• Tidak ada hasil yang ditemukan

Paper26-Acta25-2011. 107KB Jun 04 2011 12:03:17 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper26-Acta25-2011. 107KB Jun 04 2011 12:03:17 AM"

Copied!
9
0
0

Teks penuh

(1)

APPLICATIONS OF SUBORDINATION ON SUBCLASSES OF MEROMORPHICALLY UNIVALENT FUNCTIONS WITH

INTEGRAL OPERATOR

Indu Bala Bapna and Nisha Mathur

Abstract. In this paper we are concerned with applications of differential sub-ordination for class of meromorphic univalent functions defined by integral operator,

Pβαf(z) = β α

Γ(α). 1

zβ+1

z Z

0

tβlogz

t

α−1 f(t)dt

In the present paper, our aim is to study the Coefficient Bounds, Integral Represen-tation, Linear Combinations, Weighted and Arithmetic Mean.

Keywords: Meromorphic Functions, Differential Subordination, Integral Oper-ator, Coefficient Bounds, Integral Representation, Linear Combination, Weighted Means and Arithmetic Means.

2000Mathematics Subject Classification: 30c45. 1. Introduction

Let Σ be a class of all Meromorphic functions f(z) of the form by [4]

f(z) = 1

z +

∞ X k=1

akzk, ak≥0 (1.1)

and

g(z) = 1

z+

∞ X k=1

bkzk, bk≥0 (1.2)

Which are univalent in the punctured unit diskU ={z:z∈C ,0<|z|<1}=

U\ {0} with a simple pole at the origin. If f(z) and g(z) are analytic inU, we say that f(z) is subordinate to g(z), written f ≺ g if there exists a Schwarz function

w(z) in U withw(0) = 0 and|w(z)|<1(z∈U), such that f(z) =g(w(z)),(z∈U). In particular, if the function g(z) is univalent in U, we have the following[5],

(2)

Definition 1. Analogous to the operators defined by Jung, Kim, and Srivas-tava[3] on the normalized Analytic functions, by [1] define the following integral operator

Pβα:X→X

Pβα =Pβαf(z) = β α

Γ(α). 1

zβ+1

z Z

0

tβlogz

t

α−1

f(t)dt (1.3)

(α >0, β >0; z∈U) Where Γ(α) is the familiar Gamma Function.

Using the integral representation of the Gamma and Beta function, it can be shown that

For f(z)∈Σ, given by (1.1) we have

Pβαf(z) = 1

z+

∞ X k=1

β

k+β+ 1 α

akzk, (α >0, β >0) (1.4)

z(Pβαf(z))′ =βPα−1

β f(z)−(β+ 1)P α

βf(z), (α >1, β >0) (1.5) Definition 2. Let A and B (−1 ≤ B < A ≤ 1) be defined parameters. We say that a function f(z) ∈ Σ is in the class Σ(A, B); if it satisfies the following subordination condition by [5]

−z2 pαβf(z)′

≺ 1 +Az

1 +Bz (z∈U) (1.6)

By the definition of differential subordinate, (1.6) is equivalent to the following condition

1 +z2pα βf(z)

A+Bz2pα βf(z)

<1 (z∈U) (1.7)

In particular, we can write X

(3)

Where Σ(β) denotes the class of function in Σ satisfying following form

Re−z2 pαβf(z)′

> β (0≤β <1;z∈U) Here are some applications of differential subordination {[2],[6]}.

2. Coefficient Bounds

Theorem 2.1Let the functionf(z) of the form (1.1) be inΣ Then the function

f(z) belongs to the class Σ(A, B) if and only if

(1−B) ∞ X k=1 k β k+β+ 1

α

ak<(A−B) (2.1) Where −1≤B < A≤1. The result is sharp for the functionf(z) given by

f(z) = 1

z +

(A−B) (1−B)k

β k+β+1

αzk

Proof: Assume that the condition (2.1) is true. We must show thatf ∈Σ(A, B) or equivalently prove that

1 +z2pα βf(z)

A+Bz2pα βf(z)

<1 (2.2)

1 +z2pα βf(z)

A+Bz2pα βf(z)

′ = 1 +

−1 + ∞ P k=1

kk+ββ+1αakzk+1

A+B

−1 + ∞ P k=1

kk+ββ+1αakzk+1 = ∞ P k=1

kk+ββ+1αakzk+1

A−B+B

∞ P k=1

kk+ββ+1αakzk+1 ≤ ∞ P k=1

kk+ββ+1αak

A−B+B

∞ P

kk+ββ+1αak

(4)

The last inequality is true by (2.1).

Conversely, suppose that f ∈ Σ(A, B). We must show that the condition (2.1) holds true. We have

1 +z2

βf(z) ′

A+Bz2pα βf(z)

′ <1

Hence we get

∞ P k=1

kk+ββ+1αak

A−B+B

∞ P k=1

kk+ββ+1αak

<1,

Since Re(z)<|z|, so we have

Re        ∞ P k=1

kk+ββ+1αak

A−B+B

∞ P k=1

kk+ββ+1αak        <1

We Choose the value of zon the real axis and letting z→1−

, then we obtain        ∞ P k=1

kk+ββ+1αak

A−B+B

∞ P k=1

kk+ββ+1αak        <1 Then

(1−B) ∞ X k=1 k β k+β+ 1

α

ak<(A−B) The result is sharp for the function

f(z) = 1

z +

∞ X k=1

(A−B) (k+β+ 1)α (1−B)kβα z

k

Corollary 2.2 Let f ∈Σ(A, B), then we have

ak ≤

(A−B) (k+β+ 1)α

(5)

3. Integral Representation

In the next theorem we obtain an integral representation forpαβf(z) Theorem 3.1 Let f ∈Σ(A, B), then

βf(z) = z Z

0

(Aφ(t)−1)

t2(1(t))dt , where|φ(z)|<1, z∈U (3.1)

Proof: Let f(z)∈Σ(A, B) letting

−z2pα βf(z)

=y(z) We have

y(z)≺ 1 +Az

1 +Bz (3.2)

Or we can write

y(z)−1

By(z)−A

<1,

so that consequently, we have

y(z)−1

By(z)−A =φ(z), |φ(z)|<1 (z∈U)

We can write

−z2

βf(z)′

= 1−Aφ(z) 1−Bφ(z), Which gives

− pαβf(z)′ = 1

z2

1−Aφ(z) 1−Bφ(z),

βf(z) = z Z

0

1

t2

Aφ(t)−1

1−Bφ(t)dt (3.3)

And this gives the required result.

4. Linear Combination

In the theorem below, we prove a linear combination for the class Σ(A, B). Theorem 4.1 Let fi(z) =z−1

+ ∞ P

(6)

Belong to Σ(A, B) then

F(z) = l P i=1

cifi(z)∈Σ(A, B) Where l P i=1

ci = 1 Proof: By theorem 2.1, We can write for everyi∈ {1,2. . . , l}

∞ X k=1

k(1−B) (A−B)

β k+β+ 1

α

ak,i<1, (4.1)

Therefore

F(z) = l X

i=1 ci z

−1

+ ∞ X k=1

ak,izk !!

=z−1

+ l X i=1

∞ X k=1

ciak,izk

=z−1

+ ∞ X k=1

l X i=1

ciak,i !

zk (4.2)

however

∞ X k=1

k(1−B) (A−B)

β k+β+ 1

α l

X i=1

ak,ici !

= l X i=1

"∞ X k=1

k(1−B) (A−B)

β k+β+ 1

α

ak,i #

ci

≤1 (4.3)

then F(z)∈Σ(A, B)

hence the proof is complete.

5. Weighted Mean

Definition 3. f(z) and g(z) belong to Σ,then the weighted mean hj(z) of f(z) and g(z) is given by

hj(z) = 1

2[(1−j)f(z) + (1 +j)g(z)]

(7)

f(z) and g(z) is also in Σ(A, B) Proof: We have forhj(z) by definition

h(z) = 1 2

"

(1−j) z−1

+ ∞ X k=1

akzk !

+ (1 +j) z−1

+ ∞ X k=1

bkzk !#

=z−1

+1 2

∞ X k=1

[(1−j)ak+ (1 +j)bk]zk (5.1) Since f(z) andg(z) are in the class Σ(A, B) so by theorem 2.1 we must prove that

∞ X k=1

k(1−B)

β k+β+ 1

α 1

2(1−j)ak+ 1

2(1 +j)bk

= 1

2(1−j)(1−B) ∞ X k=1 k

β k+β+ 1

α

ak+ 1

2(1 +j)(1−B) ∞ X k=1 k

β k+β+ 1

α

bk

≤ 1

2(1−j)(A−B) + 1

2(1 +J)(A−B)

≤(A−B) (5.2)

hence proved

6. Arithmetic Mean

Definition 4. Let f1(z),f2(z). . . fl(z) belong to Σ(A, B), then the arithmetic mean h(z) of fi(z) is given by

h(z) = 1

l

l X k=1

fi(z)

In the theorem below we will prove the arithmetic mean for this class Σ(A, B). Theorem 6.1 If f1(z),f2(z). . . fl(z) are in the class Σ(A, B), then the arithmetic mean h(z) of fi(z) is given by

h(z) = 1

l

l X

(8)

is also in the class Σ(A, B). Proof: We have forh(z) by def. 4

h(z) = 1

l

l X k=1

z−1

+ ∞ X k=1

ak,izk !

=z−1

+ ∞ X k=1

1

l

l X k=1

ak,i !

zk (6.2)

Sincefi(z)∈Σ(A, B) for everyi= 1,2, . . . , l so by using theorem 2.1, we prove that

(1−B) ∞ X k=1 k

β k+β+ 1

α 1

l

l X i=1

ak,i !

= 1

l

l X i=1

∞ X k=1

k(1−B) !

β k+β+ 1

α

ak,i

≤ 1 l

l X i=1

(A−B) (6.3)

The proof is complete.

References

[1] A. Y. Lashin, On Certain Subclasses of Meromorphic Functions Associated with Certain Integral Operators, Computers and Mathematics with Application, 59, (2009), 524-531.

[2] H. M. Srivastava and J. Patel, Applications of Differential Subordination to Cer-tain Subclasses of Meromorphically Multivalent Functions, J. Ineq. Pure and Appl. Math., 6 (3), (2005), Art. 88.

[3] I. B. Jung, Y. C. Kim, H. M. Srivastava,The Hardy Space of Analytic Functions Asociated with Certain One-parameter of Families of Integral Operator, J. Math. Anal. Appl., 176 (1), (1993), 138-147. [4] J. Patel, P. Sahoo,On Certain Subclass of Meromorphically Univalent Functions, Kyungpook Math. J., 42, (2002), 121-132. [5] S. S. Miller and P. T. Mocanu, Differential Subordinations and Univalent Func-tions, Michigan Math. J., 28, (1981), 157-171.

[6] W. G. Atshan and S. R. Kulkarni, On Application of Differential Subordination for Certain Subclass pf Meromorphically P-Valent Functions With Positive Coeffi-cients Defined by Linear Operator, jipam, 10, (2009), Issue 2, Art. 53, pg. 11.

Indu Bala Bapna,

(9)

Bhilwara, Rajasthan, India email:bapnain@yahoo.com Nisha Mathur,

Referensi

Dokumen terkait

2 Kendaraan operasional roda empat untuk surveilans dan monitoring penyakit hewan Rp305,000,000 e-procurement. XIV PERALATAN PENUNJANG

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Meja Bhs Jepang Nada Isu Bhs Indonesia Dini Gomibako Bhs Inggris Daniel Randosēru Bhs Inggris Etienne Kabin Bhs Inggris Nobita Karend ā Bhs Jawa Sugiman.. Pencil case (box) Bhs

Penetapan hasil kualifikasi (Short List)g. Pengumuman hasil kualifikasi 11

Pejabat Pembuat Komitmen SMARTD mengundang para Peserta Lelang yang memenuhi syarat untuk menyampaikan surat penawaran dalam amplop tertutup untuk pelaksanaan pekerjaan

Berdasarkan hasil evaluasi penawaran administrasi dan teknis pekerjaan Konstruksi PEMBANGUNAN RSUD KOTA BANJARBARU, Panitia Pengadaan menetapkan daftar peringkat teknis

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Memahami pemrograman visual berbasis desktop 6.1 Menjelaskan IDE aplikasi bahasa pemograman. 6.2 Menjelaskan objek aplikasi