5/17/2011
1
Associative Hypothesis Test:
Correlation And Regression
Presented by:
Mahendra AN
Basic Principles
Population parameter
ρ
Reduction
Statistic
r
Generalization = correlation from between two or more variables
Basic Concepts
Positive correlation Negative correlation
Basic Concepts
r=0 r=0.5 r=1
Statistics Techniques
Data Types Correlation techniques
Nominal 1. Contingency coefficient
Ordinal 1. Rank Spearman
2. Tau Kendal
Interval or ratio 1. Product moment Pearson 2 Multiple correlation 2. Multiple correlation 3. Partial correlation
Parametric Statistics for Correlations
1. Product moment z For searching of correlation
between two variables for interval or ratio data from the same source and normal distributed
2. Multiple correlation
Vs partial correlation
distributed
z Alternative significance test
∑
∑
=y
x
r
xy xy2 2r
n r
t 2
1 2 −
− =
5/17/2011
2
Parametric Statistics for Correlations
Multiple correlation Partial correlation
r r r r r r R x x x x yx yx yx yx x x y − − + = 1 2 2 1 2 1 2 1 1 1 2 1 2 2 2 . r r r r r R x y x x x x yx yx x x y 2 2 . 1 1 12 2
2 1 2 1 2 1 . − − − − = zAlternative significance test zAlternative significance test
( )
1 2/(
1)
/ 2 − − − = k n R k Fh
R
r
r
p n t p 2 1 3 − − =Correlation Coefficient Interpretation
Coefficient Interval Correlation
0.00 – 0.199 Very low
0.02 – 0.399 Low
0.40 – 0.599 Medium
0.60 – 0.799 Strong
0.80 – 1.000 Very strong
Non parametric statistics for correlations
1. Contingency coefficient
zFor nominal data
zStrong connection with chi square
2. Rank Spearman
• For ordinal data from different data sources and not normal di t ib t d
χ
χ
+
=N
C 2 2 distributed• Alternative significance test
(
)
∑∑ + = = =r i k j EPijE
OPij ij
1 1
2 2
χ
(
1)
6 1 2 2 − ∑ − = n n bi ρ 1 1 − = n
z
h ρ r n r t 2 1 2 − − =Non parametric statistics for correlations
3. Tau Kendal
zFor ordinal or rank data
zFor more than 10 data
zCan be used for searching partial correlation
zSignificance test
(
)
2 1 − − =∑ ∑
N N B A τ ( ) ( 1)) 9 5 2 2 − + = N N N z τRegression
z
Correlation search direction and strength
of symmetric , causal or reciprocal
relationships between two variables while
regression predict changes of dependent
regression predict changes of dependent
variables when independent variables are
change
Linear Regression Lines
5/17/2011
3
Linear Regression
1. Simple Linear Regression
2. Multiple linear Regression
ε
+
+
=
a
bX
Y
s
ε
+
+
+
+
+
=
a
b
X
b
X
b
nX
nY
1 1 2 2...
s
s
x y
r
b=
a
=
Y
−
bX
( ) ( )( )
( )
∑ ∑ ∑ ∑ ∑
∑ − − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ =
X X
Y X X X Y
i i n
i a i 2 i2 i i
2
( ) ( )
(
)
∑ ∑ ∑
∑
∑ −
− − =
X X
Y X Y X
i i n n
b i i i i
2 2
Simple Linear Regression Line
Simple Linear Regression Test Steps
z
Linearity test
z
Count a and b
z
Build regression equation and draw
i
li
s s
G TC F 2 2
=
regression line
z
Significance test
z
Correlation hypothesis test
ss
sis reg F 2 2
=
(
)(
)
(
)
(
∑ ∑)
(
∑( )
∑)
−=
−
−
∑
∑
∑
Y
Y
n
X
X
n
Y
X
Y
X
i i i i n
r i i i i
2 2 2 2
Kita membangun langit dengan segala daya yang ada kemudian merasa langit kita sudah cukup tinggi
bahkan mengungguli langit lain. Tetapi akan selau ada langit di atas kita.