• Tidak ada hasil yang ditemukan

January 2014 Revision after the Thesis Defense on 20

N/A
N/A
Protected

Academic year: 2023

Membagikan "January 2014 Revision after the Thesis Defense on 20"

Copied!
12
0
0

Teks penuh

(1)

DEVELOPMENT AND IMPLEMENTATION OF DISTRIBUTE CONTROL SYSTEM FOR HEXAPOD ROBOT

By

Nicolaus Kevin 11109060

A thesis submitted to the Faculty of

ENGINEERING AND INFORMATION TECHNOLOGY Department of

MECHATRONICS ENGINEERING

in partial fulfillment of the requirements for the

BACHELOR’S DEGREE in

MECHATRONICS

SWISS GERMAN UNIVERSITY EduTown BSD City

Tangerang 15339 Indonesia January 2014

Revision after the Thesis Defense on 20th January 2014

(2)

Nicolaus Kevin STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at any educational institution, except where due acknowledgement is made in the thesis.

Nicolaus Kevin

_____________________________________________

Student

________________

Date Approved by:

Dipl. –Ing Maralo Sinaga

_____________________________________________

Thesis Advisor

________________

Date

Dr. Ir. Prianggada Indra Tanaya, MME.

_____________________________________________

Thesis Co-Advisor

________________

Date

Dr. Ir. Gembong Baskoro, M. Sc.

_____________________________________________

Dean

________________

Date

(3)

ABSTRACT

DEVELOPMENT AND IMPLEMENTATION OF DISTRIBUTE CONTROL SYSTEM FOR HEXAPOD ROBOT

By Nicolaus Kevin Dipl. –Ing Maralo Sinaga Dr. Ir. Prianggada Indra Tanaya, MME.

SWISS GERMAN UNIVERISTY

The objective of this thesis work is to develop the Hexapod robot and implement the distribute control to the Hexapod robot. The Hexapod robot is equipped with 18 servos motor in total as the actuator for all the leg with 3 Degree of Freedom for each leg and the Hexapod robot is controlled by Android phone via Bluetooth®

Furthermore serial communication methods will be developed with three microcontroller to archive this purpose. The purpose of distributed control in Hexapod robot is to reduce tasks and to separate the tasks of movement control into three microcontrollers.

Keyword: Hexapod, Legged Robot, Mobile Robot, Distributed Control, Bluetooth®

(4)

Nicolaus Kevin

© Copyright 2014 by Nicolaus Kevin All rights reserved

(5)

DEDICATION

I dedicate this thesis to God, my parents, my sister, my advisor, my co-advisor and all of my best friends

(6)

Nicolaus Kevin ACKNOWLEDGMENTS

First I wish to thank God for the chance and bless to do and finish the thesis.

I wish to thank my family, who always encourage and pray for me, support the financial needs of this thesis and take care of me in every way.

I would like to thank Dipl.-Ing Maralo Sinaga, as the thesis advisor for all the assistance, advice for thesis writing, electrical problem, guidance during the difficult time of study and chance that he gave me to make the thesis project complete and also had been inspiring my life as a student

I would to thank also Dr. Ir. Prianggada Indra Tanaya, MME, as a co-advisor for his assistance, advice guidance in robot system, mechanical design and robotics point of view in thesis writing.

I wish to thank Cepi Hanafi for his advice and guidance especially in mechanical design.

Special thanks to Jean Gabriel Dufresse ST., B.Eng. for his massive support in programming, especially during the hardest time during thesis work, and give a lot of support.

Special thanks to Theresia Paramitha Puspita ST., B.Eng. and Nirmala ST., B.Eng. for the help in thesis report writing.

I would also wishes thanks to ibu Yanie Sakrie Sirat for her assistance during 4 years study in SGU.

I would like to thank all my colleagues in Mechatronics Batch 2009. Also all of my best friends, Jean Gabriel Dufresse ST., B.Eng., Steven Fransisko ST., B.Eng., Kevin Marcelino ST., B.Eng., Winson Tewira ST., B.Eng., Eric Permadi ST., B.Eng.,

(7)

William Tjiu ST., B.Eng., Fani Kurniawan Mista ST., B.Eng., Sutrisno Citra ST., B.Eng., Alvin Chandra ST., B.Eng., Antonny Setiawan ST., B.Eng., Stacy Samuel ST., B.Eng., Theresia Paramitha Puspita ST., B.Eng., Nirmala ST., B.Eng., Elvira Marsha, Anta Maulana, Ahmad Azhar Setyadi, and Muhammad Radityo for supporting me all the time. I wish all the best for our lives.

Special thanks to dr. Jonas Ardianta Bangun Sp.Rad, Maria Naomi Sinambela S.Ikom, Arif Zaki Mubarak S.Kom, Muhammad Hajiji, Teguh Arifianto S.E., M.M., Peter Wu, Vinz Constantine, Dede Prayogi for their massive support, especially during the hardest part of my life.

I thank all fellow Sabang Merauke members for their massive support, so I can finish my study.

I would also like to thank my junior high school friend, Ruth Priscilia Angelina who support me and restore my spirit.

Without all those listed above, this thesis would not have been completed.

(8)

Nicolaus Kevin TABLE OF CONTENTS

STATEMENT BY THE AUTHOR ... 2

 

ABSTRACT ... 3

 

DEDICATION ... 5

 

ACKNOWLEDGMENTS ... 6

 

TABLE OF CONTENTS ... 8

 

CHAPTER 1 - INTRODUCTION ... 13

 

1.1 Background ... 13 

1.2 Thesis Purpose ... 13 

1.3 Thesis Scope ... 14 

1.4 Thesis Limitation ... 14 

1.5 Thesis Structure ... 14 

CHAPTER 2 - LITERATURE REVIEW ... 16

 

2.1 Introduction ... 16 

2.2 Stag Beetle-I Robot ... 16 

2.3 Stag Beetle-II Robot ... 17 

2.4 Arachnoid-I Robot ... 18 

2.5 Arachnoid-II Robot ... 19 

2.6 A-pod Robot... 20 

2.7 Phantom-X Robot ... 20 

2.9 Control System... 21 

2.10 Communication ... 25 

2.10.1 Parallel data transmission ... 26 

2.10.2 Serial data transmission ... 26 

2.10.2.1 RS-232 ... 28 

2.10.2.2 Bluetooth ... 29 

CHAPTER 3 – RESEARCH METHODS ... 32

 

3.1 General Overview ... 32 

3.2 System Design Overview ... 32 

3.3 Mechanical Design... 34 

3.3.1 Gait Analysis ... 34 

3.3.2 Degree of Freedom ... 36 

3.3.3 Torque Calculation... 38 

3.3.4 Upper Body and Lower Body ... 42 

3.3.5 Leg Part ... 43 

3.4 Selection of Electronics Components ... 44 

3.4.1 Microcontroller ... 45 

3.4.2 Electric Servo Motor ... 47 

3.4.3 Tri-State Buffer ... 49 

3.4.4 Power Supply ... 50 

3.4.5 Robot Communication ... 51 

3.5 Main Program and Subroutine ... 53 

3.6 Distributed Control System... 55 

3.6.1 Electrical Connection of Distributed Control ... 55 

3.6.2 Algorithm of Distributed Control ... 56 

(9)

3.7 Software Tools ... 56 

3.7.1 Arduino IDE... 57 

3.7.2 Processing IDE... 58 

CHAPTER 4 – RESULT AND DISCUSSION ... 61

 

4.1 General Overview ... 61 

4.2 Mechanical Result and Discussion ... 61 

4.2.1 Hexapod robot body part mechanical result ... 61 

4.2.2 Hexapod robot leg part mechanical result ... 62 

4.2.4 Friction Problem ... 64 

4.3 Electrical Result ... 65 

4.3.1 Current-Speed Servo Testing ... 65 

4.3.2 Current-Weight Servo Testing ... 67 

4.3.3 Bluetooth Range Result ... 69 

4.3.4 Tri-State Buffer PCB ... 70 

4.4 Communication Test ... 73 

4.5 Stability Test ... 74 

4.6 Accuracy Test in Straight Movement of Hexapod Robot ... 76 

4.7 Accuracy Test in Pivoting Movement of Hexapod Robot ... 79 

4.8 Speed Test ... 81 

CHAPTER 5 – CONCLUSION AND RECOMMENDATION ... 83

 

5.1 Conclusion ... 83 

5.2 Recommendation ... 83 

GLOSARRY ... 84

 

REFERENCE ... 85

 

A.1 Upper and Lower Body ... 88 

A.2 Tibia1 ... 89 

A.3 Tibia2 ... 90 

APPENDIX B – DATA SHEET ... 91

 

B.1 Arduino Mega 2560 ... 91 

B.2 Arduino Mega 2560 Schematic ... 97 

B.3 ATmega2560 ... 98 

B.4 74LS241 ... 104 

B.5 Dynamixel AX 12-A ... 107 

APPENDIX C – PROGRAM CODE ... 128

 

C.1 Master.ino ... 128 

C.2 SlaveA.ino ... 130 

C.3 SlaveB.ino ... 135 

C.4 Movementsequence.h ... 141 

APPENDIX D – BILL OF MATERIAL ... 143

 

CURRICULUM VITAE ... 144

 

(10)

Nicolaus Kevin LIST OF FIGURES

Figure 2.1 Stag Beetle-I robot by Pramana ... 16 

Figure 2.2 Stag Beetle-II robot by Ramadhan ... 17 

Figure 2.3 Arachnoid-I robot by ... 19 

Figure 2.4 Arachnoid-I robot (Right) and Arachnoid-II robot (Left) ... 19 

Figure 2.5 A-pod robot by Kåre Halvorsen ... 20 

Figure 2.6 ArbotiX controller ... 21 

Figure 2.7 Phantom-X robot by Kåre Halvorsen a.k.a Zenta ... 21 

Figure 2.8 Execution view of multi-agent systems ... 23 

Figure 2.9 Elements of an agent ... 24 

Figure 2.10 Three different ways to make decisions, plan, and select action ... 24 

Figure 2.11 Schematic diagram of a simple data communication system ... 25 

Figure 2.12 Configuration of parallel data transmission ... 26 

Figure 2.13 Configuration of serial data transmission ... 27 

Figure 3.1 System overview of Hexapod robot ... 32 

Figure 3.2 Input / Output diagram ... 33 

Figure 3.3 Project break down ... 34 

Figure 3.4 The Tripod gait move sequence ... 35 

Figure 3.5 The Wave gait move sequence ... 35 

Figure 3.6 The Ripple gait move sequence ... 36 

Figure 3.7 The timing diagram ... 36 

Figure 3.8 Illustration of Torque ... 38 

Figure 3. 9 Force distribution when 3 Legs are up ... 39 

Figure 3.10 Torque distribution ... 40 

Figure 3.11 Torque calculation for one side ... 41 

Figure 3.12 Upper body and lower Body... 42 

Figure 3.13 Upper and lower body 2D view ... 42 

Figure 3.14 The Coxa ... 43 

Figure 3.15 The Femur ... 43 

Figure 3.16 The Tibia ... 44 

Figure 3.17 Block diagram of electrical ... 45 

Figure 3.18 Arduino Mega 2560 R3 ... 47 

Figure 3.19 Standart Servo motor in the market ... 47 

Figure 3.20 the Dynamixel ... 48 

Figure 3.21 Dynamixel AX-12A ... 49 

Figure 3.22 Tri-State Buffer configuration ... 50 

Figure 3.23 9V Alkaline battery ... 50 

Figure 3.24 11V Battery 2200mAh from Turnigy ... 51 

Figure 3.25 Seeduino Bluetooth® shield ... 52 

Figure 3.26 Hexapod robot main program and forward subroutine flowchart ... 54 

Figure 3.27 Hexapod robot intial and turning subroutine flowchart ... 54 

Figure 3.28 Electrical connection of distributed control diagram ... 55 

Figure 3.29 Algoritm of distributed control ... 56 

Figure 3.30 Arduino IDE graphical user interface ... 57 

Figure 3.31 Graphical user interface of Processing IDE ... 58 

Figure 3.32 GUI of Android phone ... 59 

Figure 3.33 Flowchart of the Android phone GUI ... 60 

(11)

Figure 4.1 (a) Hexapod robot lower body front view ... 61 

(b) Hexapod robot upper body front view ... 61 

Figure 4. 2 Result of Manufactured Tibia ... 62 

Figure 4.3 Hexapod robot leg assembly mechanical result ... 63 

Figure 4.4 Hexapod robot complete assembly mechanical ... 63 

Figure 4.5 The modified Tibia ... 64 

Figure 4.6 The wiring of the test ... 65 

Figure 4.7 Current-speed servo testing graph ... 66 

Figure 4.8 Current-weight servo testing ... 67 

Figure 4.10 Bluetooth range and obstacles test ... 70 

Figure 4.11 The Tri-State Buffer PCB ... 71 

Figure 4.12 All of electrical component ... 71 

Figure 4.13 Servo motor configuration in the Hexapod robot ... 72 

Figure 4.14 Final design of the Hexapod robot ... 72 

Figure 4.15 Centralized control communication experiment result ... 73 

Figure 4.16 Distributed control communication experiment result ... 73 

Figure 4.17 Stability experiment 1... 74 

Figure 4.18 Stability experiment 2... 74 

Figure 4.19 Stability experiment 3... 75 

Figure 4.20 straight movement experiment 1 and straight movement experiment 2 ... 76 

Figure 4.21 Straight movement experiment 3 ... 76 

Figure 4.22 Graph of average error per test result in straight movement of Hexapod robot ... 78 

Figure 4.23 Accuracy test in pivoting of Hexapod robot ... 79 

Figure 4.24 The result of accuracy test in pivoting CW and CCW of Hexapod robot 79  Figure 4.25 Graph of average error per test result in pivoting movement of Hexapod robot ... 81 

Figure 4.26 Speed test experiment ... 81 

(12)

Nicolaus Kevin LIST OF TABLES

Table 2.1 Comparison table between Stag Beetle-I Robot and Stag Beetle-II Robot . 18 

Table 3.1 Weight Approximation of the Hexapod robot ... 39 

Table 3.2 Comparison table the Dynamixel Servos... 48 

Table 4.1 The Speed-Current Table ... 66 

Table 4.2 The Weight-Current table ... 68 

Table 4.3 Weight Approximation of the Hexapod robot ... 68 

Table 4.4 Bluetooth range test result ... 70 

Table 4.5 Execution time result ... 74 

Table 4.6 Result of Stability Test ... 75 

Table 4.7 Table of accuracy test result in straight movement of Hexapod robot ... 78 

Table 4.8 Table of accuracy test result in pivoting movement of Hexapod robot ... 80 

Table 4.9 Table of speed test result of Hexapod robot ... 82 

Referensi

Dokumen terkait

Ardian Eka Permana, 2017, Making Video Company Profile to Promote Lituhayu Vespa Indonesia, English Diploma Program, Faculty of Cultural Sciences, Sebelas Maret

(Kasus Kemitraan di PT. Great Giant Pineapple Kecamatan Terbanggi Besar Kabupaten Lampung Tengah). PROGRAM EKSTENSI

Alhamdulillah, puji syukur kepada Allah SWT yang telah memberikan rahmat, hidayah dan karunia-Nya kepada penulis sehingga penulis dapat menyelesaikan skripsi dengan

Tesis yang berjudul “ Evaluasi Pemeliharaan dan Rehabilitasi Jalan Nasional Menggunakan Metode International Roughness Index (IRI) dan Benkelman Beam (BB) Di

Ari Natalia Probandari, Ph.D, MPH selaku penguji dan Ketua Minat Ilmu Biomedik Program Pasca Sarjana Universitas Sebelas Maret, penulis mengucapkan terimakasih atas

Berdasarkan hasil penelitian dan pembahasan dapat disimpulkan bahwa ada peningkatan kemampuan berhitung siswa kelas IV SDN Gelur setelah mengikuti pembelajaran

Penerapan sistem kendali traksi pada Motor DC memerlukan hardware pendukung yang bagus, hardware tersebut harus memiliki kemampuan untuk merespon Input dan Output dengan

[r]