• Tidak ada hasil yang ditemukan

S TE 1105051 Bibliography

N/A
N/A
Protected

Academic year: 2017

Membagikan "S TE 1105051 Bibliography"

Copied!
3
0
0

Teks penuh

(1)

Muhammad Falah Aranza, 2016

TUNING KONTROLER PID PADA SISTEM AVR DI CIRATA II DENGAN MENGGUNAKAN ALGORITMA PARTICLE SWARM OPTIMIZATION

Universitas Pendidikan Indonesia | repository.upi.edu| perpustakaan.upi.edu

DAFTAR PUSTAKA

AlRashidi, M. R., & El-Hawary, M. E. (2009). A Survey of Particle Swarm Optimization Applications in Electric Power Systems. IEEE Transactions on Evolutionary Computation, 13(4), 1–6.

http://doi.org/10.1109/TEVC.2006.880326

Asifa, H. M., & Vaishnav, S. R. (2010). Particle Swarm Optimisation Algorithm Based PID Controller.2010 3rd International Conference on Emerging Trends in Engineering and Technology, 628–631.

http://doi.org/10.1109/ICETET.2010.145

Bayram, M. B. (2013). Matlab / GUI Based Basic Design Principles of PID Controller in AVR, (May), 13–17. IEEE fourth International Conference on Power Engineering and Electrical Device. Turkey

Bratton, D., & Bratton, D. (2007). Defning a Standard for Particle Swarm

Optimization. Symposium A Quarterly Journal In Modern Foreign Literatures, (Sis), 120–127.

Bratton, D., & Kennedy, J. (2007). Defining a standard for particle swarm

optimization. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium, SIS 2007 (pp. 120–127).

Cao, J. C. J., & Cao, B. C. B. (2006). Design of Fractional Order Controllers Based on Particle Swarm Optimization. 2006 1ST IEEE Conference on Industrial Electronics and Applications, 775–78http://doi.org/10.1109/ICIEA.2006.257091

Chairuzzaini. (1998 Maret). Pengenalan Metode Ziegler-Nichols pada Perancangan Kontroler pada PID. [Online]. Diakses dari :

http://www.elektroindonesia.com/elektro/tutor12.html

Chapman, S, J. (2005). Electric Machinery Fundamentals. Fourth Edition. Mc-Grawhill : New York.

Gaing, Z.-L. L. (2004). A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Transactions on Energy Conversion, 19(2), 384–391. http://doi.org/10.1109/TEC.2003.821821

(2)

75

Conference on Information and Communication Technology in Electrical Sciences (ICTES), (Ictes), 81–86. http://doi.org/10.1049/ic:20070591

Kimiyaghalam, A., & Ashouri, A. (2008). Advanced Particle Swarm Optimization-Based PID Controller Parameter Tuning. Proceedings Ofthe 12th IEEE International Multitopic Conference, 429–435.

Madinehi, N., Shaloudegi, K., Abedi, M., & Abyaneh, H. A. (2011). Optimum design of PID controller in AVR system using intelligent methods. 2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011, 1–6. http://doi.org/10.1109/PTC.2011.6019196

Ogata, Katsuhiko. (1985). Teknik Kontrol Automatik Jilid 1. Alih Bahasa oleh Edi Laksono. Jakarta: Erlangga.

Ogata, Katsuhiko. (1985). Teknik Kontrol Automatik Jilid 2. Alih Bahasa oleh Edi Laksono. Jakarta: Erlangga.

Ogata, Katsuhiko. (2002). Modern Control Engineering, Fourth Edition. New Jersey: Prentice-Hall.

Panda, S., Sahu, B. K., & Mohanty, P. K. (2012). Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization. IET Journal of the Franklin Institute, 349(8), 2609–2625. http://doi.org/10.1016/j.jfranklin.2012.06.008

Parsopoulos, K. E., & Vrahatis, M. N. (2004). On the Computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 211–224.

http://doi.org/10.1109/TEVC.2004.826076

Purnomo, H. (2014). Cara Mudah Belajar Metode Optimasi Methahuirstik Menggunakan Matlab. Gave Media : Yogyakarta.

Rahimian, M. S., & Raahemifar, K. (2011). Optimal PID controller design for AVR system using particle swarm optimization algorithm. IEEE Ccece 2011, 337– 340. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6030468

(3)

76

Sahu, B. K., Mohanty, P. K., & Mishra, N. (2012). System using Pattern Search algorithm.IEEE International Conference on Power Electronic and Energy Systems. India

Selvabala, D. D. B. (2009). Real-coded genetic algorithm and fuzzy logic approach for real-time tuning of proportional – integral – derivative controller in automatic voltage regulator system,IET 3(February), 641–649.

http://doi.org/10.1049/iet-gtd.2008.0287

Settles, M. (2005). An Introduction to Particle Swarm Optimization. Thesis on PSO Paage 8, 1–8. http://doi.org/10.1038/nmat3280

Stass, J. (2015 5 July). Why Do Birds Flock Togather ?. [Online]. Diakses dari http://www.howitworksdaily.com/why-do-birds-flock-together/

Visioli, a. (2006). Advances in Industrial Control-Practical PID Control. Engineering. Springer : London

Wong, C., Li, S., & Wang, H. (2009). Optimal PID Controller Design for AVR System, 12(3), 259–270.

Referensi

Dokumen terkait

Keywords: Distribution network reconfiguration, artificial bee colony, particle swarm optimization, genetic algorithm, power losses reduction, voltage profile

Permodelan Konverter Boost Multilevel dengan Kontrol Pid Analog Sebagai Catu Daya Mobil Listrik.. Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Robot Line Follower PID sebagai Media Pembelajaran Aplikasi Mikrokontroler di Jurusan Pendidikan Teknik Elektronika Fakultas Teknik Universitas Negeri

Analisis penerapan Kontroler PID Pada AVR Untuk Menjaga Kestabilan Tegangan di PLTP Wayang Windu.. Universitas Pendidikan Indonesia | repository.upi.edu |

Algoritma automatic clustering gabungan antara algoritma particle swarm optimization (PSO) dan genetic algorithm (GA) (DCPG) diterapkan untuk memperoleh jumlah

Over the years, several authors have proposed the tuning of PID to control variable processes by optimization methods, such as genetic algorithms [7–13], particle swarm

Rancangan dari penelitian “Rancang Bangun Self Balancing Twinrotor Menggunakan Kontroler PID Tuning Particle Swarm Optimization” terdiri dari berbagai tahapan yang

The heuristic optimization based tuning methods that have been applied to improve performance of the fore mentioned controller types are particle swarm optimization PSO [3]- [5],