EFEK DEFLEKSI PADA SUDU TURBIN ANGIN TERHADAP KELUARAN DAYA
Sulistyo Atmadl'. Ahmad Jamaludin Fltroh"
* Peneliii Pusat Teknologi Dlrgantara Terapan . LA PAN
">Penelltl Teknlk Penerbangan ITB ABSTRACT
The type of material u s e d in the fabrication of wind turbine blade is a very important factor so t h a t it will not exceed the allowable m a x i m u m deflection. An analysis is conducted to s t u d y this deflection effect to t h a t power o u t p u t a n d as case study, a 7.6 m blade of 10 kW LPN 10000 E turbine is used. Several a s s u m p t i o n as s u c h as deflection d u e to wind speed at perpendicular to local plane blade, effective diameter blade a n d direction of aerodynamic at aerofoil plane local blade are considered. The distribution of blade deflection along the twisted s p a n is a s s u m e d uniform. Calculation is performed for the polynomial order of 2 , 3 a n d 4, with variety of deflection of 0.2 m, 0.5 m, 1 m a n d 1.5 m. For design wind speed of 9 m / s it w a s found t h a t for 0.5 deflection, t h e losses of 6%, 9% and 12% for blade s h a p e polynomial order 2,3 and 4 consequtively are produced; whereas for 1.5 m deflection, losses are 4 6 % , 5 3 % and 5 6 % for t h e s a m e polynomial shape. If a m a x i m u m loss of 10% is taken, then the m a x allowable deflection is 0.5 m.
ABSTRAK
Dalam pembuatan sudu turbin angin, perlu diperhatikan material yang digunakan, agar defleksi y a n g terjadi tidak melebihi batas toleransi y a n g d i t e n t u k a n . U n t u k itu dilakukan analisis efek defleksi p a d a s u d u turbin angin t e r h a d a p keluaran d a y a u n t u k mengetahui berapa toleransi defleksi s u d u akibat angin. Sebagai contoh k a s u s , d i g u n a k a n s u d u dengan diameter 7,6 m dan d a y a 10 kW dari turbin angin LPN 10000 E, dengan b a t a s a n d a n a s u m s i b a h w a yang diperhitungkan adalah efek defleksi t e r h a d a p k e c e p a t a n angin p a d a p e n a m p a n g lokal s u d u dalam a r a h normal, diameter efektif s u d u d a n a r a h gaya-gaya aerodinamika p a d a aerofoil sebagai p e n a m p a n g lokal s u d u , serta s e l a m a s u d u terdefleksi distribusi s u d u t puntir sepanjang s p a n tidak b e r u b a h . Perhitungan d i l a k u k a n u n t u k bentuk defleksi fungsi polinomial pangkat 2,3 d a n 4, serta b e s a r defleksi 0,2 m, 0,5 m,l m dan 1,5 m. Sebagai hasil u n t u k kecepatan angin 9 m / d e t sebagai k e c e p a t a n rencana, m a k a diperoleh u n t u k defleksi 0,5 m losses yang terjadi 6%,9%,12% b e r t u r u t - t u r u t u n t u k kelengkungan s u d u fungsi pangkat 2,3 d a n 4. Sedangkan u n t u k defleksi 1,5 m losses y a n g terjadi 46%, 5 3 % , 5 6 % berturut- t u r u t u n t u k kelengkungan s u d u fungsi p a n g k a t 2,3 dan 4. bila di ambil b a t a s a n m a k s i m u n losses sekitar 10%, m a k a toleransi defleksi yang diijinkan h a n y a 0,5 m.
Kata k u n c i :DeJleksi, Sudu, Turbin angin, Keluaran daya, Rugi-rugi 1 PENDAHULUAN
Analisis efek defleksi sudu terhadap prestasi sebuah turbin angin ini dilakukan, t e r u t a m a u n t u k m e n g e t a h u i daya yang hilang (power losses) a k i b a t s u d u yang terdefleksi. Hal ini k a r e n a b a h a n s u d u y a n g k u r a n g rigid, d a p a t diketahui se- berapa penting k e k a k u a n s u d u diper-
lukan, yang m e r u p a k a n m a s u k a n u n t u k proses pembuatan sudu.
1.1 Data Sudu
Untuk analisis efek defleksi ini digunakan sudu dengan spesifikasi u m u m sebagai berikut
• Aerofoil p e n a m p a n g s u d u • Eppler 66-1014 8
1.2 Batasan Masalah dan Asumsi
U n t u k menganalisis efek defleksi s u d u terhadap prestasi turbin angin secara k e s e l u r u h a n , terlebih d a h u l u h a r u s diketahui b e n t u k defleksi s u d u tersebut p a d a saat sedang berputar. N a m u n u n t u k m e n g e t a h u i profil defleksi s u d u secara l a n g s u n g m e r u p a k a n h a l yang sangat sulit. C a r a y a n g paling m u n g k i n dilakukan adalah memotret a t a u mengambil g a m b a r turbin angin p a d a s a a t sedang beroperasi dari sisi samping. C a r a lainnya y a n g lebih seder- haria a d a l a h m e n g a s u m s i k a n b e n t u k defleksi s u d u turbin angin tersebut.
Berikut ini adalah batasan masalah d a n a s u m s i yang a k a n d i g u n a k a n :
• Yang a k a n diperhitungkan adalah efek defleksi t e r h a d a p ,
° Kecepatan angin p a d a p e n a m p a n g lokal s u d u dalam a r a h normal.
° Diameter efektif s u d u
° Arah gaya-gaya aerodinamika p a d a aerofoil sebagai penampang lokal sudu
• Selama sudu terdefleksi, distribusi sudut p u n t i r sepanjang s p a n s u d u tidak b e r u b a h .
• Data generator y a n g didapat b a h w a generator tersebut hanya m a m p u meng- h a s i l k a n daya sebesar 10 kW p a d a 350 RPM dan mempunyai starting torsion sekitar 10 Nm. Sedangkan u n t u k analisis kali ini diperlukan d a t a generator yang meliputi h u b u n g a n a n t a r a RPM dan torsi a t a u RPM d a n daya. Oleh k a r e n a itu, rnaka diasumsikan bahwa h u b u n g a n a n t a r a RPM dan torsi m e r u p a k a n fungsi k u a d r a t i k sehingga h u b u n g a n a n t a r a RPM d a n d a y a m e r u p a k a n polinomial pangkat 3 .
• Bentuk lengkungan akibat defleksi sudu m e r u p a k a n fungsi polinomial pangkat 2, p a n g k a t 3, d a n p a n g k a t 4.
2 METODA ANALISIS 2 . 1 Pendahuluan
. Dalam m e m p r o d u k s i s u d u turbin angin, s u d u yang dihasilkan h a r u s k a k u {rigid). Hal ini d i k a r e n a k a n s e m u a teori
dan perhitungan t e n t a n g swirl machine p a d a u m u m n y a d a n s u d u turbin angin pada khususnya dibangun dengan asumsi b a h w a a r a h aliran angin tegak l u r u s terhadap p e n a m p a n g lokal s u d u . Apabila s u d u terdefleksi p a d a s a a t berputar, m a k a efek yang ditimbulkan a n t a r a lain, kecepatan angin dalam a r a h normal di setiap p e n a m p a n g s u d u menjadi ber- kurang, diameter efektif s u d u menjadi lebih kecil d a r i p a d a diameter semula, p e r u b a h a n a r a h gaya-gaya aerodinamika d a n distribusi s u d u t p u n t i r sepanjang s u d u j u g a a k a n b e r u b a h .
2 . 2 Efek Defleksi Sudu Terhadap Ke- cepatan Lokal
Sudu turbin angin dirancang tegak l u r u s t e r h a d a p a r a h kecepatan angin.
Apabila s u d u mengalami defleksi, m a k a kecepatan angin dalam a r a h normal akan berkurang, seperti p a d a G a m b a r 2 - 1 .
Gambar 2 - 1 : S k e t s a s u d u t defleksi d a n a r a h kecepatan angin
Keterangan:
V = kecepatan angin
Vn = kecepatan angin dalam a r a h normal
© = s u d u t defleksi
B e r d a s a r k a n G a m b a r 2-1 di a t a s , m a k a d a p a t dilihat b a h w a kecepatan angin mengenai s u d u d e n g a n s u d u t tertentu. Kecepatan angin t e r s e b u t a k a n diuraikan menjadi 2 k o m p o n e n arah, yaitu kecepatan dalam a r a h normal d a n kecepatan angin dalam a r a h sejajar per- m u k a a n s u d u . Yang berkontribusi ter- h a d a p penghasil d a y a adalah kecepatan
angin d a l a m a r a h normal. Oleh s e b a b itu, semakin b e s a r s u d u t defleksi s u d u m a k a kecepatan angin dalam arah normal j u g a semakin b e r k u r a n g d a n s e c a r a
langsung m e n y e b a b k a n daya keluaran j u g a berkurang.
2 . 3 Efek Defleksi Sudu Terhadap Diameter Efektif
Defleksi s u d u p a d a turbin angin menyebabkan diameter efektif s u d u menjadi lebih kecil d a r i p a d a diameter semula, seperti p a d a G a m b a r 2-2.
G a m b a r 2-2: Sketsa diameter efektif Berkurangnya diameter efektif menyebabkan l u a s frontal yang terkena terpaan angin j u g a berkurang. Hal ter- s e b u t secara tidak l a n g s u n g menyebab- kan energi angin yang d a p a t diserap oleh turbin angin j u g a a k a n berkurang.
2 . 4 Efek Defleksi Sudu Terhadap Pe- rubahan Arah Gaya Aerodinamika
P e n a m p a n g s u d u turbin angin adalah aerofoil. Karena adanya kecepatan angin d a n kecepatan p u t a r s u d u , m a k a aerofoil memperoleh kecepatan relatif yang m e r u p a k a n p e n j u m l a h a n kedua kecepatan tersebut dengan a r a h yang saling tegak l u r u s . Dengan geometri aerofoil tertentu, m a k a kecepatan relatif tersebut akan membangkitkan gaya angkat dan gaya h a m b a t Arah gaya angkat tegak l u r u s t e r h a d a p a r a h kecepatan relatif, sedangkan a r a h gaya h a m b a t searah dengan a r a h kecepatan relatif, seperti p a d a G a m b a r 2 - 3 .
10
Gambar 2 - 3 : S k e t s a gaya aerodinamika p a d a p e n a m p a n g s u d u Proyeksi gaya a n g k a t t e r h a d a p arah p u t a r a n a d a l a h m e r u p a k a n s u m b e r daya turbin angin, s e d a n g k a n proyeksi gaya h a m b a t t e r h a d a p a r a h p u t a r a n adalah m e r u p a k a n s u m b e r losses daya turbin angin. Apabila s u d u terdefleksi, m a k a gaya a n g k a t d a n gaya h a m b a t efektifnya adalah
(2-1) (2-2) B e r d a s a r k a n penjelasan di a t a s , m a k a defleksi s u d u m e n y e b a b k a n gaya angkat d a n gaya h a m b a t efektif menjadi berkurang. Pengurangan ini s e c a r a tidak langsung dapat mengurangi daya keluaran turbin angin.
2.5 Efek Defleksi Sudu Terhadap Distri- busi Sudut Puntir
Penampang s u d u s e c a r a u m u m berbentuk aerofoil u n t u k m e n d a p a t k a n rasio gaya angkat t e r h a d a p gaya h a m b a t yang c u k u p baik. Pada u m u m n y a aerofoil yang digunakan m e m p u n y a i posisi p u s a t m a s s a k u r a n g dari setengah chord di- hitung dari leading edge. Oleh karena itu, sudu yang terdefleksi dapat menyebabkan perubahan distribusi s u d u t puntir. S u d u t puntir di setiap p e n a m p a n g a k a n menjadi semakin besar d i b a n d i n g k a n geometri awal.
Bagian s u d u y a n g mempunyai s u d u t defleksi y a n g lebih b e s a r adalah bagian s u d u di d a e r a h ujung (tip). Pada daerah ujung s u d u terjadi beban defleksi yang lebih besar. Hal ini dikarenakan pada d a e r a h ujung s u d u memperoleh beban aerodinamika yang lebih besar, ditambah pula dengan geometri s u d u yang semakin mengecil dari pangkal hingga ujung sudu.
Semakin besar beban aerodinamika dan semakin kecil geometri, m a k a p e r u b a h a n s u d u t p u n t i r j u g a semakin besar. Dengan k a t a lain, d a e r a h di ujung s u d u a k a n mengalami p e r u b a h a n s u d u t puntir yang lebih besar. Di lain pihak, daerah ujung sudu merupakan kontributor terbesar dalam penghasil daya sehingga apabila d a e r a h ujung s u d u mengalami perubahan s u d u t puntir yang lebih besar, m a k a p e r u b a h a n prestasi turbin angin j u g a semakin besar. Kesimpulannya
adalah p e r u b a h a n s u d u t puntir akibat sudu yang terdefleksi sangat mempenga- ruhi kinerja turbin angin.
3 ANALISIS DAN HASIL PERHITUNGAN EFEK DEFLEKSI SUDU
Secara u m u m p e n g u r a n g a n daya keluaran turbin angin pertama kali disebabkan oleh kecepatan angin dan kekuatan s t r u k t u r s u d u . Keduanya mem- pengaruhi b e n t u k lengkungan s u d u saat terdefleksi. Bentuk lengkungan sudu me- nyebabkan diameter efektif sudu menjadi lebih kecil dibandingkan diameter awal.
Pengurangan diameter efektif ini me- nyebabkan p e n g u r a n g a n energi angin yang d a p a t diserap oleh turbin angin.
Selain itu lengkungan s u d u akibat defleksi menghasilkan distribusi s u d u t defleksi di setiap penampang sudu. Adanya sudut defleksi di setiap p e n a m p a n g s u d u me- nyebabkan pengurangan kecepatan normal dalam arah normal di setiap p e n a m p a n g s u d u , k h u s u s n y a p a d a daerah di ujung sudu. Pengurangan kecepatan angin dalam a r a h normal yang d i r a s a k a n oleh tiap p e n a m p a n g s u d u m e n y e b a b k a n p u t a r a n s u d u dan p u t a r a n generator menjadi berkurang sehingga p a d a akhirnya daya yang dihasilkan j u g a berkurang.
11
3 . 1 Geometri Lengkungan
S u d u yang terdefleksi s u d a h pasti a k a n b e r b e n t u k s e b u a h k u r v a a t a u lengkungan. Permasalahannya adalah b a g a i m a n a b e n t u k lengkungan tersebut, a p a k a h m e r u p a k a n s e b u a h fungsi poli- nomial, fungsi logaritma, fungsi tertentu lainnya, a t a u fungsi t a k tentu. U n t u k hal t e r s e b u t diperlukan analisis s t r u k t u r yang lebih me n d a la m u n t u k mengetahui- nya.
Seperti yang telah dijelaskan pada b a b I, dalam analisis ini b e n t u k leng- k u n g a n d i a s u m s i k a n m e r u p a k a n fungsi polinomial p a n g k a t 2, p a n g k a t 3, dan p a n g k a t 4. Defleksi a k a n divariasikan antara 0.2, 0.5, 1.0, dan 1.5 m. Gambar 3-1 merupakan plot lengkungan pada defleksi
1.5 m.
G a m b a r 3 - 1 : B e n t u k l e n g k u n g a n sebagai fungsi polinomial
Distribusi s u d u t defleksi di se- panjang s u d u u n t u k variasi besar defleksi dan b e n t u k lengkungan y a n g berbeda dapat dilihat pada Gambar 3-2, Gambar 3-3 d a n Gambar 3-4.
G a m b a r 3-4: Distribusi s u d u t defleksi dengan kelengkungan poli- nomial p a n g k a t 4
3 . 2 Efek Kecepatan Angin dan Kekuatan Struktur Terhadap Bentuk Leng- kungan
B e n t u k s u d u memanjang dari pangkal (hub) hingga ujung (tip). Semakin ke ujung, kecepatan tangensial yang di- r a s a k a n oleh p e n a m p a n g s u d u semakin besar. Dengan kecepatan angin yang sudah pasti konstan di setiap penampang sudu, m a k a kecepatan relatif y a n g m e r u p a k a n penjumlahan a n t a r a kecepatan angin dan kecepatan tangensial j u g a semakin besar di d a e r a h u j u n g s u d u .
Semakin b e s a r kecepatan relatif yang d i r a s a k a n oleh p e n a m p a n g s u d u , m a k a semakin b e s a r gaya aerodinamika yang dihasilkan. Hal tersebut sesuai dengan p e r s a m a a n b e r i k u t :
(3-1) (3-2)
B e r d a s a r k a n k e d u a p e r s a m a a n tersebut, m a k a b e s a r gaya aerodinamika dipengaruhi CI, Cd, Vr, d a n chord. Harga CI dan Cd sangat dipengaruhi oleh sudut serang.
B e r d a s a r k a n k e d u a p e r s a m a a n di alas, d a p a t dilihat b a h w a semakin besar chord, m a k a g a y a aerodinamika yang dibangkitkan j u g a semakin besar. Oleh karena itu, u n t u k mengurangi beban momen yang h a r u s ditahan oleh struktur pada pangkal s u d u , s e r t a distribusi gaya yang seragam, m a k a distribusi panjang chord dibuat mengecil dari pangkal hingga ujung s u d u . Kerugian u t a m a distribusi chord seperti ini adalah kemungkinan s u d u mengalami defleksi p a d a d a e r a h ujung s u d u semakin besar, k h u s u s n y a pada kcccpatan angin yang sangat besar.
3 . 3 Efek Bentuk Lengkungan Defleksi T e r h a d a p Kecepatan Angin Arab Normal
Distribusi chord, distribusi s u d u t puntir, tebal s u d u , s t r u k t u r s u d u , d a n jenis material m e r u p a k a n faktor u t a m a yang m e n e n t u k a n b e n t u k lengkungan defleksi.
Semakin kecil chord p a d a da e r ah ujung s u d u , m a k a semakin besar defleksi pada ujung s u d u d a n semakin besar pula s u d u t defleksinya. Panjang chord p a d a d a e r a h pangkal s u d u tidak mem- pengaruhi bentuk lengkungan defleksi, melainkan sebagai syarat k e k u a t a n struktur saja.
Semakin kecil s u d u t p u n t i r p a d a daerah ujung s u d u , m a k a semakin besar defleksi p a d a d a e r a h ujung s u d u k a r e n a hampir tegak l u r u s t e r h a d a p kecepatan angin. S u d u t puntir p a d a daerah pangkal sudu tidak m e m p e n g a r u h i bentuk leng- kungan. Semakin b e s a r s u d u t puntir pada daerah ujung sudu, maka kekuatan s t r u k t u r p e n a h a n momen p a d a pangkal sudu j u g a semakin besar.
Tebal sudu sudah pasti mempenga- ruhi bentuk lengkungan defleksi. Semakin tipis s u d u , m a k a semakin b e s a r defleksi- nya. Pada bab sebelumnya telah dijelaskan bahwa sudu yang digunakan mempunyai chord yang semakin ke u j u n g semakin
kecil. Apabila m e n g g u n a k a n aerofoil yang s a m a di setiap p e n a m p a n g s u d u , m a k a tebal s u d u a k a n semakin tipis dari pangkal hingga u j u n g s u d u sehingga defleksi yang terjadi j u g a a k a n semakin besar.
B e r d a s a r k a n s e m u a analisis di a l a s , disimpulkan b a h w a p e n e n t u a n bentuk lengkungan akibat defleksi s u d u sangat suliL Oleh k a r e n a itu diasumsikan bahwa bentuk lengkungan m e r u p a k a n fungsi polinomial. Dalam analisis kali ini diambil contoh fungsi polinomial pangkat 2, 3, dan p a n g k a t 4. B e n t u k lengkungan sebagai fungsi poli-nomial tersebut telah digambarkan dengan G a m b a r 3 - 1 .
B e r d a s a r k a n G a m b a r 3-1 d a p a t dilihat b a h w a semakin tinggi polinomial, maka dengan defleksi tip s u d u yang s a m a a k a n menghasilkan s u d u t defleksi yang semakin besar, k h u s u s n y a p a d a d ae r ah ujung s u d u . Semakin ke ujung [tip], maka s u d u t defleksinya juga semakin besar (Gambar 3-2 sampai dengan 3-4) Dari ketiga gambar tersebut d a p a t dilihat bahwa p a d a d a e r a h pangkal s u d u s u d u t defleksinya s a n g a t kecil. Namun p a d a d ae r ah di u j u n g s u d u s u d u t defleksinya sangat besar, b a h k a n d a p a t mencapai 60 derajat.
B e r d a s a r k a n Gambar 2 - 1 , maka dapat dilihat bahwa semakin besar sudut defleksi, m a k a semakin kecil kecepatan a r a h normal yang d i r a s a k a n oleh pe-
n a m p a n g s u d u k h u s u s n y a p a d a daerah di ujung sudu. Dengan kata lain, semakin tinggi polinomial sebagai bentuk leng- k u n g a n , a t a u semakin b e s a r lengkungan p a d a daer a h tip menyebabkan kecepatan angin a r a h normal y a n g dirasakan oleh p e n a m p a n g d a e r a h ujung s u d u juga semakin kecil.
3 . 4 Efek Kecepatan Angin Arah Normal Terhadap Daya Keluaran
Kecepatan angin arah normal yang dirasakan oleh p e n a m p a n g s u d u sangat m e m p e n g a r u h i prestasi turbin angin.
Berdasarkan distribusi kecepatan angin dalam a r a h normal sepanjang s u d u p a d a Gambar 3-9 sampai dengan Gambar 3-11 d a n G a m b a r 3-14 s a m p a i d e n g a n
13
Gambar 3-16 dapat dilihat bahwa ke- cepatan a r a h normal p a d a ftp dapat berkurang hingga mencapai 50 persen.
Dengan distribusi s u d u t puntir yang tidak berubah sepanjang span s u d u ,
m a k a semakin kecil k e c e p a t a n angin dalam a r a h normal menyebabkan p u t a r a n s u d u turbin angin m e n u r u n . Putaran sudu sebanding dengan putaran generator sehingga d a y a y a n g dihasilkan j u g a a k a n lebih kecil.
Di lain pihak, s e m a k i n kecil ke- c e p a t a n angin a r a h n o r m a l y a n g di- r a s a k a n oleh p e n a m p a n g s u d u , m a k a semakin kecil k e c e p a t a n relatifnya. Ber- d a s a r k a n p e r s a m a a n (3-1) d a n (3-2), terlihat s e c a r a u m u m k e c e p a t a n relatif m e m p u n y a i p e n g a r u h s e c a r a kuadratik t e r h a d a p gaya aerodinamika y a n g di- bangkitkan. Sebagai contoh apabila kecepatan angin dalam a r a h n o r m a l menjadi s e t e n g a h dari kecepatan angin semula, m a k a gaya aerodinamika yang dibangkitkan menjadi sekitar seperdelapan dari h a r g a semula.
Gaya-gaya a e r o d i n a m i k a dalam a r a h tangensial a t a u a r a h p u t a r a n m e r u p a k a n s u m b e r penggerak turbin angin. Perkalian a n t a r a gaya-gaya tersebut dengan p u t a r a n s u d u m e r u p a k a n torsi penggerak generator. Daya keluaran turbin angin didapat dari perkalian a n t a r a torsi dan p u t a r a n generator. Dalam h a l ini p u t a r a n generator s a m a d e n g a n p u t a r a n s u d u .
B e r d a s a r k a n hasil p e r h i t u n g a n yang disajikan dalam Tabel 3-1 s a m p a i dengan Tabel 3-3 d a p a t dilihat b a h w a p a d a defleksi sebesar 1.5 m p a d a u j u n g s u d u m e n g a k i b a t k a n losses d a y a sekitar 50 %. H u b u n g a n a n t a r a b e s a r defleksi p a d a u j u n g s u d u d a n losses d a y a tidak linier sehingga defleksi s u d u menjadi sensitif t e r d a p a t daya k e l u a r a n turbin angin.
3 . 5 E f e k Diameter Efektif Terhadap Daya Keluaran
Pengurangan diameter efektif p a d a u m u m n y a m e n g u r a n g i d a y a k e l u a r a n turbin angin, terlepas dari b e n t u k s u d u ,
kecepatan putar, kecepatan angin, d a n sebagainya. Hal tersebut s e s u a i d e n g a n teori momentum yang menganggap s u d u - s u d u swirl machine sebagai s e b u a h disc.
Semakin kecil diameter efektif t u r b i n angin, m a k a semakin kecil p u l a energi y a n g dapat diserap oleh turbin angin.
3 . 6 Perhitungan Daya dan Losses Pada Kecepatan Angin 9 m / s
Dipilih kecepatan angin 9 m / s k a r e n a m e r u p a k a n kecepatan angin p a d a kondisi on design
Analisis efek s u d u yang terde- fleksi p a d a kecepatan angin 9 m / s m e r u p a k a n analisis p a d a kondisi desain.
Dengan k a t a lain, p a d a bagian ini a k a n dilihat perbandingan daya d a n efisiensi turbin angin ketika beroperasi p a d a kondisi desain dengan s u d u rigid d a n s u d u y a n g terdefleksi. Hasil p e r h i t u n g a n disajikan dalam Tabel 3-1 s.d 3-3 d a n G a m b a r 3-5 s.d 3-8.
Tabel 3 - 1 : HASIL PERHITUNGAN PADA LENGKUNGAN POLINOMIAL PANGKAT 2
14
15
3 . 3 Perhitungan Daya Pada Kecepatan Angin 4 m / s
Kecepatan angin r a t a - r a t a di Indonesia adalah berkisar a n t a r a 4 m / s - 6 m / s . Hanya p a d a saat-saat tertentu saja k e c e p a t a n angin bisa mencapai 10 m / s a t a u lebih. Oleh k a r e n a itu perlu di- l a k u k a n j u g a p e r h i t u n g a n efek defleksi p a d a kecepatan angin 4 m / s y a n g kemungkinan m e r u p a k a n kecepatan yang paling dominan, dengan hasil seperti p a d a T a b e l 3-4 s.d Tabel 3-6.
Tabel 3-4: HASIL PERHITUNGAN PADA LENGKUNGAN POLINOMIAL PANGKAT 2
Hasil dalam b e n t u k tabel di a t a s j u g a dapat disajikan dalam bentuk seperti
p a d a G a m b a r 3-12 dan Gambar 3-13.
16
Gambar 3-16: Distribusi kecepatan normal pada lengkungan pangkat 4 Dari k u r v a di a t a s d a p a t dilihat bahwa semakin tinggi polinomial b e n t u k lengkungan, m a k a s e m a k i n kecil ke- cepatan angin dalam a r a h normal p a d a daerah u j u n g s u d u .
4 KESIMPULAN DAN SARAN
Analisis efek defleksi s u d u turbin angin ini m e n g g u n a k a n contoh k a s u s turbin angin LPN 10000 E, n a m u n u n t u k turbin-turbin y a n g lain perlu j u g a di- lakukan analisis y a n g s a m a agar dalam p e m b u a t a n n y a d a p a t memperoleh s u d u yang optimum p a d a d a e r a h kecepatan rencana.
Kesimpulan d a n s a r a n yang dapat ditarik dari analisis ini adalah:
• B e n t u k lengkungan s u d u akibat ter- defleksi sangat m e m p e n g a r u h i losses d a y a keluaran.
• Besarnya kerugian d a y a tidak linier t e r h a d a p besarnya defleksi.
• Dengan diameter awal sebesar 7.6 m d a n defleksi p a d a ujung s u d u sebesar
1.5 m, m a k a turbin angin mengalarni kerugian d a y a sekitar 50 %.
• J i k a losses daya m a k s i m u m yang d i h a r a p k a n tidak lebih dari 10 % m a k a defleksi p a d a ujung s u d u tidak boleh lebih dari 0,5 m.
• U n t u k memperoleh ketelitian hasil yang lebih baik, perlu dilakukan analisis s t r u k t u r lanjut u n t u k mengetahui bentuk lengkungan sudu dan perubahan distribusi s u d u t puntir.
DAFTAR RUJUKAN
Anderson, J o h n D., Jr., 1985. Fundamen- tals of Aerodynamics, Mc. Grawhill company, Singapore.
Abbot, Ira H., Von Doenhoff, Albert E., 1959. Theory of wing section, Dover Publications, inc, New York.
Kuethe, Arnold M., Chow, Chuen yen, Foundations of Aerodynamics:Bases of Aerodynamic Design, J o h n Wiley
& Sons.Inc, New York.
17