• Tidak ada hasil yang ditemukan

PENGEMBANGAN MEDIA WEBSITE PEMBELAJARAN MATERI PROGRAM LINEAR UNTUK SISWA SEKOLAH MENENGAH ATAS. Muhammad Win Afgani 1, Darmawijoyo 2, Purwoko, M.

N/A
N/A
Protected

Academic year: 2021

Membagikan "PENGEMBANGAN MEDIA WEBSITE PEMBELAJARAN MATERI PROGRAM LINEAR UNTUK SISWA SEKOLAH MENENGAH ATAS. Muhammad Win Afgani 1, Darmawijoyo 2, Purwoko, M."

Copied!
170
0
0

Teks penuh

(1)

commit to user

SEKOLAH MENENGAH ATAS

Muhammad Win Afgani1, Darmawijoyo2, Purwoko, M.Si2

ABSTRAK

Penelitian ini bertujuan menghasilkan sebuah website dengan konten program linear. Responden penelitian ini adalah para siswa kelas XII SMA Negeri 1 Palembang. Media ini dikembangkan melalui empat tahapan, yaitu tahap analisis pendahuluan, tahap perancangan, tahap evaluasi, dan tahap revisi. Untuk melihat keefektifannya, peneliti melakukan uji pakar dan uji coba ke lapangan dengan indikator bagaimana motivasi, sikap, dan hasil belajar siswa. Hasil penelitian menunjukkan prototype media website yang ketiga merupakan disain yang efektif ketika digunakan pada saat pembelajaran dengan 71,79% siswa Termotivasi; 61,54% siswa mempunyai sikap Tertarik, dan hasil belajar siswa yang mencapai 51,28% masuk dalam kategori Baik Sekali, sehingga dapat disimpulkan bahwa website yang peneliti kembangkan efektif digunakan pada saat pembelajaran matematika.

Kata kunci : Pengembangan, Media, Website, Program Linear

PENDAHULUAN

Berkembangnya ilmu dan teknologi telah membawa perubahan pada learning

material atau materi pembelajaran. Pemilihan materi yang sesuai dengan media yang

ditentukan merupakan langkah awal yang penting, disamping pemaparan yang mudah dicerna, serta memungkinkan peserta didik dapat mencapai tingkat penguasaan secara mandiri (Universitas Terbuka, 2006).

1

Mahasiswa Program Studi Pendidikan Matematika PPS UNSRI

2

Dosen Program Studi Pendidikan Matematika PPS UNSRI

(2)

commit to user

48

Pembelajaran matematika dapat menjadi pengalaman yang menyenangkan bagi setiap siswa. Hal ini tergantung pada gurunya dalam menyampaikan matematika sebagai suatu aplikasi yang menarik (Edge, 2008). Furner, et al (2008) menyatakan bahwa salah satu strategi untuk mengajar matematika yang dapat mencapai seluruh siswa adalah dengan mengakses internet dan menggunakan software matematika. Internet dan software computer dapat digunakan sebagai alat pengajaran untuk mengeksplorasi, menyelidiki, menyelesaikan masalah, berinteraksi, merefleksi, bernalar, berkomunikasi, dan belajar banyak konsep yang sesuai kurikulum sekolah. Sejalan dengan diterapkan Kurikulum Tingkat Satuan Pendidikan (KTSP) dimana materi pelajaran yang disampaikan disesuaikan dengan kondisi peserta didik, maka peran guru sangat menentukan dalam proses pembelajaran (Riana, 2007)

Saat ini, Depdiknas telah mengem- bangkan pembelajaran melalui internet. Untuk mendukung proses pembelajaran ini, Depdiknas membangun backbone Jejaring Pendidikan Nasional, atau populer dengan istilah Jardiknas. Sayangnya, konten yang tersedia belum memadai (Saragih, 2007). Dikarenakan hal tersebut, perlu dilakukannya suatu usaha untuk merancang materi pembelajaran khususnya pelajaran matematika. Agar materi tersebut menarik sehingga memotivasi peserta didik belajar mandiri, maka materi dikembangkan menggunakan teknologi informasi komunikasi dengan menempatkannya pada media website yang terkoneksi dengan internet yang mana manfaat media dapat diasosiasikan sebagai penarik perhatian dan membuat siswa tetap terjaga dan memperhatikan (Kemp & Dayton dalam Arsyad, 2003).

Pada penelitian sebelumnya telah dilakukan suatu usaha mengembangkan media pembelajaran geometri yang menggunakan software Macromedia Flash MX

2004 dan Microsoft Powerpoint 2003 yang dilakukan oleh Utami (2007). Dari hasil

penelitian tersebut dapat diketahui bahwa penggunaan media komputer dalam pembelajaran geometri dapat memotivasi dan meningkatkan hasil belajar siswa SMP. Selain itu, pada penelitian Developing A Learning Environment on Realistic

Mathematics Education for Indonesian Student Teachers yang dilakukan oleh

Zulkardi (2002) menunjukkan bahwa media website dapat membantu dan mempermudah mahasiswa pendidikan matematika dalam mempelajari pendekatan Pendidikan Matematika Realistis karena dapat diakses dimanapun dan kapanpun mereka inginkan.

Pada peneltian selanjutnya, peneliti tertarik untuk mengembangkan materi pembelajaran matematika SMA kelas XII pokok bahasan program linear yang ditempatkan pada media website dengan memberikan animasi dan latihan interaktif menggunakan Software Macromedia Flash 8.0. Program linear dipilih sebagai materi yang akan disajikan pada media website dikarenakan pada website www.edukasi.net yang dikembangkan oleh Pustekkom dan http://media.diknas.go.id belum menyajikan materi tersebut dan karena materi ini banyak berhubungan dengan penjelasan secara grafik yang perlu digambarkan secara berulang-ulang. Agar pembelajaran pada materi ini terkait dengan kehidupan siswa, maka materi pembelajaran juga akan diberikan pendekatan kontekstual. Setelah peneliti mengadakan observasi informal ke SMA Negeri 1 Palembang, peneliti memilih siswa sekolah tersebut sebagai responden penelitian dikarenakan siswa pada sekolah tersebut mempunyai literasi komputer yang baik dan didukung fasilitas laboratorium komputer yang memadai.

(3)

commit to user

49 Berdasarkan uraian diatas, maka peneliti mengambil judul ”Pengembangan Media Website Pembelajaran Materi Program Linear untuk Siswa Sekolah Menengah Atas”.

RUMUSAN MASALAH

Berdasarkan latar belakang diatas, maka rumusan masalah penelitian ini adalah :

1. Bagaimanakah mengembangkan dan menghasilkan media website pada materi program linear yang valid untuk pembelajaran mandiri ?

2. Bagaimanakah sikap siswa terhadap pembelajaran program linear dengan media website ?

3. Bagaimanakah motivasi siswa dalam mempelajari materi program linear secara mandiri dengan media website ?

4. Bagaimanakah hasil belajar siswa dalam pembelajaran program linear yang menggunakan media website ?

TUJUAN PENELITIAN

Dari permasalahan yang telah dirumuskan,maka penelitian ini bertujuan untuk :

1. Mengembangkan media website pada materi program linear sedemikian hingga siswa dapat belajar mandiri.

2. Menghasilkan media website pada materi program linear yang valid.

3. Mengetahui efektifitas media website pada materi program linear yang dilihat dari kualitas hasil belajar dan sikap siswa selama proses pembelajaran.

4. Mengetahui tingkat motivasi siswa belajar mandiri terhadap materi pembelajaran program linear dengan media website.

MANFAAT PENELITIAN

Hasil penelitian ini diharapkan dapat bermanfaat untuk :

1. Ilmu Pengetahuan dan Teknologi (IPTEK), sehingga dengan dikembangkannya materi pembelajaran matematika pada media website dapat memberikan kontribusi pada dunia pendidikan.

2. Proses pembelajaran, sehingga kegiatan belajar mengajar dapat menjadi menarik dan menyenangkan dengan mempelajari materi matematika pada media website. 3. Lembaga Pendidikan Tenaga Kependidikan (LPTK) yang diharapkan

menggunakan informasi dari hasil ujicoba penelitian ini untuk mengembangkan media website pada materi matematika yang lainnya.

(4)

commit to user

50

4. Sekolah, sehingga dapat memaksimalkan fungsi laboratorium komputer, khususnya komputer yang telah terhubung dengan internet dalam memfasilitasi siswa dalam belajar mandiri.

TINJAUAN PUSTAKA

Strategi pembelajaran berhubungan dengan cara menyampaikan materi pelajaran agar seseorang bisa belajar. Cara-cara yang dipilih harus direncanakan secara sistematis untuk mencapai hasil belajar yang optimal. Konsep strategi pembelajaran merupakan pijakan untuk diterapkan dalam mengembangkan media website dalam penelitian ini. Salah satu usaha nyata untuk meningkatkan hasil belajar adalah penggunaan strategi pembelajaran yang efektif. Dick & Carey (1978 : 158) menyatakan bahwa untuk mengetahui keefektifan dari materi pembelajaran diperlukan pengumpulan data dari para siswa yang menjadi sasaran populasi dan menggunakan informasi yang didapat untuk memperbaiki materi pembelajaran supaya lebih efektif lagi dari sebelumnya.

Pembelajaran yang menggunakan media komputer sangat efektif jika dapat dirancang dan digunakan dalam proses pembelajaran yang terpadu. Penyampaian materi pelajaran berbentuk visual melalui teknologi komputer sangat penting, dengan syarat bahwa perancangan pembelajaran harus dapat merancang program secara terstruktur dan mudah dimengerti oleh para siswa, karena menurut Kemp & Dayton (dalam Arsyad, 2003 : 22), media mempunyai manfaat sebagai media yang dapat menarik perhatian, memberikan pengalaman kepada siswa untuk berinteraksi langsung sehingga memberikan sikap positif kepada siswa untuk belajar secara mandiri dengan guru sebagai fasilitator. Ada lima faktor yang perlu dipertimbangkan dalam pemilihan media yang akan anda gunakan untuk mengembangkan materi pembelajaran (Dick & Carey, 1978 : 128 – 129), yaitu : 1) Jenis pembelajaran, 2) Ketersediaan media, 3) Kemampuan designer, 4) Keluwesan (flexibility), Daya tahan (Durability), dan Kemudahan (convenience) materi dalam suatu media, dan 5) Efektifitas biaya. Dengan memperhatikan kelima faktor tersebut, maka materi program linear merupakan materi pembelajaran yang memerlukan pemahaman daerah himpunan penyelesaian dari suatu pertidaksamaan yang digambarkan dalam koordinat kartesius. Hal ini dapat dilakukan dengan menganimasikannya melalui media komputer.

Pada penelitian ini, pembelajaran dilakukan secara mandiri oleh siswa dengan memberi kesempatan peserta didik untuk mencerna materi ajar dengan sedikit bantuan guru dimana materi ajarnya harus memenuhi kejelasan rumusan tujuan belajar, dikemas mengikuti alur desain pesan, merupakan sistem pembelajaran lengkap, dapat disampaikan melalui media, dikirim dengan cara yang terjangkau oleh peserta didik, dan disertai program tutorial. Karena pembelajaran menggunakan sistem elektronik, maka aktivitas pembelajaran menggunakan komputer yang terkoneksi internet dimana e-learning difungsikan sebagai substitusi dengan model kegiatan pembelajaran sebagian secara tatap muka dan sebagian lagi melalui internet atau disebut juga Web Centric Course (Haughey dalam Suyanto, 2005). Adapun manfaat E-learning, yakni mempermudah interaksi antara peserta didik dengan materi belajar. Software yang digunakan dalam penelitiana ini adalah Macromedia

(5)

commit to user

51 Flash, karena merupakan salah satu software animasi yang berorientasi objek (OOP), mampu mendesain gambar berbasis vector, dan dapat dipergunakan secagai software pembuat situs WEB.

Pengembangan media website pada penelitian ini diberikan pendekatan kontekstual sehingga akan meningkatkan pemahaman dan menumbuhkan sikap positif siswa terhadap pembelajaran matematika dengan standar kompetensi menyelesaikan masalah program linear dengan kompetensi dasar menyelesaikan sistem pertidaksamaan linear dua variabel, merancang model matematika dari masalah program linear, dan menyelesaikan model matematika dari masalah program linear dan penafsirannya. Untuk melihat apakah standar kompetensi tersebut tercapai, maka digunakanlah hasil belajar, sikap, dan motivasi siswa sebagai indikator dalam proses pembelajaran.

Penelitian yang berkaitan dengan penggunaan komputer dalam pembelajaran matematika dan kontribusinya terhadap hasil belajar siswa dalam bidang studi matematika belum banyak dilakukan. Beberapa penelitian tersebut antara lain dilaporkan oleh Budiana (2003), Utami (2007), Zulkardi (2002), dan Said (2007). Hasil penelitiannya secara umum menyimpulkan bahwa pembelajaran matematika yang menggunakan media komputer sangat diperlukan karena dapat meningkatkan pemahaman terhadap materi pelajaran, meningkatkan prestasi belajar siswa, mengembangkan kemampuan literasi komputer siswa, dan memperbaiki sikap siswa dalam belajar matematika.

METODOLOGI PENELTIAN

Jenis penelitian ini adalah penelitian pengembangan dengan menggunakan teknik analisis data deskriptif kualitatif dengan variabelnya adalah media pembelajaran matematika yang dikembangkan pada website dengan pokok bahasan program linear yang meliputi isi (content) dan sistematika penyajiannya.

Operasional penelitian ini, yakni pengembangan media pembelajaran matematika pada website adalah suatu kegiatan yang mengembangkan media pembelajaran matematika pokok bahasan program linear yang meliputi isi (content) dan sistematika penyajiannya menggunakan Macromedia Flash sebagai software pendukung pada website dimana untuk mengetahui keefektifan media tersebut dilakukan uji validasi, yang kemudian dilanjutkan uji lapangan (field test). Sebagai subjek dalam penelitian ini adalah media website pada materi program linear dengan responden para siswa kelas XII-IA 1 dan XII-IA 2 di SMA Negeri 1 Palembang.

Prosedur penelitian meliputi aktivitas analisa pendahuluan, merancang, mengevaluasi dan merevisi sampai tujuan yang diinginkan (Akker, 1999). Pada tahap analisa pendahuluan, peneliti melakukan analisis materi pokok bahasan program linear untuk disesuaikan dengan kompetensi dasarnya, mengobservasi kondisi laboratorium sekolah yang dijadikan sebagai tempat penelitian, dan mempersiapkan prosedur kerjasama untuk mendukung terlaksananya penelitian ini. Pada tahap merancang, peneliti melakukan perancangan dan pengembangan materi pembelajaran pada media komputer berbasis website. Pada tahap evaluasi, peneliti melakukan pengujian terhadap media website dengan cara melakukan kegiatan pembelajaran di Laboratorium komputer. Kemudian, peneliti mengobservasi

(6)

commit to user

52

kegiatan mereka dan siswa diberikan angket untuk mengetahui sikap mereka terhadap pembelajaran matematika yang menggunakan media tersebut.

Gambar 1. Diagram Penelitian Pengembangan

Teknik pengumpulan dan analisis data pada penelitian ini berupa angket tertutup yang digunakan untuk mengukur sikap siswa dan dianalisis menggunakan skala linkert dengan penilaian sangat setuju, setuju, tidak punya pendapat (netral), tidak setuju, dan sangat tidak setuju. Angket pilihan ganda dan observasi untuk mengukur tingkat motivasi siswa dimana angket ini dianalisis perbutir pertanyaan, sedangkan observasi dianalisis dengan cara memberikan skor pada setiap deskriptor yang terlihat pada siswa serta data hasil belajar yang meliputi latihan soal, tugas pekerjaan rumah, dan tes yang masing-masing diberi bobot 20, 30, dan 50, lalu dibagi 100,kemudian dikategorikan menjadi baik sekali, baik, cukup, kurang, dan gagal dengan kriteria ketuntasan belajar adalah ≥ 75.

HASIL DAN PEMBAHASAN

Penelitian diawali dengan melakukan observasi ke SMA Negeri 1 Palembang secara informal untuk mengobservasi laboratorium komputer dan kecakapan siswa terhadap komputer, khususnya dalam mengakses internet. Pelaksanaan penelitian dimulai dari bulan Juli sampai November 2008. Siswa yang menjadi kelompok ujicoba pertama dalam penelitian ini adalah para siswa kelas XII-IA 1 yang berjumlah 37 orang dan yang menjadi kelompok ujicoba kedua adalah para siswa kelas XII-IA 2 sebanyak 39 orang.

Dalam pengembangan media website, tahap analisis pendahuluan melakukan analisis materi pokok bahasan program linear untuk menyesuaikan dengan kompetensi dasarnya. Pada tahap perancangan terbagi dalam dua bagian, yaitu : tahap perancangan materi menggunakan kertas (paper-based) dan yang kedua menggunakan komputer (computer-based). Tahap paper-based dimulai dengan mensketsa materi program linear pada kertas yang bertujuan untuk memperoleh gambaran tentang objek dan apa saja yang akan ditampilkan pada website, dan kemudian dilanjutkan dengan merancangnya menggunakan Macromedia Flash 8.0

(7)

commit to user

53 yang diawali dengan perancangan tutorial materi dan di-upload ke hosting http://pages.google.com. Berikut hasil rancangan prototype 1 :

Keterangan :

1) Alamat website yaitu :

http://muhammad.win.afgani.googlepages.com 2) Judul halaman pada web : Program Linear 3) Hyperlink ke halaman web Latihan

4) Hyperlink untuk kembali ke halaman awal

5) Tombol menu materi yang berisi Persamaan Linear Dua Variabel (PLDV), Pertidaksamaan Linear Dua Variabel (PtLDV), Sistem Pertidaksamaan Linear Dua Variabel (SPtLDV), dan Program Linear.

6) Materi Program Linear yang bertipe SWF yang di-upload ke internet.

Setelah media website program linear didisain dalam bentuk prototype 1, maka dilakukan uji validasi terhadap pakar (expert review). Setelah diketahui kekurangannya, dilakukanlah revisi sehingga menghasilkan prototype 2. Karena perubahan terjadi pada disain materi pada flashnya, maka peneliti hanya menampilkan tampilan materi pada flash. Berikut hasil rancangan protoype 2 :

Terlihat, latar belakang lebih kabur (blur), sehingga teks dapat terlihat jelas. Pada prototype 2 juga diberikan latihan berbentuk LKS yang dirancang menggunakan input box. Setelah selesai mengerjakan latihan, komputer akan memberikan skor dan respon. Dengan memanfaatkan fasilitas pada web www.co.nr ,maka alamat web dibuat menjadi www.learningmath.co.nr, dan disediakannya buku tamu yang dibuat dengan memanfaatkan fasilitas pada www.a-free-guestbook.com.

Pada prototype 2 juga dilakukan uji validasi terhadap pakar (expert Gambar 3. Prototype 2

Program Linear type SWF

2 3 4 1 5 6 Gambar 2.

(8)

commit to user

54

review) yang bertujuan untuk mengetahui apakah masih ada kekurangan pada media

website sebelumnya serta dilakukan uji coba pada kelas XII-IA. Berdasarkan hasil observasi selama kegiatan pembelajaran diperoleh tingkat motivasi siswa kelas XII-IA 1 dalam belajar program linear secara mandiri dengan menggunakan media website, yaitu terjadi peningkatan 27,03% pada kategori Sangat Termotivasi dan 43,24% pada kategori Termotivasi. Untuk mendukung hasil observasi, maka pada akhir pertemuan diberikan angket motivasi yang bersifat terbuka. Adapun hasil angket motivasi, yaitu hanya 8,11% siswa yang pernah membuka website yang peneliti disain untuk belajar program linear di luar jam sekolah. Selain itu berdasarkan hasil angket mengenai sikap siswa kelas XII-IA 1 terhadap pembelajaran program linear menggunakan media website yang diberikan pada akhir pertemuan terdapat 5,41% siswa termasuk dalam kriteria Sangat Tertarik dan jika dilihat dari hasil belajar masih terdapat siswa yang hasil belajarnya tergolong dalam kategori gagal yaitu sebesar 2,70%.

Berdasarkan saran-saran dari validator pada prototype 2 dan hasil uji coba di lapangan dilakukanlah revisi untuk menhasilkan prototype 3. Perubahan prototype 2 terjadi tidak hanya pada disain materi pada flashnya, tetapi juga pada webnya, yaitu memanfaatkan fasilitas dari website lain untuk mendukung performa web dari peneliti. Pada prototype 3 ditambahkan Chat Box dibuat dengan memanfaatkan fasilitas pada www.shoutmix.com, Survey Online dibuat dengan memanfaatkan fasilitas pada www.polldaddy.com, dan Evaluasi online dibuat dengan memanfaatkan fasilitas pada www.equizzer.com. Kemudian, prototype 3 dilakukan uji coba pada kelas XII-IA 2. Berdasarkan hasil observasi, terjadi peningkatan 20,51% pada kategori Sangat Termotivasi. Berikut diagram batangnya :

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% Sangat Termotivasi Termotivasi Cukup Termotivasi Kurang Termotivasi Tidak Termotivasi Kategori

Tingkat Motivasi Siswa Kelas XII-IA 2 SMA Negeri 1 Palembang

Pertemuan Ke-1 Pertemuan Ke-2

Gambar 4.

Diagram Batang Tingkat Motivasi Siswa Kelas XII-IA 2

Dari hasil observasi per deskriptornya, deskriptor kedua sampai ketujuh terjadi peningkatan presentase. Sedangkan deskriptor kedelapan sampai kesepuluh terjadi penurunan presentase. Berikut diagram garis hasil observasi motivasi siswa kelas XII-IA 2 (n = 39) untuk tiap deskriptor :

(9)

commit to user

55 Gambar 5.

Diagram Garis Hasil Observasi Motivasi Siswa Kelas XII-IA 2

Keterangan :

• D1 : Hadir • D2 : Mengekspresikan perasaan gembira

• D3 : Mempelajari materi dengan tenang • D4 : Mempelajari materi secara sistematis • D5 : Mencatat atau meng-copy materi • D6 : Berkosentrasi

• D7 : Bekerja sama mengerjakan tugas kelompok • D8 : Bertanya bila memerlukan

• D9 : Aktif dalam diskusi kelompok • D10 : Membantu teman yang

membutuhkan penjelasan

Pada akhir pertemuan diberikan angket motivasi yang bersifat terbuka. Pada pertanyaan ketika siswa tidak memahami materi yang ada pada website, maka 48,72% berusaha memahaminya sendiri dengan mengulangi lagi; 25,64% membaca buku teks; 25,64% bertanya kepada teman, dan 0% melewatinya. Ini menunjukkan siswa mempunyai motivasi untuk belajar, walaupun website ini hanya 7,69% siswa yang pernah membuka website untuk belajar program linear di luar jam sekolah. Berdasarkan hasil angket mengenai sikap siswa kelas XII-IA 2 7,69% siswa termasuk dalam kriteria Sangat Tertarik. Berikut diagram batang sikap siswa tersebut : 0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% Sangat Tertarik Tertarik Cukup Tertarik Kurang Tertarik Tidak Tertarik

Sikap Siswa Kelas XII-IA 2Terhadap Pembelajaran Program Linear Pada Media Website

Kriteria

Gambar 6. Diagram Batang Sikap Siswa Kelas XII-IA 2

Hasil Observasi Motivasi Siswa Kelas XII-IA 2 SMA Negeri 1 Palembang

0,00% 20,00% 40,00% 60,00% 80,00% 100,00% 120,00% 1 2 3 4 5 6 7 8 9 10 Deskriptor Pertemuan Ke-1 Pertemuan Ke-2

(10)

commit to user

56

Pada uji coba prototype ketiga, evaluasi yang diberikan sama seperti pada uji coba prototype kedua, tetapi pada pertemuan ketiga dilakukan ujian mengenai program linear sebanyak 5 soal pilihan ganda secara online dimana siswa tetap harus menuliskan langkah-langkah pengerjaannya pada kertas ujian yang peneliti sediakan. Soal ujian dibuat menjadi dua kelompok, yaitu A dan B. Setelah dianalisis, maka hasil belajar siswa kelas XII-IA 2 yang mempunyai kategori Sangat Baik 51,28%, dan kategori Baik 38,46%. Berikut diagram batang hasil belajar siswa kelas XII-IA 2 : 51,28% 38,46% 7,69% 2,56% 0,00% 0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% Baik Sekali

Baik Cukup Kurang Gagal Hasil Belajar Siswa Kelas XII-IA 2

Kategori

Gambar 7. Diagram Batang Hasil Belajar Siswa Kelas XII-IA 2

Jika dilihat dari hasil belajar, tidak terdapat lagi siswa yang masuk dalam kategori gagal, dan ketuntasan belajar secara klasikal mencapai 74,36%. Ini menunjukkan prototype 3 potensial efektif dalam memotivasi, memperbaiki sikap siswa, dan meningkatkan hasil belajar. Oleh karena itu, Prototype 3 dianggap sebagai hasil akhir dari disain media website pada materi program linear. Disamping masih terdapatnya kelemahan dalam pengembangan media website yang materinya dirancang menggunakan Macromedia Flash, diantaranya perlunya waktu yang cukup lama dalam loading website, jika dihadapi pada bandwith yang tidak terlalu besar. Karena website dirancang dengan mengupload materi yang bertipe SWF sehingga sifatnya stand alone, artinya ketika user mengklik link lain yang tidak memunculkan

new window, maka pada saat kembali lagi, user tidak dapat melihat lagi tampilan

terakhir dari halaman yang sebelumnya, tetapi tampilan awal dari materi SWF tersebut.

Dari hasil evaluasi pada soal yang diberikan, kesalahan siswa mulai terjadi ketika menentukan daerah penyelesaian sehingga dalam menentukan nilai minimum juga salah. Hal ini dikarenakan siswa belum memahami pernyataan ”biaya semurah-murahnya” dan siswa hanya dapat menentukan nilai minimum, jika pernyataannya jelas seperti ”Minimumkanlah”.

Menurut pengamatan peneliti, selama kegiatan pembelajaran berlangsung tidak terjadi hambatan dalam pengelolaan kelas, hanya saja masih ada terjadi gangguan teknis dalam koneksi internet yang menyebabkan suasana pembelajaran sedikit terganggu. Ketertarikan mereka terlihat dari semangat mereka dalam mempelajari materi program linear pada website. Dengan demikian media website yang telah dikembangkan menurut Akker (1999) potensial efektif ketika digunakan dalam kegiatan pembelajaran. Hal ini dapat dilihat dari tingkat motivasi siswa, sikap siswa, dan hasil belajar siswa yang tergolong dalam kategori baik, artinya media website dapat dijadikan alternatif dalam pembelajaran matematika di SMA.

(11)

commit to user

57 KESIMPULAN

Berdasarkan hasil penelitian, maka dapat disimpulkan sebagai berikut :

1. Proses pengembangan media website program linear dimulai dari analisis pendahuluan, merancang, mengevaluasi dan merevisi. Pada tahap analisis pendahuluan dilakukan analisis kurikulum mengenai materi apa saja yang menjadi prasyarat sebelum masuk ke materi inti. Pada tahap perancangan terlebih dahulu dilakukan perancangan diatas kertas (paper-based) dan kemudian didisain pada komputer (computer-based). Pada tahap evaluasi, hasil rancangan yang berupa prototype 1 divalidasi mengenai isi maupun tampilannya melalui pakar (expert review). Saran validator pada prototype 1 dijadikan dasar untuk mendisain prototype 2. Kemudian, prototype 2 dilakukan uji validasi dan uji coba ke subjek penelitian. Setelah diketahui masih ada kekurangan, maka dilakukan revisi kembali untuk menghasilkan prototype 3. Pada prototype 3 dilakukan uji coba ke subjek penelitian berikutnya. Berdasarkan proses pengembangan diperoleh bahwa prototype 3 merupakan media website yang efektif digunakan dalam kegiatan belajar mandiri.

2. Sikap siswa terhadap pembelajaran program linear dengan media website termasuk dalam kriteria Tertarik. Hal ini dapat dilihat dengan terjadi peningkatan persentase sikap siswa dari hasil uji coba prototype 2 (40,54%) dan

prototype 3 (61,54%).

3. Tingkat motivasi siswa dalam mempelajari materi program linear secara mandiri dengan media website termasuk dalam kategori Termotivasi. Pada uji coba prototype 2 tingkat motivasi siswa hanya 54,06%. Sedangkan, pada uji coba prototype 3 tingkat motivasi siswa menjadi 71,79%.

4. Hasil belajar siswa dalam pembelajaran program linear yang menggunakan media website termasuk dalam kategori Sangat Baik dimana pada prototype 2 yang termasuk kategori Sangat Baik ada 52,63% dan masih ada 2,63% termasuk kategori gagal, sedangkan pada prototype 3 yang termasuk kategori Sangat baik 51,28% tanpa ada siswa yang termasuk kategori Gagal (0%).

SARAN

Berdasarkan hasil penelitian dan kesimpulan di atas, maka dapat disarankan sebagai berikut:

1. Guru bidang studi matematika, diharapkan dapat memanfaatkan media website dalam pembelajaran.

2. Peneliti lain, untuk mengembangkan website tidak hanya pada materi program linear tetapi juga pada materi matematika yang lain.

3. Siswa, diharapkan dapat menggunakan website ini dalam pembelajaran baik di sekolah maupun di luar sekolah.

4. IPTEK, agar dapat mengembangkan suatu software yang dapat mempermudah guru maupun peneliti lain dapat mendisain materi ajarnya sendiri.

(12)

commit to user

58

DAFTAR PUSTAKA

Abdullah, D. 2008. Potensi Teknologi informasi Dan Komunikasi Dalam

Peningkatan Mutu Pembelajaran Di Kelas.

(http://elearning.unimal.ac.id/courses/ MKK712NR/document/peningkatan-tik-guru.pdf?cidReq=MKK712NR diakses tanggal 08 Januari 2008). Akker, J. V d. 1999. Principle and Methods of Development Research. In J Van den

Akker, R Branch, K Gustafson, N Nieveen and Tj Plomp (Eds), Design Methodology and Development Research. Dordrecht, Kluwer.

Alami, F. 2005. Pembuatan Media Pembelajaran dengan Macromedia Flash MX

2004. Jurusan Teknik Sipil Universitas Lampung.

(www.unila.ac.id/~ft-sipil/Tutorial/Manual%20Flash%202004.pdf diakses tanggal 24 oktober 2007).

Arikunto, S. 1991. Dasar-Dasar Evaluasi Pendidikan. Bumi Aksara, Jakarta. Arsyad, A. 2003. Media Pembelajaran. Raja Grafindo Persada, Jakarta.

Budiana. 2003. Penggunaan Komputer Dalam Pembelajaran Remedial Matematika

Untuk Meningkatkan Hasil Belajar Siswa. Tesis Program Studi Pendidikan

Matematika Pascasarjana Universitas Pendidikan Indonesia, Bandung, Jawa Barat, Indonesia. (Tidak Dipublikasikan).

Depdiknas. 2006a. Pengembangan Model Pembelajaran Yang Efektif. Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, (www.dikdasmen.org/files/KTSP/SMP/PENGEMMODEL%20PEMBEL% 20 YG%20EFEKTIF-SMP.doc diakses tanggal 28 Desember 2007).

________. 2006b. Peraturan Menteri Pendidikan Nasional Republik Indonesia

Nomor 22 Tahun 2006 tentang Standar isi untuk satuan pendidikan dasar dan menengah. Asa Mandiri, Jakarta..

________. 2006c. Undang-Undang RI. No. 14 Tahun 2005 tentang Guru dan Dosen. Asa Mandiri, Jakarta.

________. 2006d. Pedoman Memilih dan Menyusun Bahan Ajar. Direktorat Jenderal Manajemen Pendidikan Dasar Dan Menengah, (www.dikdasmen.org/files /KTSP/Pedoman%20Memilih%20dan%20Meyusun%20

Bahan%20Ajar.doc. diakses tanggal 13 Februari 2008).

________. 2006e. Model Penilaian Kelas : Kurikulum Berbasis Kompetensi Sekolah

Menengah Atas / Madrasah Aliyah. Pusat Kurikulum, Balitbang Depdiknas,

Jakarta. (www.puskur.net/inc/mdl/083_Model_Penil_SMA.pdf diakses tanggal 07 April 2008)

Dick, W and Carey, L. 1978. The Systematic Design of Instruction. Scott, Foresman and Company, United States of America.

(13)

commit to user

59 Djaali dan Muljono, P. 2004. Pengukuran Dalam Bidang Pendidikan. Program

Pascasarjana Univeristas Negeri Jakarta, Jakarta.

Edge, T S. 2008. Radius, Diameter, Circumference, π, Geometer’s Sketchpad, and You !. (www.montanamath.org/TMME/TMMEv1n1a2.pdf diakses 06

Februari 2008).

Ekowati T. 2006. Kontribusi Inteligensi dan Kemandirian Belajar Terhadap Hasil

Belajar Pendidikan Kewarganegaraan dan Sejarah. Samarinda,

Kalimantan Timur. (http://www.geocities.com/guruvalah diakses tanggal 01 Februari 2008).

Furner, Yahya, and Duffy. 2008. 20 Ways To Teach Mathematics : Strategies to

Reach All Students.

(www.teachingstrategiesbyjen.com/Documents/Math.pdf diakses tanggal 06 Februari 2008).

Hartono, A B. 2007. Menyertakan Lingkungan & Memanfaatkan Multimedia Agar

Minat & Prestasi Belajar Matematika Meningkat.

(http://p4tkmatematika.com/web

/index.php?option=com_content&task=view&id=29&Itemid=61 diakses tanggal 13 Dessember 2007).

Heinich, Molenda, Russell, and Smaldino. 1996. Instructional Media and

Technologies for Learning. Prentice-Hall, Inc. Upper Saddle River, New

Jersey.

Kersaint, G. 2007. Toward Technology Integration in Mathematics Education : A

Technology-Integration Course Planning Assignment. University of South

Florida. (www.citejournal.org/articles/v7i4mathematics1.pdf diakses tanggal 08 Februari 2008).

Kompas. 2007. Matematika Perlu Kontekstual. (http://www.duniaguru.Com/ index2.php?option=com_content&do_pdf=1&id=286 diakses tanggal 17 Desember 2007).

Moore, K D. 2005. Effective Instructional Strategies From Theory to Practice. Sage Publication, Inc. Thousand Oaks, London, New Delhi.

Nasoetion, N. 2007. Evaluasi Pembelajaran Matematika. Jakarta : Universitas Terbuka.

Prabantoro, G dan Hidayat, A. 2007. Pemanfaatan Fasilitas Gratis Di Dunia Maya

Untuk Pengembangan Media E-Learning Murah. Jakarta : Sekolah Tinggi

Ilmu Ekonomi Indonesia. (http://www.geocities.com/gatot_prabantoro/pemanfaatan_

(14)

commit to user

60

Prawiradilaga, D S dan Siregar, E. 2004. Mozaik Teknologi Pendidikan. Kencana, Jakarta.

Reisser , R A dan Dempsey, J V. 2002. Trends and Issues in Instructional Design

and Technology. Pearson Education, Inc. Upper Saddle River, New Jersey.

Riana, F. 2007. PROSES Belajar Mengajar Dengan Metode e-learning. (http://media.diknas.go.id/media/document/4372.pdf diakses tanggal 17 Desember 2007).

Said, A. 2004. Efektifitas Computer Assisted Instructional (CAI) Terhadap Hasil

Belajar Matematika Siswa Sekolah Menengah Umum Negeri. Jurnal

Departemen Pendidikan Nasional. (http://www.depdiknas.go.id/jurnal/58/j58_04.pdf diakses tanggal 06

Desember 2007).

Sappaile, B I. 2007. Pengaruh Metode Mengajar Dan Ragam Tes Terhadap Hasil

Belajar Matematika dengan Mengontrol Sikap Siswa (Eksperimen Pada Siswa Kelas I SMU Negeri DKI Jakarta). Jurnal Departemen Pendidikan

Nasional. (www.depdiknas.go.id/Jurnal/56/metode.htm diakses tanggal 16 Mei 2007).

Saragih, H P. 2007. Belajar Tak Lagi Membosankan. Sumber : www.wartaekonomi.com. (http://detiknas.in/donesia/2007/09/19/belajar-tak-lagi-membosankan/ diakses tanggal 03 Maret 2008).

Sobur, A. 2003. Psikologi Umum. Bandung, Pustaka Setia.

SMART Technologies Inc. 2006. Interactive Whiteboards and Learning : Improving

Student Learning Outcomes and Streamlining Lesson Planning. Canada.

(http://www2.smarttech.com/NR/rdonlyres/2C729F6E-0A8D-42B8-9B32-F90BE0A746D8/0/Int_Whiteboard_Research_Whitepaper_Update.pdf diakses tanggal 12 Maret 2008)

Sudijono, A. 2005. Pengantar Evaluasi Pendidikan. RajaGrafindo Persada, Jakarta. Sugiyono. 2006. METODE Penelitian Kuantitatif, Kualitatif, dan R&D. Alfabeta,

Bandung.

Suyanto, A H. 2005. Mengenal E-Learning. (http://www.asep-hs.web.ugm.ac.id /Artikel/ELEARNING/MENGENAL%20E-LEARNING.pdf diakses tanggal 19 Desember 2007).

Triluqman B S, H. 2007. E-learning Berbasis Web sebagai Bahan Belajar Mandiri.

(http://heritl.blogspot.com/2007/07/e-learning-berbasis-web-sebagai-bahan.html diakses tanggal 07 Maret 2008).

Universitas Terbuka. 2006. Petunjuk Penulisan Bahan Ajar Non Cetak. . (www.staff.ut.ac.id/.../pdf%20ISO%20AKADEMIK/petunjuk%20kerja/aj0

(15)

commit to user

61 4_pk01_bk_petunjuk_penulisan_banc.pdf diakses tanggal 01 Februari 2008).

Utami, Apriliani. 2007. Penggunaan Media Komputer dalam Pembelajaran

Matematika Subpokok Bahasan Geometri Kelas VII-5 di SMP Negeri 1 Indralaya. Makalah dalam Seminar Nasional Pendidikan Matematika 2007. Universitas Sriwijaya 4 September 2007.

Woolfolk, Anita E. 1998. Educational Psychology. Ohio State University. A Viacom Company

Yunan Y, I. 2006. Komputer untuk Pembelajaran Matematika. (http://www.Suaramerdeka. com/harian/0604/03/ragam03.htm diakses tanggal 06 Desember 2007).

Zulkardi. 2002. Developing A Learning Environment on Realistic Mathematics

Education for Indonesian Student Teachers. Disertasi.

(http://projects.edte.utwente.nl/ cascade/imei/dissertation/disertasi.html. diakses tanggal 25 September 2008)

(16)

commit to user

Using Flash Animations in Mathematics Lessons

Esra Bukova-Güzel, Berna Cantürk-Günhan Abstract—The purpose of the study is to determine secondary

prospective mathematics teachers’ views related to using flash animations in mathematics lessons and to reveal how the sample presentations towards different mathematical concepts altered their views. This is a case study involving three secondary prospective mathematics teachers from a state university in Turkey. The data gathered from two semi-structural interviews. Findings revealed that these animations help understand mathematics meaningfully, relate mathematics and real world, visualization, and comprehend the importance of mathematics. The analysis of the data indicated that the sample presentations enhanced participants’ views about using flash animations in mathematics lessons.

Keywords—Instructional technology, animations, prospective mathematics teachers.

I. INTRODUCTION

N Turkey, primary and secondary mathematics curriculums have been revised. This revision was based on the philosophy of constructivism which proposes that learners need to build their own understandings of new ideas. Constructivism also suggests that new knowledge is not passively received by the student through textbook activities and lectures, or by simply asking students to memorize rote facts. Students learn more effectively if they have experience applying ideas to new situations. From this perspective, using technology is of great important. Some researchers express that using technology in mathematics learning environment support constructivism [2, 3, 4, 5, 6]. They explain some reasons as follows;

• providing different representations of mathematical concepts;

• acquiring knowledge by making experiments; • relating real life with mathematical concepts; • developing or enhancing students’ conceptual

knowledge;

• supplying individual and cooperative studies to learners;

• presenting concrete representations of abstract mathematical concepts.

• constructing meaningful learning; • motivating;

• becoming lessons more interesting;

Esra Bukova-Güzel is with Dokuz Eylul University, Facuty of Education, Department of Science and Mathematics Education, Izmir, Turkey. (corresponding author to provide phone: +90 232 420 48 82; e-mail: esra.bukova@deu.edu.tr). ,

Berna Cantürk-Günhan is with Dokuz Eylul University, Facuty of Education, Department of Primary Education, Izmir, Turkey. (corresponding author to provide phone: +90 232 420 48 82; e-mail: berna.gunhan@deu.edu.tr).

• providing an active learning environment; • improving learners’ creativity;

• having positive attitudes towards mathematics • supplying visualization.

In light of these reasons, mathematics teachers should integrate technology into mathematics learning. If it is wanted that mathematics teachers use computer-based presentations in their lessons, they are supported and encouraged using computer-based presentations during their teacher training years. Hereby, prospective mathematics teachers should develop and use the computer-based presentations in their future lessons. There are many forms of computer-based presentations. Animations may also use as computer-based presentations. Animations can be used to provide information that aids in understanding dynamic processes and summarizing major concepts, and can help students to construct mental models with which to organize new knowledge [7]. From this explanation, it is seen that animations can affect students in positive way while constructing mathematical concepts if teachers use them effectively. Therefore, this study focuses on the prospective mathematics teachers’ views about animations which prepared by using Macromedia Flash.

The purpose of this study is to determine the secondary prospective mathematics teachers’ views related to using Flash animations in mathematics lessons and to reveal how the sample presentations towards different mathematical concepts altered their views.

II. THEORITICAL FRAMEWORK

Technology has tremendous potential for enhancing mathematics instruction; it can be used to strengthen student learning and to assist in developing mathematical concepts [8]. As the National Council of Teachers of Mathematics (NCTM) that is a public voice of mathematics education, supporting teachers to ensure equitable mathematics learning of the highest quality for all students through vision, leadership, professional development, and research [16] - highlights in its standards; technology can facilitate mathematical problem solving, developing deep understanding of mathematics, communication, reasoning, proof; moreover, technology can provide students with opportunities to explore different representations of mathematical ideas, support them in making connections both within and outside of mathematics, and allow student to focus on decision making, reflection [9]. Because of the technology’s these effects to the learning, teacher must use the computer-based presentations in their classroom.

I

210

International Scholarly and Scientific Research & Innovation 4(3) 2010 scholar.waset.org/1999.10/15846

(17)

commit to user

education to assist in the development of concepts but were uncomfortable discussing the specific uses of technology for instruction due to lack of knowledge [10]. Many prospective teachers feel that they are not prepared to teach using technology after they graduate [11]. If teachers want to use and integrate technology to their learning environment, they will have a great role. Especially, new teachers are expected to enter the educational field with knowledge not only in their content areas, but of technology as well [12].

III. METHODS

The case study design was used in this study involving three secondary prospective mathematics teachers at Dokuz Eylül University in Izmir, Turkey. This study was realized in one week as two sections during 2006-2007 academic years. In the first section some of the prepared flash animations were shown to the participants approximately in one hour and after that in the second sections discussions about these presentations were made by the participants in one hour.

The data gathered from two semi-structural interviews containing pre-interview and post-interview. The study consisted of the three phases. The pre-interview was realized with three secondary prospective mathematics teachers in the beginning of the study. The purpose of this pre-interview was to determine participants’ views about using flash animations in constructing mathematical concepts. After that, the flash animations prepared by the researcher were introduced to the participants. When the all presentations were made it was discussed with the participants about them. Finally, the post-interview was carried out with the participants. The purpose of this post-interview was to determine how the participants’ views altered about using flash animations in constructing mathematical concepts after the presentations in other words, whether their thought changed or not.

A. Participants

The purposeful sampling method was used when the participants were selected. There were three participants in this study from the Faculty of Education. Their ages ranged from 20 to 22 years old. The participants were educated for being secondary school mathematics teachers. They completed the courses about mathematics content knowledge, general pedagogical knowledge, pedagogical content knowledge, integration technology into mathematics education, and school experience. Three participants showed differences about knowing and using computer and software programs. The first participant named Y who has limited knowledge and experiences of the computer and software programs, the second participant named Z has more knowledge and experiences of the computer and software programs, and the third participant named B who had much knowledge and experiences of the computer programs and software. Additionally, no one knows Flash program, Z is the most successful students in our mathematics education program in terms of mathematics content knowledge, general pedagogical knowledge, and pedagogical content knowledge. B has average achievement

and Y is the lowest achievement -but enough for graduating our mathematics education program- in terms of this knowledge.

B. Instruments

The qualitative method was used to collect the data in this study. The data gathered from two semi-structural interviews containing the pre-interview and the post-interview. In these interviews, two open-ended questions were asked to the participants and the interview guide was used in this stage. The open-ended questions were related on the following areas: “How the flash animations affect mathematics lessons and constructing mathematical concepts”, and “Can you use or want to use these kinds of tools in your future class-in professional life? Why?”. These questions were asked to the participants both the pre-interview and the post-pre-interview. All the pre-interviews were recorded by the audio-recorder and analyzed later.

C. Materials

In this study, the Flash animations were used as a material to examine prospective mathematics teachers’ views about Flash animations and whether their views changed when they confronted with the different examples and discussed about these materials or not. While the presentations about some mathematical concepts were developing the principles of constructivism were used. On the other words, these presentations were suitable for constructivist learning environment. All the presentations were constructed by taking into account the critical points of mathematical concepts in question.

The Flash animations were mainly used to sample the real world applications of mathematical concepts in this study. These representations were important to integrate the real world with the mathematical concept. It also provided to construct mathematical knowledge, procedures, and concepts by using mathematical models. It was intended that these materials should be interesting, emphasize the critical points of the concepts, and allow meaningful learning.

Nine presentations were presented about the flash animations such as limit concept, function concept, induction, and factorization. Some of the examples were given in Figure 1, 2, 3, 4, 5, 6. For example, in Figure 1 and Figure2, it was aimed to construct the function concept as a machine exactly the loom as a machine, the fiber as an in-put, and the carpet as an out-put.

Figure 3, 4, 5, 6 were constructed to show the critical points of the limit concept such as approaching, approximate value, domain of function (the existences of the limits of a functions at a points which are not necessary to be an element of the domain especially in Figure, 4, 5, 6 with burning pizza house), the relationship between limit concept and the real world. It was given a scenario with the figure, 4, 5, and 6. This scenario was started this sentence “by taking into account movement of the cars in the entire situation, can they meet? Why? Try to draw their movement on a graph. Fort this reason, you can think that the cars are two points moved on a curve and the road is a curve. Be careful, they are point on a curve and you make these move

211

International Scholarly and Scientific Research & Innovation 4(3) 2010 scholar.waset.org/1999.10/15846

(18)

commit to user

move to the same Math Pizza Restaurant, and so they meet. In Figure 5, the cars move to the different Math Pizza Restaurant, so they did not meet. Finally, in Figure 6 it was considered the restaurant as a point on a curve; it showed the point was not defined. The cars move to the same restaurant. However, when they arrived at the restaurant, the restaurant had been burned but still they could meet.

Fig.1 Flash animations about function concept

Fig. 2 Flash animations about function concept

Fig. 3 Flash animations about approaching

Fig. 4 Flash animations about limit concept

Fig. 5 Flash animations about limit concept

Fig. 6 Flash animations about limit concept

D. Procedure

The researchers investigated the learning tools in literature. Then the presentations were organized by the researchers. These are flash animations, dynamic graphics, Geometry Sketchpad activities, video-clips, spreadsheets, and power-point representations, etc. In this article, only the case of flash animations was used.

The application was carried out within one week. The participants were interviewed in the beginning of the study. The interviews, which form the majority of the material, are characterized by reflective conversations. The length of the interviews varied between 20 and 25 minutes. Before each

212

International Scholarly and Scientific Research & Innovation 4(3) 2010 scholar.waset.org/1999.10/15846

(19)

commit to user

recorded with the permission of the participants.

E. Data Analysis

The interviews were recorded with the audio-taped. The data were transcribed verbatim. Evaluation was guided by the ideas of qualitative content analysis [13]. It could try to evaluate the differences between the pre-interview and the post-interview.

IV. RESULTS AND DISCUSSIONS

In this section, three cases were presented by comparing in terms of the pre- and the post interviews and each other.

A. The Case of Y

In the pre-interview Y said nearly nothing about the questions “How the flash animations affect mathematics lessons and constructing mathematical concepts”, “Can you use or want to use these kinds of tools in your future class? Why?”. Y stated that animations (not only flash animations) were important for mathematics learning and added that Y never saw flash animations in preparing any mathematical concept. Y also remarked that was not able to prepare computer based materials because of the lack of technology knowledge. Y said very general sentences like;

Using flash animations contribute mathematics learning and saving of time in mathematics lessons.

In the post-interview, it was seen that Y’s views changed completely. When Y responded the questions Y looked very exciting and said that was very happy for seeing these presentations. It can be understood Y’s following speaking;

I like all the presentations. I never see before this kind of application. I saw only power point presentations. It changed my point of view. Participating of this study became the good experience for me. Before then, I had no idea about flash animations.

In the pre-interview, Y could not say advantages of using flash animations in mathematics lessons but after the sample flash animations Y stated many advantages. Y pointed out that these kinds of flash animations can relate the real world to the mathematical concepts, emphasize the critical points of the concept, provide for students to think creatively, block to constitute misconceptions about the mathematical concepts, and give an opportunity for exploring and discovering phenomena. Additionally Y specified that they can also lead students to deeply thinking about mathematical concepts and make lesson interesting. And finally, after this explanation Y said the followings:

I really want to use flash animations in my future mathematics lessons. However, my knowledge about preparing flash animations does not allow this. We must be educated in our mathematics education program about using computer and software programs like this.

B. The Case of Z

that flash animations could represent mathematical concepts more concretely by making visualization, relate real world and mathematical concepts, facilitate retention of the learning, provide students’ motivation, advance students’ mathematical thinking, enhance students’ reasoning skills. Z was able to prepare some computer based materials using software programs such as Geometer’ Sketchpad, MathCAD, and Derive etc. on the other hand, Z was not able to prepare flash animations because of limited knowledge and experiences about this program.

In the post-interview-in addition to Z’s pre-interview speaking- Z emphasized that using flash animations in mathematics lessons could sophisticate students’ intuitive thinking, provide for students to think creatively, give an opportunity for exploring and discovering, occur active learning, associate among the mathematical concept, block to constitute misconceptions about the mathematical concepts, emphasize the critical points of the concept, become lessons more interesting. Furthermore, Z remarked the following sentences:

Samples about flash animations affected me very much. They were interesting because they were very new applications for me. They could gain different viewpoint to students. These animations could draw students’ attention. When students realized that they could understand mathematical concepts they attended lessons more. By using flash animations mathematics lessons become suitable for constructivist principles. Teachers could make an effort for students to think intuitively about mathematical concepts. For example, instead of saying what the limit is teachers ask questions so they could direct students to reach the meaning of limit. However, it was very hard to perform these kinds of lessons in considering Turkey’s basic facilities such as lack of technical structure in class, lack of teachers’ knowledge about computer-even some teachers did not know how computer started-, teachers’ beliefs about computer and computer-based materials. Teachers’ content knowledge and pedagogical content knowledge are also important. I mean if teacher’s knowledge about limit concept is not adequate he or she will not design the animations very well. He or she imagines very carefully reflecting the critical points of limit. I want to use flash animations but I do not prepare for now. I think cooperation is made with mathematics teachers and computer programmers. Mathematics teachers use content knowledge, learners’ knowledge, pedagogical content knowledge and others use software programs’ knowledge.

C. The Case of B

In the pre-interview, B explained that flash animations may represent abstract mathematical concepts in a concrete way, provide visualization, and also relate the real world to the mathematical concepts, supply for students to interpret and generalize about mathematical concepts. B represented that B’s knowledge and experiences about computer and software programs was very good but not in Flash programs.

After the sample presentations, B stated that want to improve about this animations. He expressed these sentences:

213

International Scholarly and Scientific Research & Innovation 4(3) 2010 scholar.waset.org/1999.10/15846

(20)

commit to user

Whoever watches the animations about the limit concept apprehend that the limit concept is an approaching, an approximate value, relationship between limit concept and the real world, and the limit of a function at a point which is not necessary to be an element of the domain exist. I should use flash animations in my professional life. Because of this, I will develop myself about this issue.

In the post-interview-in addition to B’s pre-interview speaking- B stated that using flash animations in mathematics lessons could advance students’ mathematical thinking, occur active learning, associate among the mathematical concept, emphasize the critical points of the concept. Besides, B expressed the following sentences:

When flash animations like these can use students learn by doing, making, thinking and relating. Because they are motivated students they must be used especially in difficult mathematical concept, and concepts which students never relate real world. It is very essential for students to understand the importance of mathematics. For example, constructing the correlation between the limit concept and the real world can assist for learning the limit concept meaningfully. Generally, it is thought that technology can be used as a computational tool but these representations exactly show opposite view. On the other words, it is showed technology can be used to visualize, explore, relate, generalize and analyze mathematical concepts and ideas.

V. DISCUSSION AND IMPLICATIONS This study reports the views of the mathematics students’ teachers concerning using flash animations in mathematics lessons. It is thought that this study provides an important contribution to prior research and researches about integrating technology into mathematics education. All the participants agreed with the statement that flash animations should be used in a mathematics classroom. The results from the three interviewed present a development of views of using flash animations in mathematics education. The pre-interviews and post-interviews of the participants were examined and it has seen that important changes occurred on the participants’ thoughts, especially, in the case of Y.

This study indicated the importance of integration technology into mathematics learning with application of the flash animations. The prospective mathematics teachers believe that technology is important for mathematics learning. All the participants touched on mathematics teacher’s training. In this perspective, mathematics teacher education program should value of technology integration in mathematics learning. But it is not enough mathematics content knowledge and pedagogical content knowledge is also taken into account. Consequently it is handled technological pedagogical content knowledge (TPCK) which framework builds on Shulman's idea of Pedagogical Content Knowledge and is the complex interplay of three primary forms of knowledge: Content, Pedagogy, and Technology [14].

This study has shown many benefits of using flash animations. The prospective mathematics teachers indicated likely benefits in terms of their experiences. It was seen from their views that these animations help understand

mathematics. It was taken into account that the transition from concrete examples to the abstract concept is the most demanding step in mathematics learning [15], using flash animations is seen as an important beginning.

REFERENCES

[1] J. M. Mills, “A theoretical framework for teaching statistics,” Teaching Statistics, vol. 25, no.2, pp. 56-58, March 2003.

[2] S. Durmuş, “Constructivist approaches to mathematics education,” Journal of Educational Sciences: Theory & Practice, vol. 1, no. 1, pp. 91-107, Jun. 2001.

[3] E. Bukova Güzel, and H. Alkan, “Sampling of constructivist learning with learning activities developed in mathematics teaching,” presented at the 6th National Science and Mathematics Education

Conference, Istanbul, September, 9-11, 2004.

[4] Mcdonalds, . (2005, Dec. 03). Using multiple intelligence activities to introduce limits [Online]. Available: http://www.math.montana.edu/mathed/distance/capstone/mcdonald/ index.html.

[5] E. Bukova, “The development of new curriculum to overcome students’ difficulties in perceiving the concept of limit and constructing the relationship between the concept of limit and the other mathematical concepts,” doctoral thesis, Dept. Math. Edu., Dokuz Eylul Univ., Izmir, Turkey, 2006.

[6] G. Kersaint, “Toward technology integration in mathematics education: A technology-integration course planning assignment,” Contemporary Issues in Technology and Teacher Education, vol. 7, no. 4, 2007.

[7] M. J. Taylor, D. C. Pountney, and M. Baskett, “Using animation to support the teaching of computer game development techniques,” Computer & Education. vol. 50, no. 4, pp. 1258-1268, May 2008. [8] T. Kurz, J. A. Middleton, and H. B. Yanik, “Preservice teachers’

conceptions of mathematics-based software,” presented at the International Group for the Psychology of Mathematics Education Conference PME-28, Bergin, Norway, July, 14-18, 2004.

[9] M. Niess, (2006, Jan. 08). Preparing teachers to teach mathematics

with technology [Online]. Available: http://site.aace.org/pubs/foresite/MathematicsEd.pdf.

[10] K. B. Smith, and P. G. Shotsberger, (2006, Oct. 27). Web-based teacher education: Improving communication and professional knowledge in preservice and inservice teacher training [Online]. Available:

http://www.eric.ed.gov/ERICDocs/data/ericdocs2sql/content_storage_ 01/0000019b/80/19/7c/a1.pdf

[11] R. D. Carlson, and J. S. Gooden, “Mentoring pre-service teachers for technology skills acquisition,” presented at the Society for Information Technology & Teacher Education International Conference, San Antonio, Feb. 28-March 4, 1999.

[12] C. Ayas, “An examination of the relationship between the integration of technology into social studies and constructivist pedagogies,” The Turkish Online Journal of Educational Technology, vol. 5, no. 1, pp. 14-25, Jan. 2006.

[13] P. Mayring, (2006, Oct. 12). Qualitative Content Analysis [Online]. Available: http://nbnresolving.de/urn:nbn:de:0114-fqs0002204. [14] P. Mishra, and M. J. Koehler, “Technological Pedagogical Content

Knowledge: A new framework for teacher knowledge,” Teachers College Record, vol. 108, no. 6, pp.1017-1054, 2006.

[15] M. E. Pesonen, (2003, Dec. 25). Experiments on using interactive web-based mathematics problem sets based on dynamic geometry

applets [Online]. Available: http://www.joensuu.fi/mathematics/MathDistEdu/Sortavala2003/Artic

lePesonen6thConferenceFinal.pdf

[16] The National Council of Teachers of Mathematics. Available: http://www.nctm.org/

214

International Scholarly and Scientific Research & Innovation 4(3) 2010 scholar.waset.org/1999.10/15846

(21)

commit to user

pedagogical content knowledge of mathematics teachers, constructivist learning approach in mathematics teacher education, and mathematical modeling.

Berna Cantürk-Günhan received her Ph.D. in mathematics education in 2006 at Dokuz Eylül University, Institute of Educational Sciences. She was born in Denizli, 1975. Her major fields of study are problem-based learning, geometry teaching, and technology integration in mathematics learning, teacher education, and drama in mathematics education

215

International Scholarly and Scientific Research & Innovation 4(3) 2010 scholar.waset.org/1999.10/15846

(22)

commit to user

Effectiveness of computer animation and geometrical instructional model on mathematics achievement and retention among junior secondary school students

Gambari, A. I.1, Falode, C. O. & Adegbenro, D. A.  Science Education Department  Federal University of Technology, Minna  For correspondence: gambarii@futminna.edu.ng  Abstract: This study investigated the effectiveness of computer animation and geometry instructional model on mathematics  achievement and retention on Junior Secondary School Students in Minna, Nigeria. It also examined the influence  of gender on students’ achievement and retention. The research was a pre‐test post‐test experimental and control  group  design.  40  junior  secondary  school  students  were  drawn  from  two  secondary  schools  within  Minna  metropolis.  Stratified  random  sampling  technique  was  used  to  select  40  students  (20  males  and  20  females).  The  Geometry  Achievement  Test  (GAT)  was  used  for  data  collection.  The  reliability  coefficient  of  0.87  was  obtained  using Kuder‐Richardson  (KR‐20). GAT was administered to students  as  pre‐test and post‐test.  The students’ pre‐ test  and  post‐test  scores  were  analyzed  using  t‐test  statistics.  The  results  indicated  that  the  students  taught  geometry  using  computer  animation  performed  significantly  better  in  posttest  and  retention  test  than  their  counterparts  taught  geometry  using  instructional  model  and  conventional  method  respectively.  However,  there  was  no  significant  difference  reported  in  the  post‐test  performance  scores  of  male  and  female  students  taught  geometry using computer animation and instructional model respectively. These findings indicated that geometry  concept in mathematics could be taught and learnt meaningfully through the use of computer animation. 

 

Keywords: Computer Animation, Instructional Models; Geometry; Gender; Retention 

Introduction

Mathematics  has  become  the  central  intellectual  discipline  of  all  technological  societies  and  it  is  indispensable  in  helping  the  individual  to  think  more  clearly  about  the  values  involved  in  this  fast  changing  world  (Abimbade  &  Udousor,  1997).  Fapohunda  (2002)  sees  mathematics  as  an  essential  tool in the formation of the educated man. Its application in other disciplines, mostly in the sciences is  appreciative  and  without  it,  knowledge  of  the  sciences  often  remains  superficial.  In  Nigeria,  mathematics is taught as a core subject to all students at the primary and secondary school levels in  order to give a sound basis for scientific and reflective thinking, and prepare them for the next level of  education (FRN, 2004). 

 

In spite of the importance and popularity of mathematics among Nigerian students, performance at  junior  secondary  school  level  had  been  poor  (Iwendi,  2012;  NECO,  2012).  Studies  have  shown  that  Nigerian  students’  achievement  in  secondary  school  mathematics  has  been  relatively  low  over  the  years (Agwagah, 2000; Obodo, 2004; Osemwinyen, 2008; WAEC, 2011; & Gimba, 2013). 

 

Several  factors  have  been  attributed  to  the  poor  performance  in  secondary  school  mathematics,  among  which  are:  poor  methods  of  teaching  (Harbour‐Peters,  2001),  poor  interest  in  mathematics  (Badmus,  2002  &  Obodo,  2004),  gender  difference  (Agwagah,  2000)  and  lack  of  appropriate  instructional materials for teaching mathematics at all levels of education in Nigeria (Gambari, 2010).  Various  attempts  have  been  made  towards  improving  the  low  achievement  and  retention  level  of 

(23)

commit to user

secondary  school  students  in  mathematics  without  any  remarkable  success  (Gimba,  2006;  Iwendi,  2009)  Poor teaching method is one of the major factors influencing poor achievement and retention  (Osemwinyen, 2009;  Tolu, 2009).   

 

Mathematics has several branches and some of these branches are more difficult for teachers to teach  and  students  to  learn  than  others.  The  basic  geometry  at  junior  secondary  level  serves  as  a  background  for  understanding  all  branches  of  geometry  at  higher  level.  Research  findings  have  confirmed that geometry is one of the topics among the abstract and complex aspects of mathematics,  which  students  find  difficult  to  learn,  and  some  teachers  find  difficult  to  teach  without  the  use  of  instructional materials (Akinlade, 2004 & WAEC, 2011). 

 

Instructional  materials  such  as  mathematical  models  have  potentials  in  the  teaching  of  abstract  concepts  such  as  geometry  (Gambari  &  Gana,  2005).  Abimbade  (1997)  concluded  that  instructional  models  enhance  visual  imagery,  stimulates  learning  and  assists  the  teacher  to  properly  convey  the  topic content to the learner, in order to achieve better understanding and performance.  

 

In the review of empirical studies on instructional models, Shih, Kuo and Liu (2012) developed and  evaluated  the  instructional  model  and  learning  system  and  found  that  the  model  enhanced  mathematical achievement. Aboderin (1997) found that the use of Pythagoras model for mathematics  instruction  had  positive  effect  on  students’  achievement.  Joshua  (2007)  reported  that  using  geometrical  globe  model  for  teaching  mathematics  at  senior  secondary  schools  enhanced  students’  performance.  Also,  Gimba  (2006)  and  Gambari  (2010)  in  different  studies  reported  that  using  3‐ dimensional  instructional  model  to  supplement  conventional  teaching  method  produced  higher  achievement than the use of conventional instruction alone. 

 

Computer  has  been  used  in  the  developed  countries  to  tackle  most  of  the  teaching  and  learning  challenges  since  1980s.  It  has  potential  for  arousing  students’  interest,  motivation  and  achievement  (Yusuf & Afolabi, 2010). It can influence students’ attitudes and interest towards mathematics which  may  positively  affect  their  achievements  and  retention  (Golden,  McCrone,  Walker  &  Rudd,  2006).  Computer‐Assisted Instructional (CAI) package  can be  used to teach all  subjects  including sciences.  According to Scott (2004) CAI can be used to provide opportunities for students to learn using drill  and practice, tutorial, games and simulation activities, animation, and many others.  

 

Animation is processed as a part of the visual information. There were two versions of the illustration  mode,  static  and  animated.  The  static version  consisted  of  a  graphic  depicting  the  scientific  process  with no visual movement to show the process in operation, while the animated version showed the  process  with  visual  movement  to  demonstrate  the  process  in  operation.  Animations  have  been  defined as images in motion (Dwyer & Dwyer, 2003). The capable features of Animation can enliven  the learning experience. Animation which promotes flexibility of learning allowed a wider range of  stimuli thus increased the student engagement in learning.     Animation seems to attract learners’ attention and increase their motivation to learn. Many students  get stimulated on a daily basis by computer animation then our instruction needs to contain computer 

animation  (Martindale,  2007).  Animation  as  an  attention  gaining  strategy  helps  to  reduce  the 

processing demands in science, technology and mathematics (STM). As an elaboration strategy, it also  facilitates  encoding  and  retrieval  processes  by  connecting  information  and  providing  alternative  retrieval  pathways  (Gagne,  1985).  Pavio’s  (1986)  dual  coding  theory  identified  two  separate  information  processing  systems  which  is  a  visual  system  that  processes  visual  knowledge,  and  a  verbal  system  for  processing  verbal  knowledge.  According  to  Paivio  (1986)  and  Riber  (1994)  animation that combines visual and verbal knowledge may store information into long‐term memory  thus facilitates encoding and retrieval process. 

Gambar

Gambar 1. Diagram Penelitian Pengembangan
Diagram Garis Hasil Observasi Motivasi Siswa Kelas XII-IA 2
Gambar 7. Diagram Batang Hasil Belajar Siswa Kelas XII-IA 2
Fig. 2 Flash animations about function concept
+7

Referensi

Dokumen terkait

Buku Data SLHD Kabupaten Gunungkidul Tahun 2014 36 Keterangan :. Sumber : Kapedal

Penggunaan faktor produksi luas lahan dan pestisida belum optimum dan penggunaan tenaga kerja tidak optimum.Dari penelitian Sriyotoet.al.,(2007) yang menggunakan analisis

Pengaruh Caring climate terhadap Kinerja Karyawan dengan Mediasi Variabel Kepuasan kerja dan Komitmen organisasi menurut proporsi Gender.. (Studi Empiris Pada Universitas

Puji syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan Tesis yang berjudul : “Hubungan

Berdasarkan analisis kesesuaian lahan melalui metode overlay, maka dapat disimpulkan bahwa buah manggis, rambutan, sirsak dan semangka bias dikembangkan di Kecamatan

Pada saat menggunakan visualroute pada website www.bing.com IP yang didapat sebanyak 15 dan dengan menggunakan tracert pada cmd yakni dengan mengetik “tracert bing.com” disini

Jika kita amati gambar dari laju aliran lateks terhadap produksi per tanaman (Tabel 2) terlihat bahwa klon-klon yang produksi per tanaman (g/p/s) rendah walau telah

Mata Pelajaran Nilai Rata-rata Rapor.. Nilai Ujian