ALGEBRAICCONNECTIVITY OFTREES WITHA PENDANT
EDGE OFINFINITE WEIGHT
∗
A. BERMAN
†
AND K.-H. FÖRSTER
‡
Abstrat. Let
G
beaweighted graph. Letv
bea vertexofG
and letG
v
ω
denote the graphobtainedbyaddingavertex
u
andanedge{
v, u
}
withweightω
toG
.Thenthealgebraionnetivityµ(G
v
ω
)
ofG
v
ω
isanondereasingfuntionofω
andisboundedbythealgebraionnetivityµ(G)
ofG
.Thequestionofwhenlim
ω
→∞
µ(G
v
ω
)
isequaltoµ(G)
isonsideredandansweredintheasethatG
isatree.Keywords. Weightedgraphs,Trees,Laplaianmatrix,Algebraionnetivity,Pendantedge.
AMSsubjetlassiations. 5C50,5C40,15A18.
1. Introdution. Aweightedgraphon
n
verties isanundiretedsimplegraphG
onn
vertiessuhthatwitheahedgee
ofG
,thereisanassoiatedpositivenumberω
(
e
)
whihisalledtheweight ofe
.TheLaplaian matrix of aweighted graph
G
onn
verties isthen
×
n
matrixL
(
G
) =
L
= (
l
ij
)
,whereforeahi, j
= 1
, . . . , n,
l
ij
=
−
ω
(
e
)
ifi
=
j
ande
=
{
i, j
}
,
0
ifi
=
j
andi
isnotadjaenttoj,
k
=
i
l
ik
ifi
=
j.
Clearly
L
is asingularM
-matrixandpositivesemidenite, soλ
1
(
L
) = 0
,whereforasymmetrimatrix
A
wearrangetheeigenvaluesinnondereasingorderλ
1
(
A
)
≤
λ
2
(
A
)
≤
. . .
Fiedler [3℄ showed that
λ
2
(
L
)
is positive iG
is onneted and alled it thealgebraionnetivity of
G
. ThealgebraionnetivityofG
willbedenotedbyµ
(
G
)
.
Inthispaper
G
alwaysdenotesaonnetedweightedgraphwithoutloops.Let
G
beagraphwithn
verties. Letv
beavertexofG
andletG
v
ω
bethegraphwith
n
+ 1
vertiesobtainedbyadding toG
avertexu
andanedgee
=
{
v, u
}
withweight
ω
.∗
Reeivedbytheeditors21July2003.Aeptedforpubliation24June2005. HandlingEditor:
StephenJ.Kirkland.
†
Department of Mathematis, Tehnion, Haifa 32000, Israel,(bermantehunix.tehnion.a.il).
Researh supportedbythe New York MetropolitanFund for Researh at the Tehnion. Mostof
theworkwasdoneduringavisittoTUBerlin;partoftheworkwasdoneinFUBerlin,Charite
-BenjaminFranklin.
‡
DepartmentofMathematis, Tehnial UniversityBerlin,Sekr. MA6-4,Strassedes17. Juni
Theorem 1.1. The algebraionnetivity
µ
(
G
v
ω
)
isa nondereasing funtion ofω
andfor everyω
andn >
1
µ
(
G
v
ω
)
≤
µ
(
G
)
.
Proof. Let
L
ω
be the Laplaian matrix ofG
v
ω
and let0
< ω
1
≤
ω
2
. ThenB
=
L
ω
2
−
L
ω
1
isasingularrankonepositivesemidenitematrix. By[7,Th. 4.3.1℄λ
k
(
L
ω
1
)
≤
λ
k
(
L
ω
2
)
fork
= 1
. . . n,
andfor
k
= 2
,
µ
(
G
v
ω
1
)
≤
µ
(
G
v
ω
2
)
.
Toshowthat
µ
(
G
v
ω
)
isbounded, writeL
ω
asthesumoftwoblokmatriesL
ω
=
L
(
G
) 0
0
0
+
0
0
0
ω
−
ω
−
ω
ω
,
where
L
(
G
)
isn
×
n
andtheleftupperzeroblokintheseondmatrixis(
n
−
1)
×
(
n
−
1)
.By[7,Th. 4.3.4(a),thease
k
= 2
℄,µ
(
G
v
ω
) =
λ
2
(
L
ω
)
≤
λ
3
(
L
(
G
)
⊕
(0))
=
λ
2
(
L
(
G
)) =
µ
(
G
)
.
Remark 1.2. Thetheorem is essentiallyaonsequeneof Cor. 4.2 of[6℄. It is
provedfortreesin [8℄.
Example 1.3. For theompletegraphs
K
n
, n >
1
,
withallweightsequalto 1lim
ω→∞
µ
((
K
n
)
v
ω
) =
n
+ 1
2
< n
=
µ
(
K
n
)
.
Example 1.4. Fortheyles
C
n
, n >
2
,
withweightsequalto1lim
ω→∞
µ
((
C
n
)
v
ω
) =
µ
(
C
n
+1
)
< µ
(
C
n
)
.
Example 1.5. Let
G
be thegraphobtainedfromK
4
bydeleting an edge andletalltheweightsof
G
beequalto1. Ifthedegreeofv
is3,lim
ω→∞
µ
(
G
v
ω
) = 2 =
µ
(
G
)
.
Ifthedegreeof
v
is2lim
ω→∞
µ
(
G
v
ω
)
< µ
(
G
)
.
Sine
µ
(
G
v
ω
)
isboundedbyµ
(
G
)
,itisnaturaltoaskwhendoeslim
ω→∞
µ
(
G
v
ω
) =
µ
(
G
)
.
2. Results on trees. Our paper relies heavily on the work of [12℄ so in this
setionwedesribetheirmainresultsandbasibakgroundontreesneededforthese
resultsandforthenextsetion. Insomeaseswehangethenotationof[12℄.
Theorem 2.1. [4,Th. 3.11℄Let
T
be a weighted tree with Laplaian matrixL
and algebrai onnetivity
µ
. Lety
be an eigenvetor ofL
assoiated withµ
. Thenexatlyone ofthe followingtwoasesour:
(a) Someentryof
y
is0
.(b) Allentries of
y
arenonzero.In the rst asethere exists aunique vertex
c
suhthaty
c
= 0
andc
isadjaent toavertex
d
withy
d
= 0
. In the seondasethereis aunique pair of vertiesi
andj
adjaent in
T
suhthaty
i
y
j
<
0
.Definition 2.2. Aweightedtree
T
is saidtobeoftypeI withaharateristivertex
c
ifase(
a
)
ofTheorem2.1holds,andoftypeII withharateristivertiesi
and
j
inase(
b
)
. WeusealsothenotationI
c
in therstaseandII
i,j
intheseondase.
Thenameharateristivertieswasoinedin[11℄byR.Merriswhoshowedthat
if
µ
isnotasimpleeigenvalue,thenalltheorrespondingeigenvetorsyieldthesametypeoftreeandthesameharateristiverties.
Definition 2.3. Let
v
beavertex ofatreeT
. LetL
v
bethematrixobtainedbydeleting therowandolumn of theLaplaianmatrixof
T
that orrespond tov
.Thematrix
M
v,T
:=
L
−
1
v
isalled thebottlenekmatrixofT
atv
.In[9℄and[10℄,itisshownthattheentryof
M
v,T
thatorrespondstothevertiesk
andl
ism
kl
=
1
ω
(
g
)
wherethesummationisonalledges
g
thatlieontheintersetionofthepathbetweenk
andv
and thepathbetweenl
andv
. ThematrixM
v,T
is permutationally similarto ablok diagonalmatrix, wherethe numberofbloksis thedegreeof
v
and eahblokisapositivematrixwhihorrespondsto auniquebranhat
v
.Forverties
u, v
ofatreeT
letv
→
u
denotethebranhofT
atv
,thatontainsu
.Wedenoteby
M
v→u,T
theblokofM
v,T
thatorrespondstov
→
u
,andbyM
v→u,T
thematrixobtainedfrom
M
v,T
bydeleting therowsandtheolumns orrespondingto
M
v→u,T
.Definition 2.4. A diagonal blok of
M
v,T
whose spetral radius is equal toρ
(
M
v,T
)
, whereρ
(
A
)
denotes thespetralradiusof thematrixA
, isalled aPerronblokandtheorrespondingbranhof
T
atv
isalled aPerronbranh.Theorem2.5. [9,Cor. 2.1℄Let
T
beaweightedtree. ThenT
isoftypeIwithaharateristi vertex
c
,if andonlyif atc
,T
has morethanone Perron branh.Inthis ase,
µ
(
T
)
,the algebrai onnetivity ofT
isequal to1
ρ
(
M
c,T
)
.Let
e
be an edge of a graphG
. Replae the weightate
byω
and denote theresultinggraphby
G
e
ω
. Observethat sinee
=
{
v, u
}
isapendantedgeofG
v
ω
,then(
G
v
ω
)
e
ω
=
G
v
ω
. LetG
e
∞
denotethefamilyofweightedgraphs{
G
e
ω
, ω >
0
}
,andletG
v
∞
denotethefamilyofweightedgraphs
{
G
v
Theorem 2.6. [12,Corollary1.1℄Let
T
bea weighted tree andlete
be anedgeof
T
. Then thereexistsapositive numberω
0
suhthatallthe treesT
e
ω
, ω
0
< ω <
∞
,areof the sametypeandhave the sameharateristiverties.
Thefollowingdenitionsareusedin [12℄.
Definition 2.7. Thefamilyoftrees
T
e
∞
isatypeItreeatinnitywithhara-teristivertex
c
if thereexistsanω
0
>
0
suhthat forallω
∈
[
ω
0
,
∞
)
,T
e
ω
isoftypeI
c
. Similarly,T
e
∞
is a typeII tree at innity with harateristi vertiesi
andj
ifthereexists an
ω
0
>
0
suhthat forallω
∈
[
ω
0
,
∞
)
,T
e
ω
is oftypeII
i,j
.Wenowanstatethemainresultof[12℄.
Theorem 2.8. [12,Th.1.8℄Let
e
=
{
v, u
}
be anedge thatis notapendantedgeof a tree
T
. LetT
1
andT
2
be the resulting omponents arising from the deletion ofe
. Supposev
∈
T
1
,u
∈
T
2
andµ
(
T
1
)
≤
µ
(
T
2
)
. Thenlim
ω→∞
µ
(
T
e
ω
) =
µ
(
T
1
)
iT
1
isatreeoftypeIwith aharateristivertex, say,
c
,and oneof thefollowing onditionsholds:
(a)
T
e
∞
isoftype Iwithaharateristivertexc
.(b)
c
isinident toe
andρ
(
M
u,T
2
)
≤
1
µ
(
T
1
)
.Weonludethe bakgroundresultswiththe analogueofTheorem 2.5 fortype
IItreesandtwopropositionsthatwillbeusedinprovingthemainresult.
Theorem 2.9. [9,Th.1℄Aweightedtree
T
isof typeIIiateveryvertexT
hasauniquePerronbranh. Ifthe harateristiverties,
i
andj
,ofT
arejoinedby anedge ofweight
θ
,thenthereexistsanumber0
< γ <
1
,suhthatρ
(
M
i→j,T
−
γ
θ
J
) =
ρ
(
M
j→i,T
−
1
−
γ
θ
J
)
, and
µ
(
T
) =
1
ρ
(
M
i→j,T
−
γ
θ
J
)
=
1
ρ
(
M
j→i,T
−
1
−γ
θ
J
)
,
whereJdenotes an allonesmatrix.
Proposition2.10. [8,Cor. 1.1℄Theharateristivertiesof
T
v
ω
lieonthe pathbetween theharateristivertiesof Tand
u
.Proposition 2.11. [12, Claim 3.2℄ Let Tbea tree. Let
{
i
k
, j
k}
beedges in Twithweights
α
k
,fork
= 1
,
2
,suhthatthepathfromi
1
toj
2
ontainsj
1
andi
2
,and let0
< γ
1
, γ
2
<
1
. Thenρ
(
M
j
1
→i
1
,T
−
γ
1
α
1
J
)
< ρ
(
M
j
1
→i
1
,T
)
< ρ
(
M
j
2
→i
2
,T
−
γ
2
α
2
J
)
.
3. Assigninganarbitrarilylargeweighttoapendantedgeofatree. In
thissetionweonsidertheasewhere
T
isatreeandu
isapendantvertexofT
∪
e
where
e
=
{
v, u
}
andv
∈
T
.In some sense the question in this ase may be onsidered asa speial ase of
thedisussion in [12℄. Todo this,
{
u
}
isto beonsidered asa "treewith algebraiOurdisussionisbasedontheanalysisofthelimitsofthebottlenekmatriesof
T
v
ω
whenω
inreasesto∞
;namelyM
v,T
v
ω
=
M
v,T
⊕
1
ω
,
M
u,T
v
ω
= (
M
v,T
⊕
(0)) +
1
ω
J
andif
s
=
v
isavertexofT
,M
s,T
v
ω
=
M
s,T
M
(
v
)
M
(
v
)
t
m
vv
+
ω
1
,
where
M
(
v
)
istheolumnof
M
s,T
orrespondingtov
andm
vv
isthediagonalentryof
M
s,T
, orresponding tov
. In partiular, for all the branhes ofT
ats
that donot ontain
v
, the diagonal bloks ofM
s,T
v
ω
and ofM
s,T
are the same. Denotinglim
ω→∞
M
s,T
v
ω
by
M
s,T
v
∞
weseethatfor
s /
∈
e
M
s,T
v
∞
=
M
s,T
M
(
v
)
M
(
v
)
t
m
vv
(3.1)and
M
v,T
v
∞
=
M
u,T
v
∞
=
M
v,T
⊕
(0)
.
(3.2)
Thereadershouldnotbeonfusedbythefatthat
T
v
∞
denotesafamilyoftreeswhile
M
s,T
v
∞
denotesasinglematrix(upto permutationsimilarity).
Example3.1.
◦
1
/
2
a
@
@
@
@
@
@
@
◦
c
1
◦
v
ω
◦
u
◦
1
/
2
b
~
~
~
~
~
~
~
M
v,T
v
∞
=
M
u,T
v
∞
=
3 1
1 0
1 3
1 0
1 1
1 0
0 0
0 0
,
M
c,T
v
∞
=
2 0
0 0
0 2
0 0
0 0
1 1
0 0
1 1
M
a,T
v
∞
=
M
b,T
v
∞
=
4
2 2
2
2
2 2
2
2
2 3
3
2
2 3
3
.
Remark 3.2. Thematries
M
s,T
v
∞
are ofourse singular, but theydo ontain
informationon
lim
ω→∞
µ
(
T
v
ω
)
.As in theaseofnonsingularbottlenek matrieswe allthe diagonalbloks of
M
s,T
v
∞
whosespetralradiusismaximal,Perronbloks. Theorrespondingbranhes
of
T
v
ω
donotdependonω
;theywillbealledthePerronbranhesofthefamilyT
v
∞
.Lemma 3.3. If
M
s,T
v
∞
hasmorethanonePerronblok, then
lim
ω→∞
µ
(
T
v
ω
) =
1
ρ
(
M
s,T
v
∞
)
.
Proof. Considertheprinipal submatrix
L
s,T
v
ω
obtainedfromtheLaplaian
ma-trixof
T
v
ω
bydeleting therowandolumn orrespondingtos
. ThenM
s,T
v
∞
= lim
ω→∞
(
L
s,T
v
ω
)
−
1
.
By[7,Th. 4.3.15℄for
r
=
n
−
1
, k
= 1
andk
= 2
,λ
1
(
L
s,T
v
ω
)
≤
µ
(
T
v
ω
)
≤
λ
2
(
L
s,T
v
ω
)
,
so
lim
ω→∞
λ
1
(
L
s,T
v
ω
)
≤
ω→∞
lim
µ
(
T
v
ω
)
≤
ω→∞
lim
λ
2
(
L
s,T
v
ω
)
,
Sine
M
s,T
v
∞
hasatleasttwoPerronbloksweobtain
lim
ω→∞
λ
2
(
L
s,T
v
ω
) = lim
ω→∞
λ
1
(
L
s,T
ω
v
) =
ρ
(
M
s,T
∞
v
)
.
Remark 3.4. Ifthere existsan
ω
0
suh thattwoofthePerronbloksofM
s,T
v
∞
arePerronbloksof
M
s,T
v
ω
forω
≥
ω
0
thenλ
2
(
L
s,T
v
ω
) =
λ
1
(
L
s,T
ω
v
)
forω
≥
ω
0
.
Lemma 3.5. Let
s
be a vertex ofT
. SupposeM
s,T
v
∞
has at least two Perron
bloks andlet
t
beanother vertexofT
. Thenρ
(
M
t,T
v
Proof. Byassumption, thefamily
T
v
∞
has atleast twoPerron branhesats
, sooneofthem,say
s
→
x
,doesnotontaint
. Lett
→
s
bethebranhatt
thatontainss
. Thenitontainsthebranhs
→
x
,andweobtainρ
(
M
t,T
v
∞
)
≥
ρ
(
M
t→s,T
v
∞
)
> ρ
(
M
s→x,T
v
∞
) =
ρ
(
M
s,T
v
∞
)
,
wherethestritinequalityfollowsfrom [1,Cor. 2.1.5℄andthefat that
M
s→x,T
v
∞
isasubmatrixof
M
t→s,T
v
∞
,whihispositive.
Corollary3.6. Thereisatmost onevertex, say
c
,suhthatM
c,T
v
∞
has more
thanonePerronblok.
Definition 3.7. Intheasethatthere isavertex
c
suhthatM
c,T
v
∞
hasmore
thanonePerronblok,wewillsaythatthefamilyoftrees
T
v
∞
isatrii(treeininnity)oftypeI. Ifnosuh
c
existswesaythatT
v
∞
isatriioftypeII.Remark 3.8.
(a)If thetrees
T
v
ω
are oftypeIc
for allsuientlylargeω
, then thefamilyT
v
∞
isatriioftypeI
c
(andalsoatypeI treeat innitywithharateristivertexc
). Inotherwords,if
T
v
∞
isatriioftypeII,thenforallω
largeenough,T
v
ω
aretreesoftypeII.
(b)Supposethetrees
T
v
ω
areoftypeIIp,q
forallsuientlylargeω
,thenbytherepresentationof
L
ω
intheproofofTheorem1.1 andbyTheorem2.1,{
p, q
}
annotbethependantedge
{
v, u
}
.() It is possible that
T
v
ω
are of type II for all suiently largeω
(soT
v
∞
is atypeII treeat innity) but
T
v
ω
is atriiof typeI;see Lemma3.10and Subase 4ofExample3.13in thefollowingdisussion.
Remark3.9. TheproofofLemma3.5showsthatif
T
isatreeoftypeIwithaharateristivertex
c
, thenforanyothervertexs
ofT
ρ
(
M
s,T
)
> ρ
(
M
c,T
)
.
(ThishasalreadybeenestablishedinProposition2of[9℄.)
ConsiderTheorem2.9 where
T
v
ω
isoftypeIIi,j
andtheweightoftheedge{
i, j
}
is
θ
. Thenforeveryω
(suientlylarge)there existanumberγ
ω
,between0and1,suhthat
µ
(
T
ω
v
) =
1
ρ
(
M
i→j,T
v
ω
−
γ
ω
θ
J
)
=
1
ρ
(
M
j→i,T
v
ω
−
1
−γ
ω
θ
J
)
.
Whathappenstothethenumber
γ
ω
whenω
goesto∞
? Welaimthatlim
ω→∞
γ
ω
exists. Indeed,oneofthebranhesorrespondingto
M
i→j,T
v
ω
andM
j→i,T
v
ω
doesnotontain
u
. Suppose it is the seond, soM
j→i,T
v
ω
=
M
j→i,T
. The numbersµ
(
T
v
ω
)
inreasetoalimit,seeTheorem1.1,sothenumbers
ρ
(
M
j→i,T
v
ω
−
1
−γ
ω
θ
J
)
dereasetoalimit,whihmeansthatthenumbers1-
γ
ω
inreasetoalimit. Thislimitisatmost1sine
0
< γ
ω
<
1
.Lemma 3.10. If the trees
T
v
ω
are of type II, with harateristi vertiesi, j
forω
0
< ω <
∞
,andifγ
= lim
ω→∞
γ
ω
= 0
,where
ρ
(
M
i→j,T
v
ω
−
γ
ω
θ
J
) =
ρ
(
M
j→i,T
ω
v
−
1
−γ
ω
and
θ
isthe weightof theedge{
i, j
}
,thenT
v
∞
isatrii oftypeIi
. Similarly,ifγ
= 1
then
T
v
∞
isatrii oftype Ij
.Proof.
M
j→i,T
v
∞
= (
M
i
j,T
v
∞
⊕
(0)) +
1
θ
J
so ifγ
= 0
, thenρ
(
M
i→j,T
v
∞
) =
ρ
(
M
j→i,T
v
∞
−
1
θ
J
) =
ρ
(
M
i
j,T
∞
v
)
so
T
e
∞
isatriioftypeIi
.Corollary 3.11. If the trees
T
v
ω
are of type II and ifT
v
∞
is atrii of type II, then0
< γ
= lim
ω→∞
γ
ω
<
1
.
Remark 3.12. Thetree
T
anbeatree oftypeI with aharateristivertex,say
c
,or atreeoftypeII.Intherstasethereare3possibilities:1
T
v
∞
is atriioftypeIc
,2
T
v
∞
is atriioftypeIs
, wheres
=
c
,3
T
v
∞
is atriioftypeII.Intheseond asethere aretwopossibilities:
4
T
v
∞
is atriioftypeIs
forsomes
,5
T
v
∞
is atriioftypeII.Thefollowingexampledemonstratesthatallvesubasesarepossible.
Example 3.13.
Subase1
◦
x
@
@
@
@
@
@
@
◦
c
1
◦
v
ω
◦
u
◦
x
~
~
~
~
~
~
~
0
< x
≤
1
2
.
Here
M
c,T
v
ω
=
1
/x
0
0
0
0
1
/x
0
0
0
0
1
1
0
0
1 1 +
ω
1
,
sofor
x <
1
2
, T
v
∞
isatreeoftypeI withaharateristivertexc
andforx
=
1
2
,
itis onlyatriioftypeI
c
.Anotherexampleiswhen
c
=
v
◦
x
@
@
@
@
@
@
@
◦
c
ω
◦
u
◦
x
~
~
~
~
~
~
~
Subase2
◦
x
@
@
@
@
@
@
@
◦
c
10
◦
s
1
◦
v
ω
◦
u
◦
x
~
~
~
~
~
~
~
where
ρ
1
/x
+ 0
.
1
0
.
1
0
.
1
0
.
1
1
/x
+ 0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
= 2
.
Subase3
◦
x
@
@
@
@
@
@
@
◦
c
1
◦
v
ω
◦
u
◦
x
~
~
~
~
~
~
~
1
2
< x
≤
1
,
or
◦
1
◦
c
1
◦
v
ω
◦
.
Subase4
◦
1
◦
x
◦
s
1
◦
v
ω
◦
, ρ
1 + 1
/x
1
/x
1
/x
1
/x
= 2
.
Subase5
Herewesuggest3examples:
◦
x
@
@
@
@
@
@
@
◦
1
◦
ω
◦
◦
x
~
~
~
~
~
~
~
x >
1
,
◦
x
◦
1
◦
ω
◦
◦
1
@
@
@
@
@
@
@
◦
v
ω
◦
u
◦
x
~
~
~
~
~
~
~
x
= 1
.
Wearenowreadytostateandprovethemainresult.
Theorem 3.14. Let
T
beatree. Thenlim
ω→∞
µ
(
T
v
ω
) =
µ
(
T
)
(3.3)if andonlyif
(a)
T
isatreeof typeIwith harateristi vertexsayc
,and
(b)
ρ
(
M
c→u,T
v
∞
)
≤
ρ
(
M
c,T
) =
1
µ
(
T
)
.Proof. We provethetheorem byonsidering the vesubases of Remark 3.12,
andshowingthat(3), (a)and(b)holdinSubase1andonlyinthisase,i.e. ifand
onlyif
T
andT
v
∞
areoftypeIc
forsomevertexc
.Subase 1: Obviously (a) holds. From (1) and (2) follows that
ρ
(
M
c,T
v
ω
)
≥
ρ
(
M
c,T
)
. ButifT
andT
v
ω
areoftypeI
c
,thenequalityholds. Thusρ
(
M
c→u,T
v
∞
)
≤
ρ
(
M
c,T
)
,
proving(b),and
µ
(
T
) =
1
ρ
(
M
c,T
)
=
1
ρ
(
M
c,T
v
ω
)
= lim
ω→∞
µ
(
T
v
ω
)
,
proving(3). ThisompletestheproofinSubase1.
If
T
is atreeof typeI
c
and(b) holds, then itfollowseasily thatT
v
ω
is atrii oftypeI
c
. Therefore(b) doesnot hold in Subases 2and 3,while (a) obviouslydoesnothold in Subases4 and5. Nowwewill provethat (3) doesnothold in thelast
foursubases.
Subase2: Wehaveto showthat(3)doesnothold. Indeed
µ
(
T
) =
1
ρ
(
M
c,T
)
>
1
ρ
(
M
s,T
)
=
1
ρ
(
M
s,T
v
ω
)
,byLemma3.5
= lim
ω→∞
µ
(
T
v
ω
)
, byLemma 3.3.Subase3: ByRemark 3.8(a)thetrees
T
v
ω
areforsuientlylargeω
oftypeII
,3.8(b)itdoesnotdependon
ω
. Withoutlossofgenerality,p
liesonthepathbetweenq
andc
.ByProposition2.10theverties
p
andq
lie onthepathbetweenc
andu
. Leti
beaneighborof
c
suhthatc, p
andq
lieonthepathbetweeni
andu
andc
→
i
isaPerronbranhof
T
. Thenweobtainlim
ω→∞
µ
(
T
v
ω
) = lim
ω→∞
1
ρ
(
M
q→p,T
v
ω
−
γ
ω
θ
J
)
,byTheorem2.9,
= lim
ω→∞
1
ρ
(
M
q→p,T
−
γ
θ
ω
J
)
,sine
q
→
p
isinT
,=
1
ρ
(
M
q→p,T
−
γ
θ
J
)
,where
0
< γ <
1
,byCorollary3.11,<
1
ρ
(
M
c→i,T
)
,byProposition2.11,
=
1
ρ
(
M
c,T
)
, sine
c
→
i
isaPerronbranhofT,
=
µ
(
T
)
,sineT
isoftypeI
c
,
so(3)doesnothold.
Subase4: Here againwehaveto showthat (3)doesnothold. Suppose
T
is oftype
II
ij
, wherej
lies on thepathfromi
tou
. Letθ
andγ
beasin Theorem 2.9.Sine
T
v
ω
is atriioftypeI
s
, thebyProposition 2.10,s
lies onthepathfromi
tou
. Thereforelim
ω→∞
µ
(
T
v
ω
) = lim
ω→∞
1
ρ
(
M
s→i,T
v
ω
)
= lim
ω→∞
1
ρ
(
M
s→i,T
)
≤
1
ρ
(
M
j→i,T
)
<
1
ρ
(
M
j→i,T
−
γ
θ
J
)
=
µ
(
T
)
.
Subase5: HereTisof,say,typeII
ij
andforω
largeenough,T
v
ω
areof,say,typeII
pq
, whereby Proposition 2.10,we maytake, withoutlossofgenerality,p
andq
toliebetween
i
andq
. Letθ
andγ
beas in Theorem2.9 forthe edge{
i, j
}
inT
andlet
θ
ˆ
andγ
ω
betheorrespondingpairfortheedge{
p, q
}
inT
v
ω
. Observethatθ
ˆ
doesnotdependon
ω
byRemark3.8(b). Letγ
ˆ
= lim
ω→∞
γ
ω
. ByCorollary3.13wehave0
< γ <
1
. Nowlim
ω→∞
µ
(
T
v
ω
) = lim
ω→∞
1
ρ
(
M
q→p,T
v
ω
−
γ
ω
ˆ
θ
J
)
= lim
ω→∞
1
ρ
(
M
q→p,T
−
γ
θ
ˆ
ω
J
)
=
1
ρ
(
M
q→p,T
−
γ
ˆ
θ
ˆ
J
)
<
1
ρ
(
M
j→i,T
−
γ
θ
J
)
=
µ
(
T
)
,
wheretheinequalityfollowsfromProposition2.11.
Aknowledgments. We are indebted to Mr. Felix Goldberg [5℄ for suggesting
Example1.5 whih showsthat
G
doesnothaveto beatree forlim
ω→∞
µ
(
G
v
tohold. Thequestionofwhen does
lim
ω→∞
µ
(
G
v
ω
) =
µ
(
G
)
, whenG
isageneralgraph,seems to be muh more diult than the one in the ase that
G
is a tree. Weare grateful to thereferee for his orherimportant remarks and forsuggestingthat
Propositions 1.3and1.4, as wellasLemma 2.2of[2℄, maybeusefulin dealingwith
thegeneralase.
REFERENCES
[1℄ A.Bermanand R.J.Plemmons.NonnegativeMatriesinthe MathematialSienes,SIAM,
Philadelphia,1994.
[2℄ S.FallatandS.Kirkland.Extremizingalgebraionnetivitysubjettographtheoreti
on-straints. EletroniJournalofLinearAlgebra,3:4874,1998.
[3℄ M.Fiedler.Algebraionnetivityofgraphs.CzehoslovakMathematialJournal,23: 298305,
1973.
[4℄ M.Fiedler.Apropertyofeigenvetorsofnonnegativesymmetrimatriesanditsappliations
tographtheory.CzehoslovakMathematialJournal,25: 619633,1975.
[5℄ F.Goldberg.Privateommuniation.
[6℄ R.Grone,R.Merris,and V.Sunder.TheLaplaianspetrumofagraph. SIAMJournal on
MatrixAnalysisandAppliations,11: 218-238,1990.
[7℄ R.J.HornandC.R.Johnson.MatrixAnalysis.CambridgeUniversityPress,Cambridge,1985.
[8℄ S.Kirklandand M. Neumann.Algebrai onnetivity ofweighted trees underperturbation.
LinearandMultilinearAlgebra,42: 187203,1997.
[9℄ S.Kirkland,M.Neumann,andB.Shader.CharateristivertiesofweightedtreesviaPerron
values.LinearandMultilinearAlgebra,40: 311325,1996.
[10℄ S.Kirkland, M.Neumann,and B.Shader. Distanesinweightedtrees andgroup inverse of
LaplaianMatries. SIAM Journal on MatrixAnalysis and Appliations, 18: 827841,
1997.
[11℄ R.Merris.Charateristivertiesoftrees.LinearandMultilinearAlgebra,22: 115131,1987.
[12℄ J.J.MolitiernoandM.Neumann.Thealgebraionnetivityoftwotreesonnetedbyanedge