• Tidak ada hasil yang ditemukan

Materi PowerPoint Pembelajaran Mata Kuliah Fisika Dasar

N/A
N/A
Protected

Academic year: 2017

Membagikan "Materi PowerPoint Pembelajaran Mata Kuliah Fisika Dasar"

Copied!
35
0
0

Teks penuh

(1)

Fisika Dasar I

WAHIDIN ABBAS FT Mesin UNY abbas@uny.ac.id

 Pengukuran dan Satuan  Satuan dasar

Sistem Satuan

Konversi Sistem SatuanAnalisis Dimensional  Kinematika Partikel

(2)
(3)
(4)

Mekanika Klasik (Newton):

Mekanika: Bagaimana dan mengapa benda-benda

dapat bergerak

Klasik:

» Kecepatan tidak terlalu cepat (v << c)

» Ukuran tidak terlalu kecil (d >> atom)

 Pengalaman sehari-hari banyak yang terjadi berdasarkan aturan-aturan mekanika klasik.

(5)

 Bagaimana mengukur dimensi?

 Semua ukuran di dalam mekanika klasik dapat dinyatakan dengan satuan dasar:

Length L PanjangMass M MassaTime T Waktu

 Contoh:

Kecepatan mempunyai satuan L / T (kilometer per jam).Gaya mempunyai satuan ML/ T2 .

(6)

Panjang:

Jarak Panjang (m)

Jari-jari alam semesta 1 x 1026

Ke galaksi Andromeda 2 x 1022

Ke bintang terdekat 4 x 1016

Bumi - matahari 1.5 x 1011

Jari-jari bumi 6.4 x 106

Sears Tower 4.5 x 102

Lapangan sepak bola 1.0 x 102

Tinggi manusia 2 x 100

Ketebalan kertas 1 x 10-4

(7)

Waktu:

Interval Time (s)

Umur alam semesta 5 x 1017

Umur Grand Canyon 3 x 1014

32 tahun 1 x 109

1 tahun 3.2 x 107

1 jam 3.6 x 103

Perjalanan cahaya dari mh ke bumi 1.3 x 100

Satu kali putaran senar gitar 2 x 10-3

Satu putaran gel. Radio FM 6 x 10-8

Umur meson pi netral 1 x 10-16

(8)

Massa:

Object Mass (kg)

Galaksi Bima Sakti 4 x 1041

Matahari 2 x 1030

Bumi 6 x 1024

Pesawat Boeing 747 4 x 105

Mobil 1 x 103

Mahasiswa 7 x 101

Partikel debu 1 x 10-9

Quark top 3 x 10-25

Proton 2 x 10-27

Electron 9 x 10-31

(9)

Satuan ...

Satuan Internasional, SI (Système International) :

mks: L = meters (m), M = kilograms (kg), T = seconds (s)cgs: L = centimeters (cm), M = grams (gm), T = seconds (s)

Satuan Inggris:

Inci (Inches, In), kaki (feet, ft), mil (miles, mi), pon (pounds)

(10)

Converting between different systems of units

 Useful Conversion factors:  1 inch = 2.54 cm1 m = 3.28 ft1 mile = 5280 ft 1 mile = 1.61 km

 Example: convert miles per hour to meters per second:

(11)

 Analisis dimensional merupakan perangkat yang sangat berguna untuk memeriksa hasil perhitungan dalam sebuah soal.

Sangat mudah dilakukan!

 Contoh:

Dalam menghitung suatu jarak yang ditanayakan di dalam sebuah soal, diperoleh jawaban

d = vt 2 (kecepatan x waktu2)

Satuan untuk besaran pada ruas kiri= L

Ruas kanan = L / T x T2 = L x T

 Dimensi ruas kiri tidak sama dengan dimensi ruas kanan, dengan demikian, jawaban di atas pasti salah!!

(12)

Lecture 1,

Act 1

Dimensional Analysis

The period P of a swinging pendulum depends only on

the length of the pendulum d and the acceleration of

gravity g.

Which of the following formulas for P could be

correct ?

(a)

P = 2

(dg)

2 (b) (c)

P

d

g

2

P

d

(13)

Lecture 1,

Act 1

Solution

Realize that the left hand side P has units of time (T )Try the first equation

(a) (b) (c)

(a) Not Right !!

P

2

dg

2

L

L

T

L

T

T

2 2 4 4

P

d

g

2

P

d

g

(14)

(b) Not Right !!

Try the second equation

Lecture 1,

Act 1

Solution

L

L

T

T

T

2

2

(15)

(a) (b) (c)

(c) This has the correct units!!

This must be the answer!!Try the third equation

Lecture 1,

Act 1

Solution

T

T

T

L

L

2

2

P

2

dg

2

P

d

g

2

P

d

g

(16)

Motion in 1 dimension

 In 1-D, we usually write position as x(t1 ).

 Since it’s in 1-D, all we need to indicate direction is + or .

 Displacement in a time t = t2 - t1 is

x = x(t2) - x(t1) = x2 - x1

x

x

x1

x2 some particle’s trajectory

(17)

1-D kinematics

t x

t1 t2

x

x1

x2 trajectory

 Velocity v is the “rate of change of position”  Average velocity vav in the time t = t2 - t1 is:

Vav = slope of line connecting x1 and x2.

(18)

 Consider limit t1 t2

 Instantaneous velocity v is defined as:

1-D kinematics...

t x

t t

x

x1 x2

so v(t2) = slope of line tangent to path at t2. dt

) t ( dx )

t (

(19)

1-D kinematics...

 Acceleration a is the “rate of change of velocity”  Average acceleration aav in the time t = t2 - t1 is:

 And instantaneous acceleration a is defined as:

using t v t t ) t ( v ) t ( v a 1 2 1 2 av       2 2 dt ) t ( x d dt ) t ( dv ) t (

a  

(20)

Recap

 If the position x is known as a function of time, then we can find both velocity v and acceleration a as a function of time!

x

a

v t

t

a dv

dt

d x dt

 

2 2

v dx

dt

(21)

More 1-D kinematics

 We saw that v = dx / dt

 In “calculus” language we would write dx = v dt, which we can integrate to obtain:

 Graphically, this is adding up lots of small rectangles:

v(t)

t

+ +...+

= displacement

2

1

t

t 1

2

x

t

v

t

dt

t

(22)

 High-school calculus:

 Also recall that

 Since a is constant, we can integrate this using the above rule to find:

 Similarly, since we can integrate again to get:

1-D Motion with constant acceleration

const t 1 n 1 dt

tn n 1

    a dv dtv dx dt      

a dt a dt at v0

v

0 0

2

0 at v t x

2 1 dt ) v at ( dt v

(23)

Recap

 So for constant acceleration we find:

x

a

v t

t t

Plane w/ lights

at v

v0

2 0

0 v t 21 at

x

x   

(24)

Lecture 1,

Act 2

Motion in One Dimension

 When throwing a ball straight up, which of the following is true about its velocity v and its acceleration a at the

highest point in its path?

(a) Both v = 0 and a = 0.

(25)

Lecture 1,

Act 2

Solution

x

a

v t

t t  Going up the ball has positive velocity, while coming down

it has negative velocity. At the top the velocity is momentarily zero.

 Since the velocity is

continually changing there must be some acceleration.

In fact the acceleration is caused by gravity (g = 9.81 m/s2).

(more on gravity in a few lectures)

(26)

Derivation:

 Plugging in for t:  Solving for t:

at v

v00 0 at2

2 1 t v x

x   

a v v

t 0

2 0 0 0 0 a v v a 2 1 a v v v x x                 ) x x ( a 2 v

(27)

Average Velocity

 Remember that

v

t t

v vav v0

at v

v0

v v

2 1

(28)

Recap:

 For constant acceleration:

 From which we know:

Washers v) (v 1 v ) x 2a(x v

v2 02 0

     at v

v0

2 0

0 v t 21 at

x

x   

(29)

Problem 1

 A car is traveling with an initial velocity v0. At t = 0, the driver puts on the brakes, which slows the car at a rate of

ab

x = 0, t = 0 ab

(30)

Problem 1...

 A car is traveling with an initial velocity v0. At t = 0, the driver puts on the brakes, which slows the car at a rate of

ab. At what time tf does the car stop, and how much farther

xf does it travel?

x = x , t = t v = 0

x = 0, t = 0 ab

(31)

Problem 1...

 Above, we derived: v = v0 + at

 Realize that a = -ab

 Also realizing that v = 0 at t = tf : find 0 = v0 - ab tf or

(32)

Problem 1...

 To find stopping distance we use:

 In this case v = vf = 0, x0 = 0 and x = xf

f b 2

0 2( a )x

v  

2 0 f

v x

) x 2a(x v

(33)

Problem 1...

 So we found that

 Suppose that vo = 65 mi/hr = 29 m/s Suppose also that ab = g = 9.81 m/s2

 Find that tf = 3 s and xf = 43 m

b 2 0 f

b 0

f

a

v

2

1

x

,

a

v

(34)

Tips:

Read !

Before you start work on a problem, read the problem statement thoroughly. Make sure you understand what information is given, what is asked for, and the meaning of all the terms used in stating the problem.

Watch your units !

Always check the units of your answer, and carry the units along with your numbers during the calculation.

Understand the limits !

(35)

Recap of today’s lecture

 Scope of this course

 Measurement and Units (Chapter 1)

Systems of units (Text: 1-1)

Converting between systems of units (Text: 1-2)Dimensional Analysis (Text: 1-3)

 1-D Kinematics (Chapter 2)  Average & instantaneous velocity

and acceleration (Text: 2-1, 2-2)

Motion with constant acceleration (Text: 2-3)  Example car problem (Ex. 2-7)

Referensi

Dokumen terkait

Berdasarkan hasil evaluasi administrasi, evaluasi teknis dan evaluasi harga TIDAK ADA peserta yang memenuhi syarat untuk ditunjuk sebagai calon pemenang

Perubahan manajemen adalah salah satu cara untuk meningkatkan kualitas para dosen yaitu proses secara sistematis dalam menerapkan pengetahuan, sarana dan prasarana, sumber

Pendaftaran dan pengambilan Dokumen Pengadaan dapat diwakilkan dengan membawa surat tugas dari direktur utama/pimpinan perusahaan/kepala cabang dan kartu pengenal. Seseorang dilarang

Pengendalian Pelaksanaan Kegiatan Pembangunan di Kecamatan Belanja Alat Tulis Kantor JB: Barang/jasa JP: Barang 1 paket Rp. Pengembangan Unit Layanan Pengadaan Pengadaan Komputer/PC

Tujuan penelitian ini adalah untuk mengkaji efektivitas pembelajaran konstruktivisme dengan penggunaan papan flanel dalam meningkatkan kemampuan membaca permulaan di kelas

dalam Calon Daftar Pendek dinyatakan gugur, maka kepada peserta yang memenuhi Persyaratan Kualifikasi dan penilaian Persyaratan Teknis Kualifikasi dengan urutan

 Membuat rancangan gagasan (desain) dalam bentuk gambar skets/tertulis untuk kegiatan proses produksi (teknik, bahan, alat), dan ketentuan keselamatan kerja pada

Yang hadir pada saat Klarifikasi dan Pembuktian kualifikasi harus Direktur Perusahaan atau Kuasa Direktur yang namanya tercantum dalam akte perusahaan dengan