• Tidak ada hasil yang ditemukan

C x rx rCt x

N/A
N/A
Protected

Academic year: 2018

Membagikan "C x rx rCt x"

Copied!
8
0
0

Teks penuh

(1)

M-287

EKSISTENSI DAN KETUNGGALAN SOLUSI HARGA OPSI EROPA

SUTRIMA

zutrima@yahoo.co.id Jurusan Matematika FMIPA UNS

Abstrak

Harga opsi tipe Eropa oleh Black and Scholes (1973) merupakan fungsi dari asset pokok dan waktu. Secara matematis hubungan fungsi ini dapat dimodelkan sebagai persamaan diferensial parsial, yang dikenal sebagai model Scholes. Model Black-Scholes ini merupakan tipe masalah Cauchy abstrak. Untuk tipe masalah ini, Teorema Hille-Yosida dalam semigrup dapat digunakan untuk membuktikan eksistensi dan ketunggalan solusi masalah tersebut. Untuk tujuan ini dipilih ruang dengan syarat-syarat tertentu, kemudian ditunjukkan bahwa operator Black-Scholes yang muncul dalam masalah Cauchy merupakan generator infinitesimal dari semigrup-C0 T(t).

Kata kunci: harga opsi Eropa, operator Black-Scholes, semigrup, generator infinitesimal

PENDAHULUAN

Opsi merupakan investasi aset finansial yang banyak dilakukan, disamping investasi pada aset riil seperti: tanah, mesin, bangunan, dan emas. Opsi adalah suatu jenis kontrak antara dua pihak dimana satu pihak memberi hak kepada pihak lain untuk membeli dan menjual aset tertentu pada harga dan periode tertentu. Hak untuk membeli suatu saham dengan harga tertentu/harga kesepakatan (exercise price) disebut opsi beli (call option), sedangkan hak untuk menjual suatu saham dengan harga tertentu pada waktu tertentu atau sebelumnya disebut opsi jual (put option). Masa jatuh tempo (expiry date) merupakan tanggal hak pembeli saham untuk melakukan exercise habis (Husnan, 1993 ).

Berdasarkan waktu eksekusi yang terjadi, opsi dikelompokkan menjadi dua, yaitu tipe Eropa dan tipe Amerika. Opsi tipe Eropa adalah opsi yang hanya dapat dilaksanakan pada tanggal tertentu saja. Sedangkan tipe Amerika adalah opsi yang dapat dilaksanakan pada tanggal tertentu atau sebelumnya. Namun yang banyak dianut pasar keuangan adalah model opsi tipe Eropa. Opsi tipe Eropa mendasarkan pada beberapa asumsi, antara lain: saham tidak memberikan pembayaran deviden, tidak ada biaya transaksi dan pajak, tingkat suku bunga bebas-resiko konstan selama umur opsi, dan perubahan harga saham mengikuti pola acak (Husnan, 1993 ).

Black dan Scholes (1973) berhasil menyusun model pergerakan harga opsi tipe Eropa, yang selanjutnya disebut model Black-Scholes. Model Black-Scholes dari opsi beli tipe Eropa C, sebagai fungsi aset pokok, x, dan waktu, t, sehingga C = C(x,t) memenuhi persamaan diferensial parsial:

2

(2)

M-288

Perkembangan teori semigrup begitu mengesankan dalam usaha membantu memecahkan masalah waktu kontinu, yang biasanya dalam bentuk persamaan diferensial parsial. Masalah (1.1)– (1.2) jika ditinjau dari teori persamaan diferensial parsial termasuk klasifikasi persamaan diferensial parsial parabolik tipe masalah Cauchy. Untuk tipe masalah ini, pendekatan semigrup dapat diimplementasikan untuk membuktikan eksistensi dan ketunggalan penyelesaian masalah tersebut (Pazy, 1983; Curtain dan Zwart, 1995). Oleh karena itu dalam artikel akan diberikan syarat cukup dan syarat perlu eksistensi ketunggalan penyelesaian masalah (1.1)-(1.2) melalui pendekatan semigrup Teori Semigrup

Teori semigrup memberikan kontribusi yang signifikan terhadap pemecahan masalah waktu kontinu dari masalah Cauchy abstrak. Dalam hal ini, hasil yang sangat terkenal adalah teorema Hille-Yosida.

Definisi 2.1 Misalkan X adalah ruang Banach. Keluarga operator terbatas dari X ke X berparameter-satu T(t), 0 ≤ t < ∞ disebut semigrup pada X, jika memenuhi:

(a) T(0) = I , dengan I operator identitas pada X, (b) T(s + t) = T(s)T(t) untuk setiap s, t ≥ 0.

Semigrup dari operator linear terbatas T(t) dikatakan kontinu seragam (uniformly continuous) jika

0

lim

( )

0

t

T t

− =

I

.

Dari definisi ini jelas bahwa jika T(t) kontinu seragam, maka

lim

( )

( )

0

xt

T x

T t

=

.

Operator linear A yang didefinisikan dengan

0

  disebut generator infinitesimal dari semigrup T(t). Berkaitan dengan definisi ini, Pazy (1983) dan Curtin dan Zwart (1995) memberikan hasil berikut.

Teorema 2.2 Operator linear A adalah generator infinitesimal dari semigrup kontinu seragam jika dan hanya jika A operator linear terbatas.

Dari Definisi 2.1 jelas bahwa semigrup T(t) mempunyai generator infinitesimal yang tunggal. Lebih lanjut, jika T(t) kontinu seragam, maka mempunyai generator infinitesimal berupa operator linear terbatas.

Definisi 2.3 Semigrup T(t), 0 ≤ t < ∞, dari operator linear terbatas pada X dikata-kan kontinu kuat (strongly continuous), jika

0 lim ( )

tT t x=x

(3)

M-289

Misalkan A operator linear, tidak harus terbatas, pada X, himpunan resolvent dari A, dinotasikan ρ(A), didefinisikan sebagai himpunan dari semua bilangan kompleks λ sehingga (λI – A)-1 adalah operator terbatas pada X. Keluarga operator linear terbatas R(λ:A) = (λI – A)-1, λ ρ(A), disebut resolvent dari A.

Definisi 2.4 Semigrup T(t), 0 t < ∞, dari operator linear terbatas pada X disebut semigrup penyusutan (contraction), jika T(t) semigrup-C0 dan memenuhi

( )

1

T t

untuk setiap t ≥ 0.

Teorema berikut dikenal sebagai teorema Hille-Yosida (Curtain dan Zwart, 1995) yang sangat penting dalam penelitian ini.

Teorema 2.5 Operator linear A adalah generator infinitesimal dari semigrup kontraksi jika dan hanya jika

Sebagai akibat teorema diatas akan berlaku hasil berikut ini (Pazy, 1983; Curtain dan Zwart, 1995).

Akibat 2.6 Operator linear A ฀bstra generator infinitesimal dari semigrup-C0 yang memenuhi

T t

( )

e

ωt ฀bst dan hanya ฀bst

Akibat 2.7 Misalkan A ฀bstra generator infinitesimal dari semigrup-C0 yang memenuhi

( )

t

Teorema berikut merupakan kontribusi dari teori semigrup dalam memecahkan masalah Cauchy ฀bstrae (Pazy, 1983).

(4)

M-290

mempunyai penyelesaian tunggal u(t), yang mempunyai turunan kontinu pada [0,∞), untuk setiap x ∈ D(A) jika hanya jika A generator infinitesimal dari semigrup-C0 T(t).

HASIL PENELITIAN

Sebagai langkah awal, dikonstruksi ruang

X

α yang memungkinkan operator Black-Scholes dapat bekerja. Didefinisikan

dan C(0,∞) menyatakan himpunan semua fungsi kontinu pada (0,∞). Mudah ditunjukkan bahwa f α

merupakan norma pada

X

α.

Dapat ditunjukkan bahwa operator A bersifat linear pada D(A). Dengan operator ini persamaan diferensial parsial (2.1) dapat dituliskan kembali sebagai

( )

( )

du t

Au t

dt = . (3.5)

Persamaan ini sepadan dengan masalah Cauchy (2.1). Syarat perlu agar Teorema 2.8 dapat diimplementasikan terhadap (3.5), maka

X

α haruslah ruang Banach.

Teorema 3.1 Ruang

(

X

α

,

f

α

)

merupakan ruang Banach.

Bukti. Ambil sembarang barisan Cauchy

( )

f

n di dalam

X

α

terhadap norma f α. Diberikan sembarang ε > 0, maka terdapat H ∈Ν sehingga untuk m, n ≥ H berlaku

m n

(5)

M-291

Teorema 3.2 Operator diferensial A adalah generator infinitesimal dari semigrup-C0 T(t).

Bukti. Untuk

α

∈฀ didefinisikan C0,α =

{

f x: α+1f x( )∈C0

}

.Operator A tertutup, dan D(A) rapat di dalam

X

α karena D(A) memuat

C

0,α yang mana rapat di dalam

X

α.

Untuk membuktikan bahwa A adalah generator infinitesimal harus ditunjukkan bahwa himpunan resolvent ρ(A) memuat sinar {λ∈Χ : Imλ = 0, λ > ω } dan untuk setiap λ > 0 berlaku

Dengan kata lain, harus dicari fungsi g di dalam D(A) sehingga

(

λ

IA g x) ( )= f x( ) (3.7)

Persamaan ini dapat dituliskan kembali sebagai

2

Untuk menyelesaikan (3.10) akan digunakan transformasi Mellin, yaitu

(6)

M-292

Dengan transformasi Mellin ini diperoleh bahwa

( )

Dengan (3.11), (3.9) ditransformasi menjadi

2 2 2

dan penyelesaian untuk G(s)

2 2 2

Diambil kasus

r

>

(1/ 2)

σ

2, untuk kasus yang lain dibuktikan serupa. Dengan menerapkan invers tranformasi Mellin terhadap (3.13) diperoleh

{

1 1 2

}

dengan * menyatakan konvolusi Mellin, yaitu

(7)

M-293

Di pihak lain, dengan (3.16) dan tranformasi variabel u = x / y memberikan

2 2 2 2

dengan c1 konstanta positif. Dengan menghitung dua integral terakhir diperoleh

1

dengan c2 konstanta positif, dan

2 2 4

Re

λ β

>

2

=

(1/ 2)( /

r

σ

+

1/ 2)

.

Dengan Akibat 2.6 dan Akibat 2.7, A membangkitkan semigrup-C0 T(t) dengan

T(t)f(x)

1

[ ( : ) ]( )

Dengan Teorema 2.8 dan Teorema 3.2 telah dapat dibuktikan eksistensi dan ketunggalan solusi dari masalah (1.1)-(1.2) dengan syarat CXα. Lebih lanjut, solusi tersebut secara ekplisit dapat ditentukan, sebagaimana diberikan oleh teorema berikut.

Teorema 3.3 Terdapat solusi tunggal C(x,t) dari masalah (1.1)-(1.2) di dalam ruang

X

α, dan

C(x,t) = T(t)CT.

KESIMPULAN

(8)

M-294

DAFTAR PUSTAKA

Bartle, R.G dan Sherbert, D.R. (1992). Introduction to Real Analysis. Singapore: John Wiley & Sons, Inc.

Black, F and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. J. Polit. Econ. 81, pp. 637–654.

Curtain, R.F and Zwart, H.J. (1995). Introduction to Infinite-Dimensional Linear Systems Theory. New York: Springer-Verlag.

Husnan, S. (1993 ). Dasar-Dasar Teori Portopolio dan Analisis Sekuritas. UPP-AMP, YKPN, Yogyakarta.

Merton, R.C. (1973). Theory of Rational Option Pricing. Bell J. Econom. Management Sci. 4, pp.141– 183.

Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag,

Referensi

Dokumen terkait

Oleh karena itu, dengan teknologi dan sumber daya komputer yang dapat digunakan untuk menunjukkan pertunjukan wayang seni dalam penelitian ini dilakukan boneka

Di atas usia kehamilan 30 minggu, berat badan masing-masing janin ini umumnya lebih ringan dibanding janin pada kehamilan tunggal di usia kehamilan yang sama..

Berdasarkan latar belakang dan pelaksanaan kegiatan di atas dapat disimpulkan sebagai berikut: Pelaksanaan pengabdian dilaksanakan dalam lima tahapan yaitu observasi, sosialisasi dan

Dengan kata lain, dalam memahami hadis, pendekatan sejarah yang dilakukan tidak lagi diarahkan untuk mencari kredibilitas perawi dari sisi sejarah perawinya baik

Besar induksi tegangan yang dihasilkan dengan jarak perisai mesh terhadap sumber medan listrik (kawat BC) yang tetap dan jarak perisai mesh terhadap saluran

Orange County Cikarang kembali meluncurkan penjualan tower apartment terbaru “NEWPORT PARK” yang merupakan kolaborasi Lippo Group dan Mitsubishi Corporation. Tower

Rumus umum untuk senyawa amina adalah Cn H 2n 2n +3 N, dimana R dapat berupa alkil atau +3 N, dimana R dapat berupa alkil atau aril. Amina merupakan senyawa organik yang

Proyek membutuhkan desain yang sesuai dengan arsitektur tradisional khas daerah Lombok yakni rumah adat Bale Lumbung dan Bale Tani dari suku Sasak.. Dalam menjalankan