Statistik Bisnis
Week 12
Learning Objectives
This week, you learn:
• How to use one-way analysis of variance to
test for differences among the means of
several populations (also referred to as
“groups” in this chapter)
Chapter Overview
Analysis of Variance (ANOVA) One-Way ANOVA F-test Tukey-Kramer Multiple ComparisonsLevene Test For Homogeneity of Variance Randomized Block Design Tukey Multiple Comparisons Two-Way ANOVA Interaction Effects Tukey Multiple Comparisons
One-Way Analysis of Variance
• Evaluate the difference among the means of three or more groups
Examples: Accident rates for 1st, 2nd, and 3rd shift
Expected mileage for five brands of tires
• Assumptions
– Populations are normally distributed – Populations have equal variances
Hypotheses of One-Way ANOVA
•
– All population means are equal
– i.e., no factor effect (no variation in means among groups)
•
– At least one population mean is different – i.e., there is a factor effect
– Does not mean that all population means are different (some pairs may be the same)
c 3 2 1 0 : μ μ μ μ H same the are means population the of all Not : H1
One-Way ANOVA
The Null Hypothesis is True All Means are the same:
(No Factor Effect)
c 3 2 1 0 :μ μ μ μ H same the are μ all Not : H1 j μ μ μ
One-Way ANOVA
The Null Hypothesis is NOT true At least one of the means is different
(Factor Effect is present)
c 3 2 1 0 : μ μ μ μ H same the are μ all Not : H1 j μ μ μ μ μ μ or
Partitioning the Variation
• Total variation can be split into two parts:
SST = Total Sum of Squares
(Total variation)
SSA = Sum of Squares Among Groups
(Among-group variation)
SSW = Sum of Squares Within Groups
(Within-group variation)
Partitioning the Variation
Total Variation = the aggregate variation of the individual data values across the various factor levels (SST)
Within-Group Variation = variation that exists among the data values within a particular factor level (SSW)
Among-Group Variation = variation among the factor sample means (SSA)
Partition of Total Variation
Variation Due to Factor (SSA)
Variation Due to Random Error (SSW)
Total Variation (SST)
Total Sum of Squares
c j n i ij jX
X
SST
1 1 2)
(
Where:SST = Total sum of squares
c = number of groups or levels
nj = number of observations in group j Xij = ith observation from group j
X = grand mean (mean of all data values)
Total Variation
Group 1 Group 2 Group 3 Response, X
X
2 2 12 2 11)
(
)
(
)
(
X
X
X
X
X
X
SST
c cn
Among-Group Variation
Where:
SSA = Sum of squares among groups
c = number of groups
nj = sample size from group j Xj = sample mean from group j
X = grand mean (mean of all data values)
2 1
)
(
X
X
n
SSA
j c j j
SST = SSA + SSW
Among-Group Variation
Variation Due to
Differences Among Groups
i j 2 1
)
(
X
X
n
SSA
j c j j
1
c
SSA
MSA
Mean Square Among = SSA/degrees of freedom
Among-Group Variation
Group 1 Group 2 Group 3 Response, X
X
1X
X
2 2 2 2 2 2 1 1(
X
X
)
n
(
X
X
)
n
(
X
X
)
n
SSA
c c
3X
Within-Group Variation
Where:
SSW = Sum of squares within groups
c = number of groups
nj = sample size from group j Xj = sample mean from group j Xij = ith observation in group j 2 1 1
)
(
ij j n i c jX
X
SSW
j
SST = SSA + SSW
Within-Group Variation
Summing the variation within each group and then adding
over all groups
n
c
SSW
MSW
Mean Square Within = SSW/degrees of freedom 2 1 1
)
(
ij j n i c jX
X
SSW
j
j μWithin-Group Variation
Group 1 Group 2 Group 3 Response, X 1
X
X
2 3X
2 2 2 12 2 1 11)
(
)
(
)
(
X
X
X
X
X
cnX
cSSW
c
Obtaining the Mean Squares
c
n
SSW
MSW
1
c
SSA
MSA
1
n
SST
MST
The Mean Squares are obtained by dividing the various sum of squares by their associated degrees of freedom
Mean Square Among (d.f. = c-1)
Mean Square Within (d.f. = n-c)
Mean Square Total (d.f. = n-1)
One-Way ANOVA Table
Source of Variation Sum Of Squares Degrees of Freedom Mean Square (Variance) Among Groups c - 1 MSA = Within Groups n - c SSW MSW = Total n – 1 SST SSA MSA MSW F c = number of groupsn = sum of the sample sizes from all groups SSA
c - 1
SSW
n - c
One-Way ANOVA
F Test Statistic
• Test statistic
MSA is mean squares among groups
MSW is mean squares within groups
• Degrees of freedom
– df1 = c – 1 (c = number of groups)
– df2 = n – c (n = sum of sample sizes from all populations)
MSW
MSA
F
STAT
H0: μ1= μ2 = …= μ c
Interpreting One-Way ANOVA
F Statistic
• The F statistic is the ratio of the
among
estimate of variance and the
within
estimate of variance
– The ratio must always be positive – df1 = c -1 will typically be small – df2 = n - c will typically be large
Decision Rule:
Reject H0 if FSTAT > Fα,
otherwise do not reject
H0 0
Reject H0 Do not
One-Way ANOVA
F Test Example
Anda ingin mengetahui apakah jarak bola yang dipukul oleh tiga stick golf yang berbeda akan
berbeda. Anda memilih lima pemukulan bola secara acak untuk masing-masing stick golf tersebut. Pada tingkat
signifikansi 0,05, apakah terdapat bukti yang
menunjukkan perbedaan pada rata-rata jarak pukulan bola?
Club 1 Club 2 Club 3
254 234 200
263 218 222
241 235 197
237 227 206
• • • • •
One-Way ANOVA Example: Scatter
Plot
270 260 250 240 230 220 210 200 190 • • • • • • • • • • Distance 1X
2X
3X
X
227.0 X 205.8 X 226.0 X 249.2 X1 2 3 Club 1 Club 2 Club 3
254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 1 2 3
One-Way ANOVA Example
Computations
Club 1 Club 2 Club 3
254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 X1 = 249.2 X2 = 226.0 X3 = 205.8 X = 227.0 n1 = 5 n2 = 5 n3 = 5 n = 15 c = 3 SSA = 5 (249.2 – 227)2 + 5 (226 – 227)2 + 5 (205.8 – 227)2 = 4,716.4 SSW = (254 – 249.2)2 + (263 – 249.2)2 +…+ (204 – 205.8)2 = 1,119.6 MSA = 4,716.4 / (3-1) = 2,358.2 MSW = 1,119.6 / (15-3) = 93.3 93.3 25.275 2,358.2 FSTAT
One-Way ANOVA Example Solution
H0: μ1 = μ2 = μ3
H1: μj not all equal
= 0.05 df1= 2 df2 = 12 Test Statistic: Decision: Conclusion: Reject H0 at = 0.05
There is evidence that at least one μj differs from
the rest 0
= .05 Reject H0 Do not reject H 25.275 93.3 2358.2 FSTAT MSW MSA Critical Value: Fα = 3.89
The Tukey-Kramer Procedure
• Tells
which
population means are significantly
different
– e.g.: μ1 = μ2 μ3
– Done after rejection of equal means in ANOVA
• Allows paired comparisons
– Compare absolute mean differences with critical range
x
Tukey-Kramer Critical Range
where:
Qα = Upper Tail Critical Value from Studentized Range Distribution with c and n - c degrees
of freedom (see appendix E.7 table) MSW = Mean Square Within
nj and nj’ = Sample sizes from groups j and j’
j' j αn
n
MSW
Q
ange
Critical R
1
1
2
The Tukey-Kramer Procedure:
Example
1. Compute absolute mean differences:
Club 1 Club 2 Club 3
254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 x x 226.0 205.8 20.2 43.4 205.8 249.2 x x 23.2 226.0 249.2 x x 3 2 3 1 2 1
2. Find the Qα value from the table in appendix E.7 with
c = 3 and (n – c) = (15 – 3) = 12 degrees of freedom:
3.77
The Tukey-Kramer Procedure:
Example
5. All of the absolute mean differences are greater than critical range. Therefore there is a significant difference between each pair of means at 5% level of significance.
Thus, with 95% confidence we can conclude that the mean distance for club 1 is greater than club 2 and 3, and club 2 is greater than club 3.
285 16 5 1 5 1 2 3 93 77 3 1 1 2 . . . n n MSW Q ange Critical R j' j α
3. Compute Critical Range:
20.2 x x 43.4 x x 23.2 x x 3 2 3 1 2 1 4. Compare:
ANOVA Assumptions
• Randomness and Independence
– Select random samples from the c groups (or randomly assign the levels)
• Normality
– The sample values for each group are from a normal population
• Homogeneity of Variance
– All populations sampled from have the same variance
11.7 (cont’d)
The Computer Anxiety Rating Scale (CARS) mengukur level kecemasan komputer individu, dengan skala dari 20 (tidak ada kecemasan) hingga 100 (level tertinggi kecemasan). Peneliti pada Miami University menyebarkan CARS pada 172 mahasiswa bisnis. Salah satu tujuan penelitian ini adalah untuk menentukan apakah terdapat perbedaan tingkat kecemasan komputer pada mahasiswa dengan jurusan yang berbeda. Mereka mendapatkan data sebagai berikut:
11.7 (cont’d)
Sumber variasi Degrees of Freedom Sum of Squares Mean Squares F Among majors 5 3.172 Within majors 166 21.246 Total 171 24.418 Major n Mean Marketing 19 44,37 Management 11 43,18 Other 14 42,21 Finance 45 41,8 Accountancy 36 37,56
11.7
a. Lengkapi tabel ringkasan ANOVA diatas.
b. Pada tingkat signifikansi 0,05, apakah terdapat bukti adanya perbedaan pada rata-rata tingkat kecemasan komputer yang dialami oleh mahasiswa dengan jurusan yang berbeda?
c. Jika hasil pada poin (b) menunjukkan ada yang berbeda, gunakan prosedur Tukey-Kramer untuk menentukan jurusan apa yang berbeda tingkat kecemasan komputernya.
11.11 (cont’d)
Rata-rata jumlah pengunjung pada masing-masing toko dari sebuah peritel ternama (yang memiliki lebih dari 10.000 toko) akhir-akhir ini selalu tetap pada angka 900 orang pengunjung. Untuk meningkatkan jumlah pelanggan, peritel tersebut berencana untuk menurunkan harga kopinya. Peritel tersebut ingin mengetahui seberapa banyak pengurangan harga yang mampu meningkatkan jumlah pengunjung harian tanpa terlalu besar mengurangi keuntungan kasar dari penjualan kopi tersebut.
11.10 (cont’d)
Sebuah produsen pulpen menyewa jasa agen periklanan untuk membuat iklan produk mereka. Untuk mempersiapkan proyek ini, direktur riset melakukan penelitian mengenai pengaruh iklan pada persepsi produk. Sebuah eksperimen didesain untuk membandingkan lime iklan yang berbeda. Iklan A sangat tidak menonjolkan karakteristik pulpen. Iklan B kurang menonjolkan karakteristik pulpen. Iklan C agak melebih-lebihkan karakteristik pulpen. Iklan D sangat melebih-lebihkan
karakteristik pulpen. Iklan E mencoba
11.10 (cont’d)
Sebuah sampel yang terdiri dari 30 orang responden diminta untuk mengevaluasi salah satu iklan tersebut (sehingga terdapat 6 responden untuk masing-masing iklan). Setelah membaca iklan dan dapat membayangkan ekspektasi produk dari iklan tersebut, semua responden diberi pulpen yang sama untuk dievaluasi. Responden diizinkan untuk mencoba pulpen tersebut sesuai dengan yang dijanjikan iklan yang mereka terima. Kemudian responden diminta untuk memberi penilaian dari 1 hingga 7 (terendah hingga tertinggi) untuk karakteristik produk tersebut: penampilan, ketahanan, dan kinerja. Total dari ketiga karakteristik dari masing-masing responden dapat dilihat dari tabel berikut: