• Tidak ada hasil yang ditemukan

TSUNAMI SIMULATION IN INDONESIA S AREAS BASED ON SHALLOW WATER EQUATIONS AND VARIATIONAL BOUSSINESQ MODEL USING FINITE ELEMENT METHOD THESIS

N/A
N/A
Protected

Academic year: 2021

Membagikan "TSUNAMI SIMULATION IN INDONESIA S AREAS BASED ON SHALLOW WATER EQUATIONS AND VARIATIONAL BOUSSINESQ MODEL USING FINITE ELEMENT METHOD THESIS"

Copied!
12
0
0

Teks penuh

(1)

TSUNAMI SIMULATION IN INDONESIA’S AREAS

BASED ON SHALLOW WATER EQUATIONS AND

VARIATIONAL BOUSSINESQ MODEL USING

FINITE ELEMENT METHOD

THESIS

Submitted in partial satisfaction of the requirements for the degree of

Master of Science in the Institut Teknologi Bandung

By

DIDIT ADYTIA

NIM : 20106001

(2)

ABSTRACT

TSUNAMI SIMULATION IN INDONESIA’S AREAS

BASED ON SHALLOW WATER EQUATIONS AND

VARIATIONAL BOUSSINESQ MODEL USING

FINITE ELEMENT METHOD

By

DIDIT ADYTIA

NIM : 20106001

In many cases, tsunami waveheights and effects show a high variability along the coast. One way to study this complexity is to simulate the tsunami above a certain area by using water wave models. Since a tsunami can be considered as a shallow water wave, we can choose the well-known Shallow Water Equa-tions (SWE) as a non-dispersive water wave model for the tsunami. Dispersive wave means that harmonic waves of smaller wavelength propagate slower than waves of larger wavelength. For the dispersive wave model, we used the re-cently derived Variational Boussinesq Model (VBM). In the SWE model the vertical variations in the layer of fluid is neglected, different from the VBM where the vertical variations lead to the effect of dispersion. These models are derived by using variational formulation. Consistently with the way of their derivations, these models will be solved numerically by using Finite Element Method (FEM). In FEM, the solutions are approximated by linear combination of the basis functions. In this thesis, we used linear basis functions. The radi-ation boundary condition and hard-wall boundary condition are implemented for both SWE and VBM. To simulate the tsunami, we use the available data of the bathymetry of Indonesia which is incorporated into our FEM schemes. The tsunami simulation in the two areas of Indonesia, which are the area in the south of Pangandaran and the area in the south of Lampung, will be presented as a result of FEM’s implementation for the SWE and the VBM.

Keywords. Tsunami, Simulation, Indonesia, Shallow Water Equations, Variational Boussinesq Model, Finite Element Method

(3)

ABSTRAK

SIMULASI TSUNAMI DI DAERAH INDONESIA

BERDASARKAN PERSAMAAN AIR DANGKAL

DAN VARIATIONAL BOUSSINESQ MODEL

MENGGUNAKAN METODE ELEMEN HINGGA

Oleh

DIDIT ADYTIA

NIM : 20106001

Pada banyak kasus tsunami, ketinggian dan akibat dari gelombang ini menjukkan variasi yang sangat tinggi di sepanjang garis pantai. Salah satu cara un-tuk mempelajari masalah ini adalah dengan melakukan simulasi tsunami pada suatu daerah tertentu dengan menggunakan model gelombang air. Karena tsunami dapat dianggap sebagai gelombang air dangkal, maka dapat digunakan persamaan gelombang air dangkal atau Shallow Water Equations (SWE) se-bagai model non-dispersif. Gelombang yang bersifat dispersif diartikan bahwa gelombang harmonik yang mempunyai panjang gelombang yang pendek ber-propagasi lebih lambat dibanding dengan gelombang dengan panjang gelom-bang lebih besar. Untuk model gelomgelom-bang dispersif, akan digunakan Varia-tional Boussinesq Model (VBM). Pada model SWE, variasi pada arah vertikal diabaikan, berbeda dengan VBM dimana hal tersebut tidak diabaikan sehingga muncul efek dispersif. Kedua model tersebut diturunkan dengan variational formulation, konsisten dengan cara penurunannya, model-model tersebut di-cari solusi numeriknya dengan metode elemen hingga atau Finite Element Method (FEM). Pada FEM, solusi dihampiri dengan kombinasi linier dari fungsi basis. Pada tesis ini digunakan fungsi basis linier. Radiation boundary condition dan Hard-wall boundary condition akan diimplementasikan baik un-tuk SWE maupun VBM. Unun-tuk melakukan simulasi tsunami, digunakan data bathymetry Indonesia. Simulasi tsunami pada dua daerah di Indonesia akan diperlihatkan sebagai implementasi FEM dari SWE dan VBM.

Kata kunci. Tsunami, Simulasi, Indonesia, Persamaan Air Dangkal, Varia-tional Boussinesq Model, Metode Elemen Hingga

(4)

TSUNAMI SIMULATION IN INDONESIA’S AREAS

BASED ON SHALLOW WATER EQUATIONS AND

VARIATIONAL BOUSSINESQ MODEL USING

FINITE ELEMENT METHOD

By

DIDIT ADYTIA

NIM : 20106001

Program Studi Matematika Institut Teknologi Bandung

Approved 21 June 2008

Supervisor

(5)

GUIDELINES TO USE THE THESIS

This thesis is not published, it is registered and is available in library at the Institut Teknologi Bandung. This thesis is not open to the public in condition that the copyright belongs to the author. Permission is granted to quote brief passages from this thesis provided the customary acknowledgment of the source is given.

Copying or publishing any material in this thesis is permitted only under licence from the Director of Program Pascasarjana of the Institut Teknologi Bandung.

(6)

For Husin Mas’ud and Yensi Nio my best parent ever

(7)

ACKNOWLEDGMENTS

In the Name of Allah, I express gratitude to Allah S.W.T for allowing me to finish this work. Although it is my name who appears in the cover of this thesis, but there are many people with their help and support who made this work possible. First of all, sincere thanks to my teacher and my supervisor, Dr. Andonowati, who has really inspired me about mathematics and natu-ral phenomenon, and also giving me a trust to do this work. This work was initiated at Labmath-Indonesia in mid 2007. I wishes to thanks to this insti-tution for providing me a financial supports and facilities. This work mostly has been done in this institution under supervision of Prof. E. (Brenny) van Groesen and Dr. Ardhasena Sopaheluwakan. I really want say many thanks to Mr. Brenny for his beautiful Variational Boussinesq Model (VBM) and his brialliant opinion about mathematics and nature, that is really open my mind about mathematics. Thank you for choosing me to do this job. Special thanks to Pak Sena, for introducing me the beauty of Finite Element and the art of computing. I found it really amazing. In doing this work, I worked with a young reseacher, L. Oscar Osaputra, who gave a very much contribution to this work. I really thanks for our 4 months work.

My thanks for Dr. Sri Redjeki for her support, nice sharing and discussion about mathematics. My thanks are also to all staff and researchers in Labmath Indonesia for their supports and friendship, I really appreciate that. I express my thanks to graduate students and all staff in Mathematics Department, Institute Teknologi Bandung, for all friendship. Finally, to my parent, Husin and Yensi, my brother and sister, Tinton and Ika, my great friend Fara, and my families, gratitudes always goes to their deep understanding and supports. Bandung, Juni 2007

(8)

CONTENTS

ABSTRACT i

ABSTRAK ii

GUIDELINES TO USE THE THESIS iv

ACKNOWLEDGMENTS vi

CONTENTS vii

LIST OF FIGURES ix

Chapter I Preliminary 1

I.1 Motivation . . . 1

I.2 Problem Formulation . . . 1

I.3 Objectives . . . 2

I.4 Outline . . . 3

Chapter II Basic Theory 4 II.1 Variational Formulation . . . 4

II.1.1 Notation . . . 4

II.1.2 Variational Formulation for Surface Wave . . . 5

II.2 Shallow Water Equations . . . 6

II.3 Variational Boussinesq Model . . . 8

II.4 Boundary Conditions . . . 12

II.4.1 Radiation Boundary Condition . . . 12

II.4.1 Hard-wall Boundary Condition . . . 13

Chapter III Finite Element Method Implementation for SWE and VBM 14 III.1 Finite Element Method . . . 14

(9)

III.2 FEM Implementation for SWE . . . 15 III.3 FEM Implementation for VBM . . . 21 III.4 FEM Implementation for Boundary Conditions . . . 25

Chapter IV Tsunami Simulation 28 IV.1 Water Wave Simulation Above Flat Bottom . . . 28 IV.2 Indonesia Bathymetry . . . 33 IV.3 Tsunami Simulation Using SWE and VBM above Indonesia

Bathymetry . . . 35

Chapter V Conclusions and Recommendations 46

(10)

LIST OF FIGURES

Figure 3.1 At the left, we show a plot of discretized domain by using pdetool from MATLAB, and at the right plot show the global and the local numbering (in bracket). The local numbering is assumed in counterclockwise direction. . . 15 Figure 3.2 Plot of linear basis function Ti(x) . . . 16

Figure 3.3 Linear transformation from Ωe to master triangle and

in-verse map. . . 19 Figure 4.1 Plot of the bipolar initial profile. . . 29 Figure 4.2 Plot of the crosssection of initial wave at y = 0 with 1.7m

amplitude and Λ = 20km. . . 29 Figure 4.3 Plot of the splitting initial bipolar hump above flat bottom

using SWE model at t = 7 min. . . 30 Figure 4.4 Plot of SWE simulation above flat bottom when the wave

reached the boundary at t = 12 min. Notice that there is no reflection from each boundary. . . 30 Figure 4.5 Plot of the splitting of initial bipolar hump using VBM,

notice the development of dispersive effect. . . 31 Figure 4.6 Plot of the VBM simulation when the wave hits the

ra-diation boundary condition, notice the reflected wave from the left and right boundary. . . 31 Figure 4.7 Plot of available bathymetry data with 1′ accuracy. . . 33

Figure 4.8 Ilustration of the approximated bathymetry data in trian-gle domain. . . 34 Figure 4.9 Plot of discretized domain in the south of Java. . . 34 Figure 4.10 Profile of the bathymetry in the south of Java for

Pan-gandaran case. . . 34 Figure 4.11 Plot of the location of earthquake in the south of Java at

July 17, 2006. Courtesy : USGS. . . 35 ix

(11)

Figure 4.12 Plot of the splitting of intial bipolar hump using SWE model at t = 3 minutes. The location of the source is near 9.220S and 107.320E. . . 37

Figure 4.13 Plot of the tsunami simulation on Pangandaran case using SWE model at t = 9 minutes. . . 37 Figure 4.14 Plot of Pangandaran’s tsunami simulation using SWE

model at t = 60 minutes. . . 38 Figure 4.15 Plot of the maximum crest-height during 1 hour

simula-tion using SWE model. Crossecsimula-tion near the coast denoted by white line. . . 38 Figure 4.16 Plot of Pangandaran’s tsunami simulation using the VBM

at t = 9 min. Notice the appearance of the dispersive tail. . . 39 Figure 4.17 Plot of the maximum crest-height near the coast

dur-ing 1 hour simulation usdur-ing VBM. The below plot denotes the crosssection in the white line. . . 39 Figure 4.18 Plot of approximated bathymetry for Lampung Case.

Notice the shallow area surrounded by deep area in the south of Sumatra. . . 41 Figure 4.19 Plot of the location and the shape of initial wave for

Lampung Case. . . 41 Figure 4.20 Plot of the tsunami simulation for Lampung case by using

SWE model at t = 9 minutes. . . 42 Figure 4.21 Plot of tsunami simulation for Lampung case by using

VBM. Notice the appearance of the dispersive tail. . . 42 Figure 4.22 The wave after 18 minutes by using VBM. There is

de-layed and amplified wave above the shallow area. The wave-height reached to more than 10m. . . 43 Figure 4.23 Plot of the maximum waveheight during 1 hour

(12)

Figure 4.24 Plot of the maximum waveheight during 1 hour simula-tion by using VBM. At the specific area near the coast in the south of Sumatra, the wave reached 9.61m. . . 44

Referensi

Dokumen terkait

suatu variabel/konstrak dengan cara memberikan arti atau menspesifikasikan kegiatan. Dalam penelitian ini variabel yang akan diteliti adalah siakp siswa kelas V SD Negeri

278.070.000,- (Dua Ratus Tujuh Delapan Juta Tujuh Puluh Ribu Rupiah), maka bersama ini kami Kelompok Kerja III Unit Layanan Pengadaan Barang/Jasa Daerah Kabupaten Lamandau

Gambar 2.15 Cinere Square, sumber: data pribadi..  Akses menuju lokasi sangat mudah baik untuk dijangkau oleh kendaraan pribadi atau kendaraan umum.  Merupakan penyewa

pertimbangan dalam perancangan pabrik Ceramah dan diskusi Memperhatikan dan mencatat Apple Francis, Wignyosubroto Rondeau Mahasiswa mampu menjelaskan tujuan dan prinsip

UNTVERIiNAS

[r]

wanita dengan abortus spontan yang rekuren. 1) Lesi anatomi kogenital yaitu kelainan duktus Mullerian (uterus bersepta). Duktus mullerian biasanya ditemukan pada keguguran

Adapun perumusan masalah dalam penulisan ini adalah bagaimana kedudukan orang yang mempunyai kelamin ganda (khunsa) dalam hukum kewarisan Islam dan bagaimana cara