 – 12cu pada kedalam kira-kira 3 kali diameter

tiang. Broms (1964a) mengusulkan cara pendekatan sederhana untuk mengestimasi distribusi tekanan tanah yang menahan tiang dalam lempung. Yaitu, tahanan tanah dianggap sama dengan nol di permukaan tanah sampai kedalaman

(52)

1,5 kali diameter tiang (1,5d) dan konstan sebesar 9cu untuk kedalaman yang lebih

besar dari 1,5d tersebut. b). Tiang ujung jepit

Mekanisme keruntuhan tiang ujung jepit, diagram distribusi reaksi tanah dan momen terjadi secara pendekatan diperlihatkan dalam Gambar 2.21 Dalam gambar tersebut terlihat bahwa perubahan model keruntuhan akan sangat ditentukan oleh tanah momen bahan tiangnya sendiri (My). Pada tiang ujung jepit,

Broms menganggap bahwa momen yang terjadi pada tubuh tiang yang tertanam di dalam tanah sama dengan momen yang terjadi di ujung atas tiang yang terjepit oleh pelat penutup tiang (pile cap). Dengan memperhatikan Gamba 2.21a, untuk tiang pendek, dapat dihitung tahanan tiang ultimit terhadap beban latera

3 /2

...(2.23) 9c d L d Huu

L/2 3d/4

...(2.24) H Mmaku

(53)

Gambar 2.21 Tiang ujung jepit dalam tanah kohesif (Broms, 1964a) (a) Tiang pendek (b) Tiang sedang (c) Tiang panjang.

(54)

Nilai – nilai Hu diplot dalam grafik hubungan L/d dan Hu/cud2, ditunjuk kan

dalam Gambar 2.20a.

Untuk tiang dengan panjang “sedang”, dimana tiang mengalami keluluhan ujung atas yang terjepit (Gambar 2.21b). untuk menghitung My, yaitu dengan

mengambil momen terhadap permukaan tanah:

My = (9/4) cud g2 – 9 cud f (3d/2 + f/2)………...(2.25)

Dari Persamaan (2.25) Hu dapat dihitung, yaitu dengan mengambil L = 3d/2+ f +g. Setelah itu perlu dicek apakah momen (positif) maksimum yang

terjadi pada kedalaman (f + 3d/2) lebih kecil dari My. Jika Mmak > My, maka tiang

termasuk tiang panjang dan mekanisme keruntuhan tiang akan seperti dalam Gambar 2.21c. Dalam hal ini, Hu dinyatakan oleh Persamaan :

) 26 . 2 ( ... ... ... ... ... ... ... ... ... 2 / 2 / 3 2 f d M Hu y  

Nilai - nilai Hu yang diplot dalam grafik hubungan My/cud3 dan Hu/cud2,

ditunjukkan dalam Gambar 2.20b. c). Defleksi tiang dalam tanah kohesif

Untuk tiang dalam tanah kohesif defleksi tiang dikaitkan dengan factor tak berdimensi βL, dengan ) 27 . 2 ...( ... ... ... ... ... ... ... ... ... 4 4 1 `          p p h I E d k

Defleksi ujung tiang di permukaan tanah (yo) dinyatakan oleh persamaan –

(55)

1) Tiang ujung jepit dianggap berkelakuan seperti tiang pendek, bila βL < 0,5 dengan ) 28 . 2 ...( ... ... ... ... ... ... ... ... ... dL k H y h o

2) Tiang ujung jepit dianggap sebagai tiang panjang (tidak kaku) bila βL > 1,5 dengan ) 29 . 2 ...( ... ... ... ... ... ... ... ... ... d k H y h o  

Gambar 2.22 Defleksi lateral tiang di atas permukaan tanah (a) untuk tiang dalam tanah kohesif (φ = 0)

(56)

2.12.2. Metode Brinch Hansen

Metode Brinch Hansen (1961) dapat digunakan untuk menghitung tahanan

lateral ultimit pada tiang – tiang pendek. Cara yang relatif sederhana ini dapat digunakan untuk lapisan tanah yang uniform maupun yang berlapis – lapis. Dalam cara ini, tahanan rotasi tiag yang kaku pada titik x diberikan oleh jumlah momen tahanan – tahanan tanah diatas dan di bawah titik tersebut.

Gambar 2.23 Metode Brinch Hansen (1961)

Ditinjau tiang yang menahan gaya lateral, dan terletak pada tanah yang mempunyai kohesi dan gesekan (tanah c – φ) (gambar 2.16). persamaan tahanan ultimate lateral tanah pada sembarang kedalaman z yang didasarkan pada teori tekanan tanah lateral, adalah sebagai berikut:

pu = po Kq + c Kc ………...……… (2.30)

dengan,

po = tekanan overburden vertical

(57)

Nilai – nilai hubungan Kc dan Kq terhadap nilai z/d yang diberikan oleh

Brinch Hansen (1961) ditunjukan dalam Gambar 2.22. tahanan tanah pasif pada tiap elemen horisontal adalah sebesar pud (L/n).

Gambar 2.24 Koefisien tahanan lateral (Hansen, 1961)

Jika kepala tiang terjepit (tiang jepit), tinggi ekivalen e1 (gambar 2.16) dari

gaya H terhadap permukaan tanah dinyatakan oleh :

e1 = (e + zf) /2 ………...………...…(2.31)

dengan e adalah jarak gaya H terhadap permukaan tanah dan zf adalah jarak muka

tanah terhadap titik jepit sebenarnya (virtual vixity). Jarak zf tidak diketahui pada

tahaap ini. Namun untuk maksud praktis, zf dapat diambil 1,5 m bila tanah berupa

tanah pasir atau lempung kaku, dan 3 m untuk tanah lempung lunak atau lanau. Sebuah metode sederhana perhitungan beban utama, yang mungkin cukup akurat untuk kasus pembebanan jangka panjang pada pondasi tiang pendek atau tiang panjang, dimana luas penampang diatur oleh pertimbangan – pertimbangan gaya tekan yang relatif tinggi untuk mengasumsikan zf. Dari gambar 2.25,

(58)

Gambar 2.25 Tiang menonjol mengalami beban lateral

Gaya lateral ultimit pada pondasi tiang ujung bebas Hu = Mu/(e +zf) ……….(2.32)

Gaya lateral ultimit pada pondasi tiang ujung jepit Hu = 2Mu/(e +zf) ……… (2.33)

Nilai – nilai perkiraan zf yang umum digunakan adalah referensi untuk

metode Brinch Hansen. Pada metode Broms di persamaan 2.31 sebagai kriteria kegagalan pondasi tiang panjang.

2.13. Kapasitas Kelompok dan Effisiensi Tiang Pancang

Jika kelompok tiang dipancang dalam tanah lempung lunak, pasir tidak padat, atau timbunan, dengan dasar tiang yang bertumpu pada lapisan kaku, maka kelompok tiang tersebut tidak mempunyai resiko akan mengalami keruntuhan geser umum, asalkan diberikan faktor aman yang cukup terhadap bahaya keruntuhan tiang tunggalnya. Akan tetapi, penurunan kelompok tiang masih tetap harus dipancang secara keseluruhan ke dalam tanah lempung lunak.

Pada kelompok tiang yang dasarnya bertumpu pada lapisan lempung lunak, faktor aman terhadap keruntuhan blok harus diperhitungkan, terutama untuk jarak tiang-tiang yang dekat. Pada tiang yang dipasang pada jarak yang besar, tanah diantara tiang-tiang bergerak sama sekali ketika tiang bergerak

(59)

kebawah oleh akibat beban yang bekerja (Gambar 2.26 a). Tetapi, jika jarak tiang-tiang terlalu dekat, saat tiang-tiang turun oleh akibat beban, tanah diantara tiang-tiang-tiang-tiang juga ikut bergerak turun. Pada kondisi ini, kelompok tiang dapat dianggap sebagai satu tiang besar dengan lebar yang sama dengan lebar kelompok tiang. Saat tanah yang mendukung beban kelompok tiang ini mengalami keruntuhan, maka model keruntuhannya disebut keruntuhan blok (Gambar 2.19b). Jadi, pada keruntuhan blok, tanah yang terletak diantara tiang bergerak kebawah bersama-sama dengan tiangnya. Mekanisme keruntuhan yang demikian dapat terjadi pada tipe-tipe tiang pancang maupun tiang bor.

(a) (b)

Gambar 2.26 Tipe keruntuhan dalam kelompok tiang : (a) Tiang tunggal, (b)Kelompok tiang (Sumber : Hardiyatmo, 2002)

(60)

Gambar 2.28 Daerah friksion pada kelompok tiang dari tampak atas

Umumnya model keruntuhan blok terjadi bila rasio jarak tiang dibagi diameter (S/D) sekitar kurang dari 2 (dua). Whiteker (1957) memperlihatkan bahwa keruntuhan blok terjadi pada jarak 1,5d untuk kelompok tiang yang berjumlah 3x3, dan lebih kecil dari 2,25d untuk tiang yang berjumlah 9x9.

Menurut Coduto (1983), effisiensi kelompok tiang tergantung pada beberapa faktor, diantaranya:

1. Jumlah tiang, panjang, diameter, dan terutama jarak antara as tiang. 2. Model transfer beban (tahanan gesek terhadap tahanan dukung ujung). 3. Prosedur pelaksanaan pemasangan tiang.

4. Urutan pemasangan tiang. 5. Macam tanah.

6. Jangka waktu setelah pemancangan.

7. Interaksi antara pelat penutup tiang (pile cap) dengan tanah.

Kapasitas ultimit kelompok tiang dengan memperlihatkan faktor efisiensi tiang dinyatakan dengan rumus sebagai berikut :

(61)

dimana :

Qg = Beban maksimum kelompok tiang yang mengakibatkan keruntuhan.

Eg = Efisiensi kelompok tiang. n = Jumlah tiang dalam kelompok. Qa = Beban maksimum tiang tunggal.

Beberapa persamaan efisiensi tiang telah diusulkan untuk menghitung kapasitas kelompok tiang, namun semuanya hanya bersifat pendekatan. Persamaan-persamaan yang diusulkan didasarkan pada susunan tiang, dengan mengabaikan panjang tiang, variasi bentuk tiang yang meruncing, variasi sifat tanah dengan kedalaman dan pengaruh muka air tanah. Salah satu dari persamaan-persamaan efisiensi tiang tersebut,sebagai berikut:

 Metode Converse-Labarre Formula

Eg = 1 – θ ' . . 90 ' ). 1 ( ). 1 ' ( n m n m m n   ... .( 2.35) dimana :

Eg = Efisiensi kelompok tiang. m = Jumlah baris tiang.

n' = Jumlah tiang dalam satu baris. θ = Arc tg d/s, dalam derajat.

s = Jarak pusat ke pusat tiang (lihat Gambar 2.24) d = Diameter tiang.

 Metode Los Angeles Group

(62)

Dimana :

Eg = Effisiensi kelompok tiang m = Jumlah baris tiang

n’ = Jumlah tiang dalam satu baris s = Jumlah pusat ke pusat tiang d = Diameter tiang

Gambar 2.29 Definisi jarak s dalam hitungan efisiensi tiang (Sumber : Hardiyatmo, 2002)

2.14. Penurunan Pondasi Tiang (settlement)

Dalam bidang teknik sipil ada dua hal yang perlu diketahui mengenai penurunan, yaitu :

a. Besarnya penurunan yang akan terjadi. b. Kecepatan penurunan.

Istilah penurunan (settlement) digunakan untuk menunjukkan gerakan titik tertentu pada bangunan terhadap titik referensi yang tetap. Umumnya, penurunan yang tidak seragam lebih membahayakan bangunan dari pada penurunan totalnya. Contoh-contoh bentuk penurunan dapat dilihat pada Gambar 2.28.

(63)

Gambar 2.30 Contoh kerusakan bangunan akibat penurunan

a. Pada gambar (a), dapat diperhatikan jika tepi bangunan turun lebih besar dari bagian tengahnya, bangunan diperkirakan akan retak-retak pada bagian tengahnya.

b. Pada gambar (b), jika bagian tengah bangunan turun lebih besar, bagian atas bangunan dalam kondisi tertekan dan bagian bawah tertarik. Bila deformasi yang terjadi sangat besar, tegangan tarik yang berkembang dibawah bangunan dapat mengakibatkan retakan-retakan. c. Pada gambar (c), penurunan satu tepi/sisi dapat berakibat keretakan

pada bagian c.

d. Pada gambar (d), penurunan terjadi berangsur-angsur dari salah satu tepi bangunan, yang berakibat miringnya bangunan tanpa terjadi keretakan pada bagian bangunan.

Selain dari kegagalan kuat dukung (bearing capacity failure) tanah, pada setiap proses penggalian selalu dihubungkan dengan perubahan keadaan tegangan didalam tanah. Perubahan tegangan pasti akan disertai dengan perubahan bentuk, pada umumnya hal ini yang menyebabkan penurunan pada pondasi (Hardiyatmo,

Gambar

Gambar 2.1 Dimensi Alat Sondir Mekanis (Sardjono, 1991)
Gambar 2.2.   Macam-macam tipe pondasi: (a) Pondasi memanjang, (b) Pondasi  telapak , (c) Pondasi rakit, (d) Pondasi sumuran, (e) Pondasi tiang  (Hardiyatmo, H
Gambar 2.4 Tiang pancang Precast Prestressed Concrete Pile (Bowles, J. E., 1991)
Gambar 2.5 Tiang pancang Cast in place pile (Sardjono, 1991)  C.   Tiang pancang baja
+7

Referensi

Dokumen terkait

Berdasarkan hasil penelitian yang telah diuraikan, terdapat beberapa simpulan yaitu (1) Buku teks IPS yang dikembangkan dalam penelitian ini sesuai dengan

Pada tahap analisis, kamus data digunakan sebagai alat komunikasi antara analisis sistem dengan pemakai sistem tentang data yang mengalir dari sistem, yaitu

(1) Pejabat/Pegawai yang tidak dapat menolak karena memenuhi kondisi sebagaimana dimaksud dalam Pasal 4 wajib melaporkan gratifikasi tersebut kepada KPK atau kepada

Metode Masuk Pertama Keluar Pertama (MPKP) adalah metode biaya yang mengasumsikan bahwa unit persediaan yang pertama dibeli akan digunakan terlebih dahulu sehingga

Pengaturan konfigurasi keypad matrik pada Program TopView Simulator dapat dipilih menu FileàExternal Modules SettingàKeyBoard, kemudian pilih frame ‘Matrik KeyPad’ dan pilih

Desa sobangan terletak di kecamatan Mengwi kabupaten Badung, Provinsi Bali. Secara geografis, desa ini terletak persis ditengah pulau bali. Desa sobangan letaknya cukup

5) Alokasi waktu ditentukan sesuai dengan keperluan untuk mencapai KD dan beban belajar dengan mempertimbangkan jumlah jam pelajaran yaang tersedia dalam silabus dan KD

Sebelum mengembangkan strategi pemasaran yang akan kami terapkan, terlebih dahulu perlu mengembangkan sebuah strategi diferensiasi dan penentuan posisi