• Tidak ada hasil yang ditemukan

3 sequence and trigonometry

N/A
N/A
Protected

Academic year: 2017

Membagikan "3 sequence and trigonometry"

Copied!
5
0
0

Teks penuh

(1)

y

r

t

e

m

o

n

o

g

i

r

T

&

s

e

c

n

e

u

q

e

S

2 6

0

1

1

S

e

q

u

e

n

c

e

s

&

T

r

i

g

o

n

o

m

e

t

r

y

III .SequencesandTrigonometry

: I T R A

P Sequences s d r o

W Pronunciation Indonesian

e c n e u q e

S /'s:ikwən s/ Barisan

n o i s s e r g o r

P /'prə'gre∫ n/ Barisan

c i t e m h t i r

A sequence /ə'rɪθmətɪk 's:ikwən s/ Barisan Aritmatika c

i r t e m o e

G /dƷɪə'mətrɪk 's:ikwən s/ Barisan Geometri e

c n e r e ff i

D /'dɪfrən s/ Beda

o i t a

R /'reɪɪəʊ/ Rasio

s e i r e

S /'sɪər :iz/ Deret

e t i n i

F /f'aɪnaɪt / Berhingga

e t i n if n

I /'ɪnfɪnət / TakBerhingga

m r e

T /tɜ:m/ Suku

m r e T t s r i

F /fɜ: tst ɜ:m/ SukuPertama

e l d d i

M Term /'mɪd tl ɜ:m/ SukuTengah

s m r e T e v i t u c e s n o

C /kən'sekjʊtɪv tɜ: z/ m SukuBerurutan

l a i t r a

P msu /'pɑ: l∫ sΛm/ J(suumkula)h sebagian

Example:

• An arithmetic sequenceisasequenceo fthe f orma ,a+d ,a+2d ,….

• Thenumber ais thefirstterm ,and disthedifferenceo fthesequence.

• The formula f or n-thterm o fthe arithmeticsequence isa +( n- d1 )

a1 ,a2 ,a3 arethefirst threeterms.

a(n+1)/2 iscalled middle term.

anand an+1aretwo consecutive terms.

• For arithmetic sequence a ,a+d ,a+2d ,… ,the formula for n-th partia l m

u

s Sn is (n/2 ()2a +(n − )1 d)

• Ageometric sequence is sequence in the form of a ,ar ,ar2 , where r is e

h

t ratio.

(2)

y

r

t

e

m

o

n

o

g

i

r

T

&

s

e

c

n

e

u

q

e

S

2 6

0

1

2

S

e

q

u

e

n

c

e

s

&

T

r

i

g

o

n

o

m

e

t

r

y

e c i t c a r P

. s r e w s n a t r o h s e v i g r o s e c n e t n e s e h t e t e l p m o C

.

1 The ifrst 6 termso fthearithmetic sequence13,7,1,. ..are ______________. .

2 I fthe10thtermo fan arithmeticsequencei s 55 and the 2nd termi s 7 , s

t i n e h

t 1st term is___. .

3 The sumo fthe ifrst 40 termso fthearithmeticsequence 3,7,11,15 ..,i s _

_ _ _

_ .

.

4 I fthethird termo fa geometricsequencei s20 and thesixth termi s2.5 , o

i t a r n o m m o c s t i e h t n e h

t is______.

.

5 The ___________________o fageometricsequencewhose ifrst term i s2 e

r a e v if s i _ _ _ _ _ _ _ _ _ _ _ _ d n

a 2, 10, 50 ,250 ,and 1250.

.

6 The ____________________ o fsequence 1,2,4,8 ., .. i s256. .

7 I fthe3rd termo fa geometricsequence i s63/4 ,and the6th termi s 2

3 / 1 0 7

1 ,then the 4th termis_________. .

8 The sumo f1 ,0.5 ,0.25 ,0.125 ,.. i s ______________.

t e b a h p l A k e e r G : I I T R A P

s r e t t e L g i

B Smal lLetters Words Pronunciation

Α α alpha /'æflə/

Β β beta /'b:itə/

Γ γ gamma /'gæmə/

Δ δ delta /'deltə/

Ε ε epslion /'epsliən /

Ζ ζ zeta /'ziːtə/

Η η e ta /i'ːtə/

Θ θ theta /'θiːtə/

Ι ι iota /aɪ'əʊtə/

Κ κ kappa /'kæpə/

Λ λ lamda /l'æmdə/

Μ μ m u /'mjuː/

Ν ν n u /'njuː/

Ξ ξ x i /'ksaɪ/

Ο ο omicron '/əʊmɪkrən /

(3)

y

r

t

e

m

o

n

o

g

i

r

T

&

s

e

c

n

e

u

q

e

S

2 6

0

1

3

S

e

q

u

e

n

c

e

s

&

T

r

i

g

o

n

o

m

e

t

r

y

Ρ ρ r ho /'rəʊ/

Σ σ sigma /'sɪgmə/

Τ τ t au /t'ɑʊ/

Υ υ upslion /j'ʊpsɪlən /

Φ φ p hi /f'aɪ/

Χ χ c hi /'kaɪ/

Ψ ψ p si /'psaɪ/

Ω ω omega /'əʊmɪgə/

I T R A

P I :I Trigonometry s

d r o

W Pronunciation Indonesian

y r t e m o n o g i r

T /trɪgə'nɒmətrɪ/ Trigonometri

t n e c a j d

A side /ə'dƷeɪs ants ɪd/ Sis isamping

e s u n e t o p y

H /haɪ'pɒtənyu:z/ Sis imiring

e t i s o p p

O side /ɒpəzɪt as ɪd/ Sis idepan

e l g n

A /'æŋg l/ Sudut

s e e r g e

D /dɪ'gr :iz/ Derajat

d o i r e

P /'pɪərɪəd / Periode

t n a r d a u

Q /'kwɒdrən t/ Kuadran

n a i d a

R /'rəɪdɪən / Radian

l a c o r p i c e

R /rɪ'siprək l/ Kebailkan

n o i t c n u F c i r t e m o n o g i r T

n i

s sine /saɪn /

o

c s c so ;cosine /kɒz/;/kɒzaɪn / n

a

t tan ;tangent /tæn/;/tændƷən t/ e

s c s ce ; /sek/

s

c c cosec ; /'kəʊsek/

t o

c cotangent /'kəʊtændƷənt /

Examples:

¬ Trigonometry isthestudy o fanglemeasurement.

¬ The hypotenuse wli lalways be the longest side ,and opposite from the t

h g i

(4)

y

r

t

e

m

o

n

o

g

i

r

T

&

s

e

c

n

e

u

q

e

S

2 6

0

1

4

S

e

q

u

e

n

c

e

s

&

T

r

i

g

o

n

o

m

e

t

r

y

¬ The opposite side is the side directly across from the angle you are .

g n i r e d i s n o c

¬ The adjacentsideisthesidenext toangleyouareconsidering.

¬ All f unctionshave positivevalues f oranglesi n Quadrant ,I but only s ein

a

h s positivevalues f or angles i nQuadrant II .

¬ The sineand cosinefunctionshavetheperiod 2π ( 3600).

e c i t c a r P

0 ( n i s s a h c u s , n o i t a u q e e h t y a s d n a w o l e b e l b a t e h t l li

F 0)=.

s e e r g e

D Radians S in C os T an

0 0

0

3 π /6

5

4 π /4

0

6 π /3

0

9 π /2

e c i t c a r P

. s n o i s s e r p x e g n i w o ll o f e h t d a e R

.

1 (Formulasf or Additionand Subtraction) sin(A+ B )=sin AcosB+ cosAsinB

A ( s o

c - B )= cosAcos B+sin AsinB A

( n a

t + B )= tan A+ tan B/( 1 - tanAtan B)

.

2 (PhytagoreanI dentities) sin2θ +cos2θ =1 θ

θ+ = 2

2 1 sec

n a t

.

3 (Formula forDouble Angle) sin 2A= 2 sinAcos A

.

4 (Formula f orhal fangle) cos θ = ± 1+cos θ

2 2

.

(5)

y

r

t

e

m

o

n

o

g

i

r

T

&

s

e

c

n

e

u

q

e

S

2 6

0

1

5

S

e

q

u

e

n

c

e

s

&

T

r

i

g

o

n

o

m

e

t

r

y

e s i c r e x E

. s r e w s n a t r o h s e v i g r o s e c n e t n e s e h t e t e l p m o C

.

1 Tangenthas positivevaluesf or anglesi n_______________ ,and _

_ _ _ _ _ _ _ _ _ _ _ _

_ h sa positive valuesf or anglesi n Quadrant I V. .

2 Thetangentand cotangent f unctionshavetheperiod __________ .

3 I fsinα = 0.8 ,then the valueo fsin ( 180- )α is_________ and thevalue α

n a t f

o is ______________ .

4 Without using calculator, f ind cos(150.) .

5 Find thevalueso fxf or which sin3x =0.5 fi i t i sgiven that 0< <x 09 0. .

6 What i s theequa lvaluei n degrees f orx radians? .

7 Say anythingabouttrigonometry o fthepicturebelow

e l p m a x e r o

F :

. C / A s i a n i s

A

C

a

b

Referensi

Dokumen terkait

Then, according to [11] said that he tried several such as square, rhombus, rectangle, parallelogram, when constructed on each side of any quadrilateral, the four centroids of

Dutoit Object-Oriented Software Engineering: Using UML, Paterns, and Java 12.. Action Nodes and

ID: 9534 Time required: 35 minutes Activity Overview Students will use a graphing calculator to discover the relationship between the trigonometric functions: sine, cosine and

However, in the Licensure Examination for Teachers LET the test developers always used 27% of the students who participated in the examination for the upper and lower groups; 3 Count

CHAPTER 3 NEW PRODUCT PROCESSING SEQUENCE 3.1 PROCEDURE FLOWCHART 3.2 COMPLETE RECIPE High Protein, Calcium, and Fiber Empal made from Jackfruit Skin Ingredients: Pureed ground

Percentage of Student Discussion Results Based on Academic Ability No Indicator Percentage of Students' Ability to Answer T S R 1 Instrumental Understanding 24% 6 students

A power series converges uniformly and absolutely in any region that lies entirely inside its circle of convergence.. A power series can be differentiated term by term in any region

Based on the description above, we will discuss about Morrey sequence spaces’ elementary properties and weak type Morrey sequence spaces and also the relation between sequence space ℓp,