• Tidak ada hasil yang ditemukan

Mathematics authors titles recent submissions

N/A
N/A
Protected

Academic year: 2017

Membagikan "Mathematics authors titles recent submissions"

Copied!
18
0
0

Teks penuh

(1)

arXiv:1711.06619v1 [math.NT] 17 Nov 2017

The Maaß Space for Paramodular

Groups

by

Bernhard Heim1 and Aloys Krieg2

In this paper we describe a characterization for the Maaß space associated with the paramodular group of degree 2 and squarefree levelN. As an appli-cation we show that the Maaß space is invariant under all Hecke operators. As a consequence we conclude that the associated Siegel-Eisenstein series belongs to the Maaß space.

2010 Mathematics Subject classification: 11F55, 11F46

Keywords: Paramodular group; Maaß space; Hecke operator; Eisenstein series

1Bernhard Heim, GUtech, Way No. 36, Building No. 331, North Ghubrah, Muscat, Sultanate of Oman,

bernhard.heim@gutech.edu.om

2Aloys Krieg, Lehrstuhl A f¨ur Mathematik, RWTH Aachen University, D-52056 Aachen,

(2)

1 Introduction

Paramodular forms have first been studied by Siegel [20] in the sixties. Recently paramod-ular forms of degree two and squarefree level N came into focus again. For example

• The paramodular conjecture by Brumer and Kramer [4] • New and old form theory by Roberts and Schmidt [18] • The B¨ocherer conjecture for paramodular forms [19] • Borcherds lifts [3]

Most of the results have in common that a certain subspace of generalized Saito-Kurokawa lifts, the Maaß space, plays a significant role. Although several authors have studied these lifts in the orthogonal setting (cf. Sugano [21] or Oda [17] or [14]) or as a direct generalization of the original approach of Maaß by Gritsenko ([10], [11], [12]), not all results are stated in an explicit form such that they can easily be applied in the works above and that certain refined properties had not been worked out.

In this paper we give a characterization of the Maaß space for the paramodular group similar to [13] in the case of the Siegel modular group. This characterization is applied in order to show that the Maaß space is invariant under the full Hecke algebra described in [8]. As an application we can show that the Siegel-Eisenstein series always belongs to the Maaß space.

2 The Maaß space

Let

H2 :=

Z =

τ z

z τ′

∈C2×2; Z =Ztr,ImZ >0

denote the Siegel half-space of degree 2 and

Sp2(R) :={M R4×4;J[M] :=MtrJM =J},

J =

0 I

I 0

, I =

1 0 0 1

the symplectic group of degree 2. Sp2(R) acts onH2 in the usual way

Z 7→MhZi:= (AZ+B)(CZ+D)−1, M =

A B C D

,

and on the set of holomorphic functionsf :H2 →Cfork∈Zvia

f(Z)7→f |

k

(3)

GivenN ∈Nlet

ΣN :=

      

   

∗ ∗N

∗ ∗ ∗ ∗/N

∗ ∗N

∗N N N

  

∈Sp2(Q); ∗ ∈Z       

be the paramodular group of degree 2 and level N. A modular form f ∈ Mk(ΣN) is a

holomorphic function f :H2→C satisfying

f |

k

M =f for all M ∈ΣN

and possesses a Fourier expansion of the form

f(Z) =X

T>0

αf(T)e2πitrace (T Z), T =

n r/2

r/2 mN

, n, m∈N0, r∈Z,

4nmN−r2>0,

and a Fourier Jacobi expansion of the form

f(Z) = ∞

X

m=0

fm∗(Z) = ∞

X

m=0

fmN(τ, z)e2πimN τ

, Z =

τ z

z τ′

∈H2,

(1)

where

fmN(τ, z) =

X

n,r

αf(T)e2πi(nτ+rz).

We will refer to both fmN and fmN∗ as Jacobi forms. Next we define the Maaß space

M∗k(ΣN) to consist of all f ∈ Mk(ΣN) such that for all T 6= 0

αf(T) =

X

δ|gcd(n,r,m)

δk−1αf(nm/δ2, r/δ, N),

(2)

whereαf(n, r, mN) denotes the Fourier coefficient of

n r/2

r/2mN

.

If Jk,N denotes the space of Jacobi forms of weight k and index N in the sense of

Eichler-Zagier [5], Gritsenko [10] demonstrated that the map

ϕ:M∗k(ΣN)→Jk,N, f 7→fN,

is an isomorphism, where we have for even k>4

f0(τ, z) =f0∗(Z) =αf(0,0,0)Ek(τ), αf(0,0, N) =−

2k Bk

αf(0,0,0)

(4)

with the normalized elliptic Eisenstein series

Consider the embedding

SL2(R)×SL2(R)֒→Sp2(R),

calledJacobi group inside ΣN given by

ΣJN :=

Then the elements fmN ∈Jk,m can be characterized by

fmN|

k

M =fmN∗ for all M ΣJN.

We define Hecke operators just as in [7] without any normalizing factors by

f | the sum is finite.

(5)

assertions are equivalent

(i) f |

kT

p =f | kT

p.

(ii) αf(n, r, pmN) +pk−1αf(n,rp,mpN)

=αf(pn, r, mN) +pk−1αf(np,rp, mN) for all n, r, m.

(iii) αf(pνn, pρr, pµmN) =

min(Xν,ρ,µ)

δ=0

pδ(k−1)αf(pν+µ−2δn, pρ−δr, mN),

αf(pνn,0, pµmN) =

min(Xν,µ)

δ=0

pδ(k−1)αf(pν+µ−2δn,0, mN),

αf(pνn,0,0) =σk−1(pν)αf(n,0,0),

αf(0,0, pµmN) =σk−1(pµ)αf(0,0, mN) for all (n, r, m) such that p∤n, p∤r, p∤m.

(iv) f |

k

ΣJN √1pdiag (p, p,1,1) ΣJN

=f |

k

ΣJN 1pdiag (p, p2, p,1) ΣJN + X

umodp

ΣJN

1 u/p

0 1

ΣJN

 .

Here and in the following we setαf(n, r, mN) = 0 if nor r or mis not integral.

Proof. One can apply the isomorphism between ΣN and O(2,3) (e.g. [16]) and may the

use [14] and [9]. Alternatively we give a short direct proof.

(i)⇔(ii) Use the representatives √1p p0 10, √1p 01bp, b = 0, . . . , p−1, of M(p) and calculate the Fourier expansion in (i):

f |

kT

p(Z) =pk/2f

pτ √pz

pz τ

+p−k/2 X

umodp

f

(τ+u)/p z/√p z/√p τ′

=p−1+k/2 X

n,r,m

αf(pn, r, mN) +pk−1αf

n

p,rp, mN

e2πi(nτ+rz/√p+mN τ′),

f |

kT

p(Z) =pk/2f

τ √pz

pz

+p−k/2 X

umodp

f

τ z/√p

z/√p (τ′+u/N)/p

=p−1+k/2 X

m,n,r

αf(n, r, pmN) +pk−1αf

n,rp,mpN e2πi(nτ+rz/√p+mN τ′).

(6)

where the caseµ= 0 is clear. If µ>1 assume both ν >1 and ρ>1. Then (ii) yields

αf pνn, pρr, pµmN=αf pν+1n, pρr, pµ−1mN+pk−1αf pν−1n, pρ−1r, pµ−1mN

−pk−1αf pνn, pρ−1r, pµ−2mN

.

By induction hypothesis this equals

min(ν+1X,ρ,µ−1)

δ=0

pδ(k−1)αf pν+µ−2ρn, pρ−1r, mN+

min(Xν,ρ,µ)

δ=1

pδ(k−1)αf pν+µ−2δn, pρ−δr, mN

min(ν+1X,ρ,µ−1)

δ=1

pδ(k−1)αf pν+µ−2δn, pρ−δr, mN

=

min(Xν,µ,ρ)

δ=0

pδ(k−1)αf pν+µ−2δn, pρ−δr, mN.

The remaining cases are dealt with in the same way. (iii)⇒(i) Inserting (iii) we get

αf(pνn, pρr, pµmN)−pk−1αf(pν−1n, pρ−1r, pµ−1mN) =αf(pν+µn, pρr, mN),

which yields the claim.

(i)⇔(iv) Equation (iv) is equal to (i) applied to

Z

1 0

0 √p

=

τ z√p z√p pτ′

instead ofZ because of

ΣJN √1pdiag (p, p,1,1)ΣJN

= ΣJN √1pdiag (p, p,1,1) ˙

umodp

ΣJN 1

p

1 u

0 p

×

p 0 0 1

.

Since the remaining double cosets consist of a single right coset, the claim follows. As all the elliptic Hecke operators Tn are polynomials inTp,p∈P, we get

Corollary 1. Given f ∈ Mk(ΣN), N ∈N the following assertions are equivalent:

(i) f ∈ M∗

k(ΣN). (ii) f |

kT

n =f | kT

n for alln∈N.

(iii) f |

kT

p =f | kT

(7)

Proof. We get (2) from the application of part (iii) in Lemma 1 to all primes pdividing

m.

The main result of this section is

Theorem 1. A modular formf ∈ Mk(ΣN),N ∈Nbelongs to the Maaß spaceM∗k(ΣN)

if and only if there exists a finite setS ⊂P such that

f |

kT

p =f | kT

p for all p∈P, p /∈S.

Proof. “” Use Corollary 1 withS =.

“⇐” LetM =NQqSq. Then Lemma 1 holds for all p∈P,p∤M. IffM denotes the Maaß lift of fN we considerg:=f−fM. It follows from Lemma 1 and (2) thatg has a

Fourier-Jacobi expansion of the form ∞

X

m=0

gmN(τ, z)e2πimN τ

,

where at least one prime divisor ofm belongs to S. Hence all the Fourier-Jacobi coeffi-cients gmN vanish, wheneverm is coprime toM. Thus the direct analog of Lemma 3 in

[2] yields g0, hencef =fM ∈ M

k(ΣN).

3 The maximal normal extension

Σ

b

N

IfN is squarefree andν denotes the number of prime divisors ofN we obtain a maximal normal extension of index 2ν of ΣN given by

b

ΣN =hΣN, Fd;d|Ni ⊂Sp2(R),

where

Fd=

Vd−1 0 0 Vdtr

, Vd=

1 √

d

αd βN

γ δd

, α, β, γ, δ∈Z, αδd−βγN/d= 1.

Note thatFd2∈ΣN. Instead ofVdwe may choose an arbitrary element of

Γ◦(N)Vd=VdΓ◦(N) =

1 √

d

∗d N

∗ ∗d

∈SL2(R); ∗ ∈Z

,

where

Γ◦(N) =

∗ ∗N

∗ ∗

∈SL2(Z); ∗ ∈Z

.

(8)

Lemma 2. Let N ∈N be squarefree and d|N. Then the mapping

M∗k(ΣN)→ Mk∗(ΣN), f 7→f | k

Fd−1(Z) =F(Z[Vdtr]),

is an isomorphism.

Proof. The Fourier coefficient of T in f(Z[Vtr

d ]) is equal to the Fourier coefficient of

T[Vd−1] off, hence byαf(n′, r′, m′N) given by

 

n′ r′

m′

 =

 

d γ γ2N/d

−2N αd+γN/d 2αγN

N/d −α α2d

 

 

n r m

 .

(6)

As the latter matrix belongs to SL3(Z) we get

gcd(n′, r′, m′) =gcd(n, r, m).

Then the claim follows from (2).

Next we have a closer look at eigenforms under Fd.

Theorem 2. Let f ∈ Mk(ΣN), d|N, N ∈N squarefree, ε=±1. Then the following assertions are equivalent

(i) f(Z[Vdtr]) =ε f(Z).

(ii) αf(T[Vd−1]) =ε αf(T) for allT. (iii) αf(n, r, N) =ε αf(n′, r′, N), whenever

4nNr2= 4n′Nr′2, r≡ −r′mod 2d, r r′mod 2N/d.

Proof. Clearly (i) and (ii) are equivalent. In view of (2) it suffices to require (ii) for all

matricesT withm= 1. By

αf

T

1 0

u 1

=αf(T) for u∈Z

we apply (6) in order to get for T =r/n r/2 N2

αf T[Vd−1]=αf n′′,(αd+γN/d)r, N

where 4n′′N −(αd+γN/d)2r2 = 4nN −r2. In view of

(9)

we conclude

(αd+γN/d)r

(

−r mod 2d , r mod 2N/d .

(7)

Thus (ii) becomes equivalent with (iii).

If we haveε= 1 for alldthe consequence is

Corollary 2. A modular form f ∈ M

k(ΣN), N ∈N squarefree, belongs to Mk(ΣbN) if and only if there exists a functionα∗f :N0→C such that for all T >0, T 6= 0

αf(T) =

X

δ|gcd(n,r,m)

δk−1α∗f (4NdetT)/δ2.

Proof. It suffices to show that for f ∈ M

k(ΣN)∩ Mk(ΣbN)

αf(n, r, N) =αf(n′, r′, N)

holds, whenever

4nNr2 = 4n′N r′2.

Elementary number theory shows that r2r′2 mod 4N implies

r≡ −r′ modp or r r′modp for alle primesp|N and p= 2

r≡ −r′ mod 4 or r≡r′mod 4 if N is even.

Thus we define

d:= Y

p|N, p odd r≡−r′

modp

p if N is odd or N is even andrr′mod 4,

d:= 2 Y

p|N, p odd r≡−r′

modp

p if N is even and r≡ −r′ mod 4.

Thus we get

(αd+γt/d)rr′ mod 2N

in (7). Now the claim follows from Theorem 2.

We give a characterization of cusp forms in Mk(ΣbN), i.e. only positive definite T

appear in the Fourier expansion. If φdenotes the Siegel φ-operator we get

Lemma 3. Given a squarefree N ∈ N and f ∈ Mk(ΣbN) the following assertions are equivalent:

(10)

(ii) αf(n,0,0) = 0 for alln∈N0.

(iii) f |φ0.

Proof. Given T =r/n2mNr/2> 0 with detT = 0 and T 6= 0 there exists U Γ◦(N)Vd for somed|N such that

T[U] =

t 0 0 0

, t=gcd(n, r, m).

Remarks. a) As we may choose VN = 01 0N

, we conclude

f |

k

WN = (−1)kf

for all f ∈ Mk(ΣN) in view ofαf(n, r, mM) =αf(m, r, nN) in (2).

b) ΣN corresponds to the discriminant kernel in SO(2,3) (cf. [16]). Moreover the

extension ΣN ∪ΣNWN corresponds to the discriminant kernel in O(2,3).

c) WithVN = 01 0N

one easily verifies

WN(M×M′)WN =M′×M

forM, M′∈SL2(R) in (4). Thus one gets

f |

kT

n =f | k

WN | kT

n | k

WN.

4 Hecke operators

Consider the subgroup

G:=

1 √

nM ∈Sp2(R); n∈N, M ∈Z

4×4

of Sp2(R) as well as its Jacobi subgroup

GJ :=

      

   

∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ 0 0 0 ∗

   ∈G

      

.

Then (ΣN,G), (ΣbN,G) and (ΣJN,GJ) are Hecke pairs (cf. [1], [7], [15]). Denote the

associated Hecke algebras by

(11)

The structure ofHN and HbN was described in [8] and moreover the

b

ΣN∩GJ =ΣbN, G⊂ΣbN ·GJ.

Thus the mapping

X

induces an injective homomorphism of the Hecke algebras

ι:HbN → HJN

(8)

(cf. [1], Proposition 3.1.6, [15], I(6.4)).

Theorem 3. Let N N be squarefree. Then the Maaß space Mk(ΣN) is invariant

under the Hecke algebraHN.

Proof. According to Lemma 2 it suffices to demonstrate the invariance under HbN. It

was shown in [8] thatHbN is generated by

TN(q) :=ΣbN√1qdiag (1,1, q, q)ΣbN and TN∗(q) :=ΣbN1qdiag (1, q, q2, q)ΣbN, q∈P.

According to [8] representatives of the right cosets inTN(q) are given by

1

Ifq |N additionally by

(12)

are given by

Ifq |N additionally the right cosets

(13)

Ifq |N therefore ι(Tn∗(q)) additionally consists of the double cosets

ΣJN 1

qdiag (1, q, q

2, q) ΣJ

N +

X

umodq

u6≡0 modq

ΣJN 1

q

   

q 0 0 1

0 q 1 u/N

q 0

0 q

   ΣJN

+ ΣJN 1

q√q

   

q 0 0 1

0 q2 q 0

q2 0 0 q

   ΣJN +

X

cmodq

ΣJN 1

q√q

   

q2 0 0 q

d q 1 qc/N

q 0

0 q2

   ΣJN.

A tedious straightforward calculation shows that ι(TN(q)) andι(TN∗(q)) commute with

ΣJN√1pdiag (p, p,1,1)ΣJN, ΣJN1pdiag (p, p2, p,1)ΣJN

and

X

umodp

ΣJNI×

1 u/p

0 1

ΣJN,

as long as p6=q. Thus the claim follows from Theorem 1.

Now we apply the Hecke operator TN(q) to the Fourier Jacobi expansion.

Corollary 3. Let f ∈ M∗

k(ΣN) for squarefree N ∈N and q∈P,q ∤N. Then

g:=f |

k

TN(q)∈ M∗k(ΣN)

is characterized by

gN∗ =fN|

k

ΣJN 1qdiag (1, q, q2, q)ΣNJ + (q2+q)fN∗.

Proof. It follows from Gritsenko’s work [10] that

fqN∗ = 1qfN|

k

ΣJN √1qdiag (q, q,1,1)ΣJN.

Thus the application of (9) leads to

g∗N =fqN∗ |

k

ΣJN √1qdiag (1,1, q, q)ΣJN = 1qfN|

k

ΣJN √1qdiag (q, q,1,1)ΣJN ·ΣJN √1qdiag (1,1, q, q)ΣJN.

If we use the representatives in (9) and (10), the calculation of the product leads to the result.

Note thatΣbNMΣbN =ΣbNM−1ΣbN for allM ∈Gdue to [8]. Hence the same arguments

(14)

Petersson scalar product. As HbN is commutative due to [8], the standard procedure

yields

Corollary 4. Let N Nbe squarefree. Then the space Mk(ΣN)∩ Mk(ΣbN) contains a

basis consisting of simultaneous eigenforms under all Hecke operators in HbN.

5 The Eisenstein series

Let

ΣN,∞:=

A B

0 D

∈ΣN

and define for evenk >3 the Siegel-Eisenstein series

Ek,N(Z) :=

X

M:ΣN,∞\ΣN

det(CZ+D)−k.

We have

Wd−1ΣN,∞Wd= ΣN,∞ and Wd−1ΣNWd= ΣN

and thereforeEk,N | k

Wd=Ek,N for alld|N. HenceEk,N ∈ Mk(ΣbN) holds. We use an

analog of Elstrodt’s result [6] in order to obtain

Theorem 4. Let N N be squarefree and k >3 be even. Then

Ek,N ∈ M∗k(ΣN)∩ Mk(ΣbN).

Proof. AsJk,N contains a non-cusp form, we conclude the existence of anf ∈ M∗k(ΣN)

with non-zero constant Fourier coefficient from [10]. Due to Lemma 2 we may assume

f ∈ Mk(ΣbN) if we replace f by P d|N

f |

k

Wd. By Corollary 4 we may even assume

αf(0,0,0) = 1 and f | k

b

ΣN √1qdiag (1,1, q, q)ΣbN =λf

for some prime q ∤N and eigenvalue λ. As Ek,N is an eigenform, too, (cf. [7], IV.4.7)

with the same eigenvalue (cf. [7], IV.4.6)

λ=qk+q2+q+q3−k,

this is also true for g:=f −Ek,N. Using Lemma 1 we conclude that f |φand Ek,N |φ

coincide with the normalized elliptic Eisenstein series.

Hence g is a cusp form by Lemma 3. Ifg6= 0, we get (cf. [7], IV.4.8)

|6♯ΣN\ΣN√1qdiag (1,1, q, q)ΣN

= 1 +q+q2+q3 < q4.

(15)

If k>4 is even we define the Jacobi Eisenstein series by

is the translation subgroup of ΣJ

N. Note that

Proof. By construction e∗

k,N is invariant under ΣJN. IfKi,i∈I, denotes a set of

repre-sentatives of ΣJ

n\ΣJN 1qdiag (1, q, q2, q)ΣJN contained in (10) and Mj, j ∈J, of ΓN\ΣJN,

Now observe that

(16)

˙

Hence the claim follows.

Finally we derive a connection with Ek,N and the classical Siegel Eisenstein series

Ek,1.

Corollary 6. Let k>4 be even and N Nsquarefree.

a) The N-th Fourier Jacobi coefficient ofEk,N is given by

−B2kke∗k,N.

Proof. a) Combine Corollary 4, Theorem 4 and (3).

b) Note that ΣJN √1

N diag (1, N, N,1)Σ J

N and ΣJN 1qdiag (1, q, q2, q)ΣJN commute forq∈P,

q ∤N and use the representatives above in order to compute the Fourier coefficient of

0 0

0N

on the right hand side.

Hence the Fourier coefficients of Ek,N can be found in [5], §2.

References

[1] Andrianov, A.N. Quadratic Forms and Hecke Operators, volume 286 of Grundl.

(17)

[2] B¨ocherer, S., J.H. Bruinier and W. Kohnen. Non-vanishing of scalar products of Fourier-Jacobi coefficients of Siegel cusp forms. Math. Ann., 313:1–13, 1999. [3] Borcherds, R. Automorphic forms with singularities on Grassmannians. Invent.

Math., 132:491–562, 1998.

[4] Brumer, A. and K. Kramer. Paramodular abelian varieties of odd conductor.Trans.

Am. Math. Soc., 366:2463–2516, 2014.

[5] Eichler, M. and D. Zagier. The Theory of Jacobi Forms. Birkh¨auser, Boston, Basel, Stuttgart, 1985.

[6] Elstrodt, J. Eine Charakterisierung der Eisenstein-Reihe zur Siegelschen Modul-gruppe. Math. Ann., 268:473–474, 1984.

[7] Freitag, E. Siegelsche Modulfunktionen, volume 254 of Grundl. Math. Wiss.

Springer-Verlag, Berlin, 1983.

[8] Gallenk¨amper, J. and A. Krieg. The Hecke algebras for the orthogonal group

SO(2,3) and the paramodular group of degree 2. ArXiv:1710.09156.

[9] Gallenk¨amper, J., B. Heim and A. Krieg. The Maaß space and Hecke operators.

Int. J. Math., 27:1–8, 2016. ID 1650039.

[10] Gritsenko, V.A. Arithmetical lifting and its applications. In S. David et al., editors,

Number theory, pages 103–126. Cambridge Univ. Press edition, 1995.

[11] Gritsenko, V.A. Irrationality of the moduli spaces of polarized abelian surfaces. In W. Barth et al., editors,Abelian varieties, pages 63–81. Walter de Gruyter edition, 1995.

[12] Gritsenko, V.A. Modulformen zur Paramodulgruppe und Modulr¨aume der abelschen Variet¨aten. Math. Gottingensis, 12:1–89, 1995.

[13] Heim, B. On the Spezialschar of Maass. Int. J. Math. Math. Sci., 23:1–13, 2010. [14] Heim, B. and S. Murase. A characterization of the Maass space onO(2, m+ 2) by

symmetries. Int. J. Math., 23:1–13, 2012. ID 125006.

[15] Krieg, A. Hecke algebras. Mem. Am. Math. Soc., 435, 1990.

[16] Krieg, A. Integral orthogonal groups. In T. Hagen et al., editors,Dynamical systems,

number theory and applications, pages 177–195. World Scientific edition, 2016.

[17] Oda, T. On modular forms associated with indefinite quadratic forms of signature

(2, n2). Math. Ann., 231:97–144, 1977.

[18] Roberts, B. and R. Schmidt. Local newforms for GSp(4), volume 1918 of Lect.

(18)

[19] Ryan, N.C. and G. Tornaria. A B¨ocherer-type conjecture for paramodular forms.

Int. J. Number Theory, 7:1395–1411, 2011.

[20] Siegel, C.L. Moduln Abelscher Funktionen. Nachr. Akad. Wiss. G¨ottingen,

Math.-phys. Kl., 25:365–427, 1964.

Referensi

Dokumen terkait

[r]

Posted in artikel, download, education, English, Pendidikan, penelitian, reading, Soal-Soal Ujian, Ujian Nasional..

Menentukan aspek ekonomi atau aspek hukum yang lebih dominan dalam melakukan penegakan hukum merupakan hal penting untuk menyelesaikan permasalahan secara objektif

Berdasarkan rumusan masalah yang dikemukakan diatas, maka tujuan utama dari penelitian ini adalah untuk mengetahui pergeseran yang terjadi pada fungsi dan makna yang terdapat

[r]

[r]

[r]

Panitia Pengadaan PekerjaanKonstruksi Dinas Bina Marga dan Tata Air APBD Kota Bekasi Tahun Anggaran