• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:BJGA:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:BJGA:"

Copied!
12
0
0

Teks penuh

(1)

of Finsler-Rizza manifolds

V. Balan, E. Peyghan and A. Tayebi

Abstract. In this paper, we construct a framed f-structure on the slit tangent space of a Rizza manifold. This induces on the indicatrix bundle an almost contact metric. We find the conditions under which this struc-ture reduces to a contact or to a Sasakian strucstruc-ture. Finally we study these structures on K¨ahlerian Finsler manifolds.

M.S.C. 2010: 53B40, 53C60, 32Q60, 53C15.

Key words: Contact structures; framed f-manifolds; K¨ahlerian structures; Rizza manifolds.

1

Introduction

In [15, 16], G. B. Rizza introduced on almost complex manifolds (M, J), the so-called

Rizza condition. For Finsler structures (M, L) - where L is the Finsler metric, a triple (M, J, L) which satisfies the Rizza condition is calleda Finsler-Rizza manifold. It was shown by Heil ([4]) that if the fundamental tensor gij of the Finsler metric

L is compatible with the almost complex structure J, then the Finsler structure is Riemannian. This leads to considering a weaker assumption on the Finsler metric, like the Rizza condition. The notion of Rizza manifolds was developed further in Finslerian framework by Y. Ichijy¯o, who showed that every tangent space to a Rizza manifold is a complex Banach space and that Rizza condition does not necessarily reduce the Finsler metric to a Riemannian one ([7, 8]). He also defined a notion of K¨ahler Finsler metric and showed that for a K¨ahler Finsler manifold, the almost complex structure is integrable. Recently, several mathematicians studied Rizza and K¨ahler Finsler manifolds ([5, 9, 10, 13, 17]).

Let (M, L) be an n-dimensional Finsler manifold (n even), admitting an almost complex structure Ji

j(x). Let gij(x, y) = 12∂˙i∂˙jL

2(x, y) be the associated Finsler

metric tensor field [11, 12, 14]. We say that the fundamental functionL(x, y) satisfies

the Rizza condition, if

L(x, φθy) =L(x, y), ∀θ∈R, where φiθj=δijcosθ+Jjisinθ.

Balkan Journal of Geometry and Its Applications, Vol.16, No.2, 2011, pp. 1-12. c

(2)

In this case, M is called an almost Hermitian Finsler manifold or simply, a Rizza manifold. The Rizza condition practically requires that, for ally∈TxM, the Finsler normLshould be constant on the orbity→φθ(y), θ∈R, which lives inside the fiber

TxM. We note that each such orbit is determined by the action on y ∈ TxM of a special elementφof the loop group ΛAut(TxM) ofid−automorphisms of the tangent

bundle, defined byθ∈S1−→φ

φθ=I·cosθ+J·sinθ∈Aut(TxM).

In [6], it was shown that the Rizza condition holds if the following equivalent conditions hold true:1

• gpq(x, φθy)φpθiφ q

θj=gij(x, y), ∀θ∈R;

• gij(x, y)Ji

m(x)ymyj = 0; (gim(x, y)−gpq(x, y)J p

i(x)Jmq(x))ym= 0;

• gim(x, y)Jjm(x) +gjm(x, y)Jim(x) + 2Cijm(x, y)Jrm(x)yr= 0, whereCijm is the

Cartan tensor of the Finsler metric.

As well, it was shown that if the Finsler metric L satisfies gpq(x, y)Jip(x)Jjq(x) =

gij(x, y), then it reduces to a Riemannian metric and accordingly, (J, g) reduces to an almost Hermitian structure.

Now letM be a Rizza manifold. Then

(1.1) geij(x, y) =

1 2 ¡

gij(x, y) +gpq(x, y)Jip(x)J q j(x)

¢

,

is a homogeneous symmetric generalized metric onT M, which is called ageneralized Finsler metric; this satisfies the relation egpq(x, y)Jip(x)Jjq(x) =egij(x, y). Also, in a

Rizza manifold, the relationgij(x, y) = ˙∂i∂˙j

³

1

2egpq(x, y)y

pyholds true.

Conversely, forM a manifold admitting an almost complex structureJi

j(x), Ichijy¯o

showed ([6]) that M admits a Finsler metric which constructs a Rizza structure to-gether with Ji

j(x), if and only if M admits a generalized Finsler metric egij(x, y)

satisfying the following conditions:

• egjk(x, y) =egpq(x, y)Jjp(x)J q k(x);

• ∂k˙ egpq(x, y)ypyq = 0;

• (egjk(x, y) + ˙∂kegjm(x, y)ym)ζjζk is positive definite.

In the following, for a given Rizza manifold (M, J, L) we shall denote

(1.2) Jij(x, y) =gim(x, y)Jjm(x), Jeij(x, y) =egim(x, y)Jjm(x).

Then we obtain the following relations ([6])

(1.3) Jije =−Jji,e JimJe jm=−egij, Jije = 1

2(Jij−Jji).

By using [6, Theorem, eq. (3)] and denotingyi:=gijyj, we infer

(1.4) egijyj = 1

2(gijy

j+gpqJp iJ

q

jyj) =yi,

1We shall assume that all the Latin indices run within the range 1, n, and that the Einstein

(3)

It follows that

(1.5) egijyiyj =L2.

Also, the relations (1.2), (1.3) and (1.4) lead to

(1.6) Jijye j =−Jjiye j=−gjmJe imyj =−Jimym=−Jijyj.

By a contact manifold we mean a differentiable manifold M2n+1 endowed with with a 1-formη, such thatη∧(dη)n 6= 0. It is well known ([2]) that given the form η, there exist a unique vector fieldξ, such thatdη(ξ, X) = 0 and η(ξ) = 1; this field is called thecharacteristic vector fieldor theReeb vector fieldof the contact formη.

We say that a Riemannian metric g is an associated metric for a contact form

η if (i) η(X) = g(X, ξ) and (ii) there exist a field of endomorphisms f, such that

f2

=−I+η⊗ξ anddη(X, Y) =g(f X, Y). Then we refer to (f, ξ, η, g) as a contact metric structureand to M2n+1

with such a structure as acontact metric manifold. Analmost contact structure, (f, ξ, η), consists of a field of endomorphismsf, and a 1-formηsuch thatf2

=−I+η⊗ξandη(ξ) = 1 and analmost contact metric structure

owns a Riemannian metric which satisfies the compatibility condition g(f X, f Y) =

g(X, Y)−η(X)η(Y). The product M2n+1×

R carries a natural almost complex structure defined by

J(X, gdtd) = (f X −gξ, η(X)d

dt) and the underlying almost contact structure is said

to benormalifJ is integrable. The normality condition can be expressed asN = 0, where N is defined by N = Nf +dη⊗ξ and Nf is the Nijenhuis tensor of f. A

Sasakianmanifold is a normal contact metric manifold.

A framed f-structure is a natural generalization of an almost contact structure. It was introduced by S. I. Goldberg and K. Yano [3]. We recall its definition: letN

be a (2n+s)-dimensional manifold endowed with an endomorphismf of rank 2nof the tangent bundle, satisfyingf3+f = 0. If there exists on N the vector fields (ξ

b)

and the 1-formsηa (a, b= 1,2, . . . , s) such that

ηa(ξb) =δab, f(ξa) = 0, ηa◦f = 0, f2=−I+ s

X

a=1

ηa⊗ξa,

whereI is the identity automorphism of the tangent bundle, thenN is said to bea framedf-manifold[1].

In this paper, by using an almost complex structure Ji

j(x) and the generalized

Finsler metricgije (x, y) defined by (1.1) we introduce an almost Hermitian structure (G, F) on T M. Then we obtain a framed f-structure on T Mg = T M\{0} and by its restriction to the indicatrix bundle IM we introduce an almost contact metric structure on IM. We further find the conditions under which this structure is a contact metric structure and a Sasakian structure. Also, we study these structures on K¨ahlerian Finsler manifolds.

2

A framed

f

- structure on

T M

g

(4)

∂i = ∂

∂xi and Gmi are the components of an Ehresmann connection on M. Then we can globally define onT M an (1,1)-tensor fieldF, such that

(2.1) F(δi) =Jik∂k,˙ F( ˙∂i) =Jikδk.

SinceJi

kJjk =−δji, it is obvious thatF defines an almost complex structure onT M.

Moreover, we can introduce an inner producth ·, · isuch that

(2.2) hδi, δji=egij, hδi,∂j˙ i= 0, h∂i,˙ ∂j˙ i=egij.

Then the inner product gives onT M a globally defined Riemann metricG, as follows

(2.3) G=egijdxidxj+egijδyiδyj,

where (dxi, δyi) is the dual basis of (δ

i,∂˙i) andδyi=dyi+Gimdxm. Using (2.1) and

(2.3), we obtain

G(F(δi), F(δj)) =JikJjlG( ˙∂k,∂l˙) =JikJjlegkl=egij =G(δi, δj).

Similarly, we obtainG(F( ˙∂i), F( ˙∂j)) = egij =G( ˙∂i,∂˙j) and G(F(δi), F( ˙∂j)) = 0 = G(δi,∂j˙ ), which ultimately lead to

Theorem 2.1. On every Rizza manifold M, its tangent bundle T M admits an al-most Hermitian structure (G, F), where F and G are defined by (2.1) and (2.3), respectively.

Now we define the vector fieldsξ1, ξ2 and 1-formsη1, η2 onT Mg respectively by

(2.4) ξ1:=ymJmi δi, ξ2:=yi∂˙i

and

(2.5) η1

:= 1

L2y

mJe

imdxi, η2:=

1

L2yiδy

i.

Lemma 2.2. LetF be defined by (2.1),ξ1, ξ2 be defined by (2.4) andη1, η2be defined

by (2.5). Then we have

(2.6) F(ξ1) =−ξ2, F(ξ2) =ξ1,

and

(2.7) η1◦F =η2, η2◦F =−η1.

Proof. Relation (2.6) immediately follows from (2.1) and (2.4). To prove (2.7), we use the adapted basis (δi,∂i˙) and (1.3), which infer

(η1

◦F)( ˙∂i) = Jikη

1 (δk) =

1

L2y

mJk iJekm=

1

L2egmiy

m= 1 L2yi=η

2 ( ˙∂i),

(η2

◦F)(δi) = Jikη

2 ( ˙∂k) =

1

L2J

k iyk =

1

L2J

k

iegkryr=−

1

L2Jeiry

r=η1 (δi),

and (η1F)(δ

(5)

Lemma 2.3. LetGbe defined by (2.3),ξ1, ξ2be defined by (2.4) andη1, η2 be defined

by (2.5). Then we have

(2.8) η1

(X) = 1

L2G(X, ξ1), η 2

(X) = 1

L2G(X, ξ2),

and

(2.9) ηa(ξb) =δba, a, b= 1,2,

whereX∈ X(T Mg).

Proof. In the adapted basis (δi,∂i˙), we obtain

G(δi, ξ1) =G(δi, ykJkjδj) =ykJkjegij =ykJike =L 2

η1(δi).

Similarly, we inferG( ˙∂i, ξ2) =L2η2( ˙∂i),G( ˙∂i, ξ1) = 0 =L2η1( ˙∂i) andG(δi, ξ2) = 0 =

L2

η2

(δi), which completes the proof of (2.8). As well, using (1.3) and (1.5) we get

η1(ξ1) =η1(ykJkiδi) = 1

L2y

kJi

kymJime =

1

L2y

kymegmk = 1,

andη1(

ξ2) = 0, which prove the first relation of (2.9). In a similar way, one can prove

the second relation of (2.9). ¤

Using the almost complex structureF, we define a new tensor fieldf of type (1,1) onT Mg by

(2.10) f =F+η1⊗ξ2−η2⊗ξ1.

By using the above relation, (2.6) and (2.9) we infer thatf(ξ1) =f(ξ2) = 0. Similarly, from (2.7) and (2.9)we conclude that (η1

f)(X) = (η2

f)(X) = 0, where X ∈ X(T Mg). These relations and (2.6), (2.10) give us

f2(X) =F(f(X)) =F2(X) +η1(X)F(ξ2)−η2(X)F(ξ1) =−X+η1(X)ξ1+η2(X)ξ1.

Therefore we have

Lemma 2.4. The following properties hold true for tensor fieldf defined by (2.10):

f(ξa) = 0, ηa◦f = 0, a= 1,2,

(2.11)

f2

(X) = −X+η1

(X)ξ1+η2(X)ξ2, X∈ X(T Mg). (2.12)

Theorem 2.5. Let f,(ξa),(ηa), a= 1,2 be defined respectively by (2.10), (2.4) and (2.5). Then the triple(f,{ξa},{ηa}) provides a framedf-structure on T M.g

Proof. Considering Lemma 2.4 and relation (2.9), in order to complete the proof, we need to provef3

+f = 0 and to show thatf is of rank 2n−2. Sincef(ξ1) =f(ξ2) = 0, by using (2.11) we derive thatf3(X) =f(X), for all X ∈ X(T Mg). Now we need to show that kerf = Span{ξ1, ξ2}. It is clear that Span{ξ1, ξ2} ⊆ kerf, because

f(ξ1) =f(ξ2) = 0. Now letX ∈kerf; thenf(X) = 0 implies thatF(X) +η1(X)ξ2−

η2

(X)ξ1= 0. Thus we infer thatF2(X) =η2(X)F(ξ1)−η1(X)F(ξ2).SinceF2=−I, it follows from Lemma 2.2 thatX=η1

(6)

Theorem 2.6. The Riemannian metricGdefined by (2.3) satisfies

Proof. By using (2.10), we get the local expression off as follows:

f(δi) =

By using (2.3), (2.13) we obtain

G(f(δi), f(δj)) =JikJjhegkh+ y

By using (1.5) and (1.6), the above equation leads to

(2.15) G(f(δi), f(δj)) =gije − 1

which allow to rewrite (2.15) as follows

G(f(δi), f(δj)) =G(δi, δj)−L2η1(δi)η1(δj)−L2η2(δi)η2(δj).

Proof. By using (1.4), (2.13) and (2.14), we obtain

(7)

SinceJije =−Jjie , then from (2.16) and (2.17), we derive that Ω(δi,∂j˙) =−Ω( ˙∂j, δi).

∂i, then these equations give us the relations

Xi(Jeji+

s. Transvecting (2.19) and (2.20) withJrjegrh and using these equations we derive

thatXi = 1

ThereforeSpan{ξ1, ξ2}contains the annihilator of Ω, and consequently the annihilator of Ω is Span{ξ1, ξ2}. Also we obtain [ξ1, ξ2] =yjJjiδi =ξ1. Hence the distribution

Span{ξ1, ξ2}is integrable. ¤

3

Almost contact structure on the indicatrix bundle

Let (M, J, L) be a Finsler-Rizza manifold, and let IM be its indicatrix bundle of (M, L), i.e.,

IM ={(x, y)∈T Mg|L(x, y) = 1},

which is a submanifold of dimension 2n−1 of T Mg. Note thatξ2 defined in (2.4) is a unit vector field onIM, sinceG(ξ2, ξ2) = 1. It is easy to show thatξ2 is a normal vector field onIM with respect to the metricG. Indeed, if the local equations ofIM

inT Mg are given by

SinceF is a horizontally covariant constant, i.e., ∂L

(8)

The natural frame field{ ∂

Thus by using (3.1) and the equality yk

L =

Thusξ2is orthogonal to any tangent toIM vector. Also, the vector fieldξ1is tangent toIM, sinceG(ξ1, ξ2) = 0.

Lemma 3.1. The hypersurfaceIM is invariant with respect tof, i.e.,f(Tu(IM))⊆ Tu(IM),∀u∈IM.

Proof. By using (2.8) and the second equation of (2.11), we get

G

Thus the hypersurfaceIM is invariant with respect to f. ¤

Lemma 3.2. Let the framed f-structure be given by Theorem 2.5. Then restricting this toIM, we have

defines an almost contact metric structure onIM.

If we put ˙δj = ¯f(δj), then we get nlocal vector fields which are tangent toIM, sinceIM is an invariant hypersurface. These, together with δi, i= 1, . . . , n, are all tangent toIMand they are not linearly independent. But, consideringδi, i= 1, . . . , n

(9)

It is known that ∇iym = 0, where means h-covariant derivative with respect to

the Cartan Finsler connection (Γi

jk, Gij). From this equation we derive that δiym =

−yrΓm

ri. Thus we get

dη¯(δi, δj) =ym(∇iJjme − ∇jJime ).

Also, we inferdη¯( ˙δi,δ˙j) = 0. On the other hand, the relation

¯

G( ¯f(X),f¯(Y)) = ¯G(X, Y)−η¯(X)¯η(Y)

gives us

Ω(δi,δ˙j) =geij−JeirJejsyrys, and Ω(δi, δj) = Ω( ˙δi,δ˙j) = 0.

These relations imply that Ω =dη¯if and only if

∇iJjme − ∇jJime = 0, and ym( ˙∂kJime )Jjk = 0.

Thus we have the following.

Theorem 3.4. Let M be a Rizza manifold endowed with the Cartan Finsler connec-tion. Then( ¯f ,ξ,¯η,¯ G¯)is a contact metric structure onIM if and only ifym∂j˙Jime = 0 and∇iJejm=∇jJeim.

It is known that a Rizza manifold satisfying∇kJji = 0 is said to be aK¨ahlerian Finsler manifold. Further, if gij is a Riemannian metric, then we call it K¨ahlerian Riemann manifold. It was proved (Ichijy¯o, [6]) that if M be a K¨ahlerian Finsler manifold, thenM is Landsberg space, and that the following relations hold true

∇kJji= 0, ∇kgij=∇kegij = 0, ∇kJije = 0

on K¨ahlerian Finsler manifolds. These relations and Theorem 3.4 lead to

Corollary 3.5. IfM is a K¨ahlerian Finslerian manifold, then( ¯f ,ξ,¯η,¯ G¯)is a contact Riemannian structure onIM if and only ifym˙

jJeim= 0.

Now, letgij be a Riemannian metric. Then we have ˙∂kgij = 0, and consequently, ˙

∂kegij = 0. Therefore we obtain ˙∂kJeim = 0, sinceJeim =egijJmj and Jmj is a function

depending on (xh) only. This leads to the following

Corollary 3.6. If M is a K¨ahlerian Riemann manifold, then( ¯f ,ξ,¯ η,¯ G¯)is a contact Riemannian structure onIM.

We further obtain sufficiency conditions for the contact metric structure ( ¯f ,ξ,¯η,¯ G¯) given by Theorem 3.4, to be Sasakian.

Theorem 3.7. Let M be a Rizza manifold endowed with the Cartan Finsler connec-tion. Then( ¯f ,ξ,¯ η,¯ G¯)on IM is Sasakian if and only if

∇iJjh+JjrLhir=∇jJih+JirLhjr,

(3.5)

Rkji= (JjkJeil−JikJejl)yl,

(3.6)

ymJime hyhJhr∇rJjk+yh(Jlk+Jlse ysyk)∇jJhl +yhylykJhr∇rJjle

i = 0,

(10)

yrymh(Jire ∇jJmk −Jjre ∇iJmk) +JmhynJnkys(Jire ∇hJjse −Jjre ∇hJise )

+Jmh(Jjre ∇hJil−Jire ∇hJjl) +JmhLshlJsk(JjrJe il−JirJe jl)i= 0,

(3.8)

whereLs

hl=ym∇mChls is the Landsberg tensor.

Proof. The Nijenhuis tensor field of ¯f is defined by

(3.9) Nf¯(δi, δj) = [ ˙δi,δ˙j]−f¯[ ˙δi, δj]−f¯[δi,δ˙j] + ¯f2[δi, δj].

By using (2.13), (2.14) and the relationyh( ˙∂hJire ) = 0, we obtain

(3.10) [ ˙δi,δ˙j] =

h

Jih( ˙∂hJejl)ylyk+JikJejlyl−Jjh( ˙∂hJeil)ylyk−JjkJeilyl

i ˙

∂k.

Also, (2.13), (2.14) and the relationδjyl=−yrΓlrj give us

¯

f[ ˙δi, δj] + ¯f[δi,δj˙] =h∇iJjh− ∇jJih+ylyh(∇iJjle − ∇jJile )

+JjrLhir−JirLhjriJhkδk.

(3.11)

Similarly, we infer

(3.12) f¯2[δi, δj] =−Rkij∂k˙ =Rkji∂k,˙

whereRkij =δjGki −δiGkj. Setting (3.10), (3.11) and (3.12) into (3.9), we get

Nf¯(δi, δj) =

h

∇jJih− ∇iJjh+ylyh(∇jJeil− ∇iJejl) +JirLhjr−JjrLhir

i

Jhkδk

+hRkji+Jih( ˙∂hJejl)ylyk+JikJejlyl−Jjh( ˙∂hJeil)ylyk−JjkJeilyl

i ˙

∂k.

(3.13)

By consideration ofdη¯(δi, δj) =ym(∇

iJjme − ∇jJime ), we obtain

(dη¯⊗ξ¯)(δi, δj) =yl(∇iJejl− ∇jJeil)yhJhkδk.

Therefore we get

N(δi, δj) =h(∇jJih− ∇iJjh+JirLhjr−JjrLhir)Jhk

i

δk+hRkji+Jih( ˙∂hJjle )ylyk

+JikJjlye l−Jjh( ˙∂hJile )ylyk−JjkJilye li∂k˙ .

(3.14)

Similarly, we obtain

N( ˙δi, δj) = −f N¯ f¯(δi, δj) +

h

ymyrJrk(Jih∂˙hJejm−Jjh∂˙hJeim) +ymJeim(δjk

−JejsysJhkyh−yrJrsRhsjJhk)

i

δk+

h

ymJeimyh(Jhr∇rJjk

+Jlk∇jJhl +Jlsye syk∇jJhl +ylykJhr∇rJjle )

i ˙

∂k,

(11)

and

N( ˙δi,δ˙j) =−Nf¯(δi, δj) +

h

yrymJkm(∇jJeir− ∇iJejr) +yrym(Jeir∇jJmk −Jejr∇iJmk)

+yrymJmhynJnkys(Jeir∇hJejs−Jejr∇hJeis) +yrymJmh(Jejr∇hJil−Jeir∇hJjl)

+yrymJmhLshlJsk(JejrJil−JeirJjl)

i

δk+

h

yrymJms(JeirRkjs−JejrRkis)

+yrJeirysJejsymJml ynJnhRklh−yrJeirJjk+yrJejrJik

i ˙

∂k.

(3.16)

Since ( ¯f ,ξ,¯η,¯ G¯) is a contact structure, then from Theorem 3.4 we haveym˙

jJeim= 0

and∇iJjme =∇jJime . Setting these equations into (3.14), (3.15) and (3.16), we imply

that ( ¯f ,ξ,¯η,¯ G¯) is Sasakian if and only if

Jhk(∇iJjh+JjrLhir) =Jhk(∇jJih+JirLhjr),

(3.17)

Rkji= (JjkJeil−JikJejl)yl,

(3.18)

ymJimδe jk−Jimye mJjsye sJhkyh−ymJimye rJrsRhsjJhk= 0,

(3.19)

ym[Jimye hJhr∇rJjk+Jimye h(Jlk+Jlsye syk)∇jJhl +Jimye hylykJhr∇rJjle ] = 0,

(3.20)

yrymh(Jire ∇jJmk −Jjre ∇iJmk) +JmhynJnkys(Jire ∇hJjse −Jjre ∇hJise )

+Jmh(Jjre ∇hJil−Jire ∇hJjl) +JmhLshlJsk(JjrJe il−JirJe jl)i= 0,

(3.21)

yrymJms(JirRe kjs−JjrRe kis) +yrJirye sJjsye mJml ynJnhRklh

−yrJeirJjk+yrJejrJik= 0.

(3.22)

It is easy to check that if (3.18) holds, then (3.19) and (3.22) hold true as well. This

completes the proof. ¤

Now, ifM is a K¨ahlerian Finsler manifold, then we have∇iJjk =∇iJejk= 0 and Lk

ij= 0. Thus, the relations (3.5), (3.7) and (3.8) hold true, and we have the following

Theorem 3.8. Let (M, F)be a K¨ahlerian Finsler manifold with the Cartan Finsler connection. Then( ¯f ,ξ,¯η,¯ G¯) onIM is Sasakian if and only if the following relation holds:

Rkji= (JjkJile −JikJjle )yl.

References

[1] M. Anastasiei, A framed f-structure on tangent manifold of a Finsler space, Analele Univ. Bucuresti, Mat.- Inf., XLIX (2000), 3-9.

[2] D.E. Blair, Contact Manifolds in Riemannian Geometry, in: Lecture Notes in Math. 509, Springer, Berlin, 1976.

[3] S.I. Goldberg and K. Yano, On normal globally framed f- manifolds, Tohoku Math. J. 22 (1970), 362-370.

(12)

[5] Y. Ichijy¯o, I. Y. Lee and H. S. Park, On generalized Finsler structures with a vanishing hv-torsion, J. Korean Math. Soc. 41 (2004), 369-378.

[6] Y. Ichijy¯o, K¨ahlerian Finsler manifolds, J. Math. Tokushima Univ., 28(1994), 19-27.

[7] Y. Ichijy¯o,Almost Hermitian Finsler manifolds and nonlinear connections, Conf. Semin. Mat. Univ. Bari 215 (1986), 1-13.

[8] Y. Ichijy¯o,Finsler metrics on almost complex manifolds, Geometry Conference, Riv. Mat. Univ. Parma 14 (1988), 1-28.

[9] N. Lee, On the special Finsler metric, Bull. Korean Math. Soc. 40 (2003), 457-464.

[10] N. Lee and D. Y. Won, Lichnerowicz connections in almost complex Finsler manifold, Bull. Korean Math. Soc. 42 (2005), 405-413.

[11] G. Munteanu and M. Purcaru,On R-complex Finsler spaces, Balkan J. Geom. Appl. 14 (2009), 52-59.

[12] B. Najafi and A. Tayebi,Finsler metrics of scalar flag curvature and projective invariants, Balkan J. Geom. Appl. 15 (2010), 82-91.

[13] H. S. Park and I. Y. Lee,Conformal changes of a Rizza manifold with a gener-alized Finsler structure, Bull. Korean Math. Soc. 40 (2003), 327-340.

[14] E. Peyghan and A. Tayebi,A K¨ahler structures on Finsler spaces with non-zero constant flag curvature, Journal of Mathematical Physics 51, 022904 (2010). [15] G. B. Rizza,Strutture di Finsler sulle varieta quasi complesse, Atti Accad. Naz.

Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei. 33 (1962), 271-275.

[16] G. B. Rizza,Strutture di Finsler di tipo quasi Hermitiano, Riv. Mat. Univ. Parma 4 (1963), 83-106.

[17] D. Y. Won and N. Lee,Connections on almost complex Finsler manifolds and Kobayashi hyperbolicity, J. Korean Math. Soc. 44 (2007), 237-247.

Authors’ addresses:

Vladimir Balan,

Univ. Politehnica of Bucharest, Faculty of Applied Sciences, Bucharest, Romania. E-mail: vbalan@mathem.pub.ro, vladimir.balan@upb.ro

Esmaeil Peyghan,

Arak University, Faculty of Science, Department of Mathematics, Arak, Iran. E-mail: epeyghan@gmail.com

Akbar Tayebi,

Referensi

Dokumen terkait

Sejalan dengan taksonomi pendekatan terhadap studi agama yang dilakukan Charles Adam tersebut, kita bisa menemukan bahwa kesadaran untuk melakukan studi agama di kalangan ilmuwan

Perancangan sistem informasi Absensi ini secara sederhana dapat digambarkan sebagai sebuah bentuk fasilitas yang memberikan pelayanan bagi setiap pegawai PDAM Tirta

Materi e-learning dikatakan sebagai enrichmen t (pengayaan),apabila kepada peserta didik yang dapat dengan cepat menguasai/memahami materi pelajaran yang disampaikan

Harga Penawaran : Rp 88.311.000 (Delapan puluh delapan juta tiga ratus sebelas ribu rupiah). Demikian pengumuman ini disampaikan

Departemen Keuangan Republik Indonesia, Direktorat Jenderal Kekayaan Negara Kantor Wilayah XII Banjarmasin bekerjasama dengan Unit Layanan Pengadaan Kota Banjarbaru mengundang

Dari perhitungan diperoleh daya penggerak poros (P) : 74,04 kW, sedangkan di lapangan adalah 393,2 kW. Ada beberapa kemungkinan yang dapat mengakibatkan penurunan tersebut,

Demikian pengumuman ini kami sampaikan, apabila ada peserta yang berkeberatan atas pengumuman ini dapat menyampaikan sanggahan secara tertulis atas penetapan

dapat dijelaskan bahwa persentase jenis kerusakan yang terbesar adalah retak kulit buaya yaitu sebesar 3.78% dari luas total jalan yang ditinjau.. Sedangkan,