• Tidak ada hasil yang ditemukan

vol13_pp175-186. 203KB Jun 04 2011 12:05:53 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "vol13_pp175-186. 203KB Jun 04 2011 12:05:53 AM"

Copied!
12
0
0

Teks penuh

(1)

ALGEBRAICCONNECTIVITY OFTREES WITHA PENDANT

EDGE OFINFINITE WEIGHT

A. BERMAN

AND K.-H. FÖRSTER

Abstrat. Let

G

beaweighted graph. Let

v

bea vertexof

G

and let

G

v

ω

denote the graph

obtainedbyaddingavertex

u

andanedge

{

v, u

}

withweight

ω

to

G

.Thenthealgebraionnetivity

µ(G

v

ω

)

of

G

v

ω

isanondereasingfuntionof

ω

andisboundedbythealgebraionnetivity

µ(G)

of

G

.Thequestionofwhen

lim

ω

→∞

µ(G

v

ω

)

isequalto

µ(G)

isonsideredandansweredintheasethat

G

isatree.

Keywords. Weightedgraphs,Trees,Laplaianmatrix,Algebraionnetivity,Pendantedge.

AMSsubjetlassiations. 5C50,5C40,15A18.

1. Introdution. Aweightedgraphon

n

verties isanundiretedsimplegraph

G

on

n

vertiessuhthatwitheahedge

e

of

G

,thereisanassoiatedpositivenumber

ω

(

e

)

whihisalledtheweight of

e

.

TheLaplaian matrix of aweighted graph

G

on

n

verties isthe

n

×

n

matrix

L

(

G

) =

L

= (

l

ij

)

,whereforeah

i, j

= 1

, . . . , n,

l

ij

=

ω

(

e

)

if

i

=

j

and

e

=

{

i, j

}

,

0

if

i

=

j

and

i

isnotadjaentto

j,

k

=

i

l

ik

if

i

=

j.

Clearly

L

is asingular

M

-matrixandpositivesemidenite, so

λ

1

(

L

) = 0

,where

forasymmetrimatrix

A

wearrangetheeigenvaluesinnondereasingorder

λ

1

(

A

)

λ

2

(

A

)

. . .

Fiedler [3℄ showed that

λ

2

(

L

)

is positive i

G

is onneted and alled it the

algebraionnetivity of

G

. Thealgebraionnetivityof

G

willbedenotedby

µ

(

G

)

.

Inthispaper

G

alwaysdenotesaonnetedweightedgraphwithoutloops.

Let

G

beagraphwith

n

verties. Let

v

beavertexof

G

andlet

G

v

ω

bethegraph

with

n

+ 1

vertiesobtainedbyadding to

G

avertex

u

andanedge

e

=

{

v, u

}

with

weight

ω

.

Reeivedbytheeditors21July2003.Aeptedforpubliation24June2005. HandlingEditor:

StephenJ.Kirkland.

Department of Mathematis, Tehnion, Haifa 32000, Israel,(bermantehunix.tehnion.a.il).

Researh supportedbythe New York MetropolitanFund for Researh at the Tehnion. Mostof

theworkwasdoneduringavisittoTUBerlin;partoftheworkwasdoneinFUBerlin,Charite

-BenjaminFranklin.

DepartmentofMathematis, Tehnial UniversityBerlin,Sekr. MA6-4,Strassedes17. Juni

(2)

Theorem 1.1. The algebraionnetivity

µ

(

G

v

ω

)

isa nondereasing funtion of

ω

andfor every

ω

and

n >

1

µ

(

G

v

ω

)

µ

(

G

)

.

Proof. Let

L

ω

be the Laplaian matrix of

G

v

ω

and let

0

< ω

1

ω

2

. Then

B

=

L

ω

2

L

ω

1

isasingularrankonepositivesemidenitematrix. By[7,Th. 4.3.1℄

λ

k

(

L

ω

1

)

λ

k

(

L

ω

2

)

for

k

= 1

. . . n,

andfor

k

= 2

,

µ

(

G

v

ω

1

)

µ

(

G

v

ω

2

)

.

Toshowthat

µ

(

G

v

ω

)

isbounded, write

L

ω

asthesumoftwoblokmatries

L

ω

=

L

(

G

) 0

0

0

+

0

0

0

ω

ω

ω

ω

,

where

L

(

G

)

is

n

×

n

andtheleftupperzeroblokintheseondmatrixis

(

n

1)

×

(

n

1)

.

By[7,Th. 4.3.4(a),thease

k

= 2

℄,

µ

(

G

v

ω

) =

λ

2

(

L

ω

)

λ

3

(

L

(

G

)

(0))

=

λ

2

(

L

(

G

)) =

µ

(

G

)

.

Remark 1.2. Thetheorem is essentiallyaonsequeneof Cor. 4.2 of[6℄. It is

provedfortreesin [8℄.

Example 1.3. For theompletegraphs

K

n

, n >

1

,

withallweightsequalto 1

lim

ω→∞

µ

((

K

n

)

v

ω

) =

n

+ 1

2

< n

=

µ

(

K

n

)

.

Example 1.4. Fortheyles

C

n

, n >

2

,

withweightsequalto1

lim

ω→∞

µ

((

C

n

)

v

ω

) =

µ

(

C

n

+1

)

< µ

(

C

n

)

.

Example 1.5. Let

G

be thegraphobtainedfrom

K

4

bydeleting an edge and

letalltheweightsof

G

beequalto1. Ifthedegreeof

v

is3,

lim

ω→∞

µ

(

G

v

ω

) = 2 =

µ

(

G

)

.

Ifthedegreeof

v

is2

lim

ω→∞

µ

(

G

v

ω

)

< µ

(

G

)

.

Sine

µ

(

G

v

ω

)

isboundedby

µ

(

G

)

,itisnaturaltoaskwhendoes

lim

ω→∞

µ

(

G

v

ω

) =

µ

(

G

)

.

(3)

2. Results on trees. Our paper relies heavily on the work of [12℄ so in this

setionwedesribetheirmainresultsandbasibakgroundontreesneededforthese

resultsandforthenextsetion. Insomeaseswehangethenotationof[12℄.

Theorem 2.1. [4,Th. 3.11℄Let

T

be a weighted tree with Laplaian matrix

L

and algebrai onnetivity

µ

. Let

y

be an eigenvetor of

L

assoiated with

µ

. Then

exatlyone ofthe followingtwoasesour:

(a) Someentryof

y

is

0

.

(b) Allentries of

y

arenonzero.

In the rst asethere exists aunique vertex

c

suhthat

y

c

= 0

and

c

isadjaent to

avertex

d

with

y

d

= 0

. In the seondasethereis aunique pair of verties

i

and

j

adjaent in

T

suhthat

y

i

y

j

<

0

.

Definition 2.2. Aweightedtree

T

is saidtobeoftypeI withaharateristi

vertex

c

ifase

(

a

)

ofTheorem2.1holds,andoftypeII withharateristiverties

i

and

j

inase

(

b

)

. Weusealsothenotation

I

c

in therstaseand

II

i,j

intheseond

ase.

Thenameharateristivertieswasoinedin[11℄byR.Merriswhoshowedthat

if

µ

isnotasimpleeigenvalue,thenalltheorrespondingeigenvetorsyieldthesame

typeoftreeandthesameharateristiverties.

Definition 2.3. Let

v

beavertex ofatree

T

. Let

L

v

bethematrixobtained

bydeleting therowandolumn of theLaplaianmatrixof

T

that orrespond to

v

.

Thematrix

M

v,T

:=

L

1

v

isalled thebottlenekmatrixof

T

at

v

.

In[9℄and[10℄,itisshownthattheentryof

M

v,T

thatorrespondstotheverties

k

and

l

is

m

kl

=

1

ω

(

g

)

wherethesummationisonalledges

g

thatlieontheintersetionofthepathbetween

k

and

v

and thepathbetween

l

and

v

. Thematrix

M

v,T

is permutationally similar

to ablok diagonalmatrix, wherethe numberofbloksis thedegreeof

v

and eah

blokisapositivematrixwhihorrespondsto auniquebranhat

v

.

Forverties

u, v

ofatree

T

let

v

u

denotethebranhof

T

at

v

,thatontains

u

.

Wedenoteby

M

v→u,T

theblokof

M

v,T

thatorrespondsto

v

u

,andby

M

v→u,T

thematrixobtainedfrom

M

v,T

bydeleting therowsandtheolumns orresponding

to

M

v→u,T

.

Definition 2.4. A diagonal blok of

M

v,T

whose spetral radius is equal to

ρ

(

M

v,T

)

, where

ρ

(

A

)

denotes thespetralradiusof thematrix

A

, isalled aPerron

blokandtheorrespondingbranhof

T

at

v

isalled aPerronbranh.

Theorem2.5. [9,Cor. 2.1℄Let

T

beaweightedtree. Then

T

isoftypeIwitha

harateristi vertex

c

,if andonlyif at

c

,

T

has morethanone Perron branh.

Inthis ase,

µ

(

T

)

,the algebrai onnetivity of

T

isequal to

1

ρ

(

M

c,T

)

.

Let

e

be an edge of a graph

G

. Replae the weightat

e

by

ω

and denote the

resultinggraphby

G

e

ω

. Observethat sine

e

=

{

v, u

}

isapendantedgeof

G

v

ω

,then

(

G

v

ω

)

e

ω

=

G

v

ω

. Let

G

e

denotethefamilyofweightedgraphs

{

G

e

ω

, ω >

0

}

,andlet

G

v

denotethefamilyofweightedgraphs

{

G

v

(4)

Theorem 2.6. [12,Corollary1.1℄Let

T

bea weighted tree andlet

e

be anedge

of

T

. Then thereexistsapositive number

ω

0

suhthatallthe trees

T

e

ω

, ω

0

< ω <

,

areof the sametypeandhave the sameharateristiverties.

Thefollowingdenitionsareusedin [12℄.

Definition 2.7. Thefamilyoftrees

T

e

isatypeItreeatinnitywith

hara-teristivertex

c

if thereexistsan

ω

0

>

0

suhthat forall

ω

[

ω

0

,

)

,

T

e

ω

isoftype

I

c

. Similarly,

T

e

is a typeII tree at innity with harateristi verties

i

and

j

if

thereexists an

ω

0

>

0

suhthat forall

ω

[

ω

0

,

)

,

T

e

ω

is oftype

II

i,j

.

Wenowanstatethemainresultof[12℄.

Theorem 2.8. [12,Th.1.8℄Let

e

=

{

v, u

}

be anedge thatis notapendantedge

of a tree

T

. Let

T

1

and

T

2

be the resulting omponents arising from the deletion of

e

. Suppose

v

T

1

,

u

T

2

and

µ

(

T

1

)

µ

(

T

2

)

. Then

lim

ω→∞

µ

(

T

e

ω

) =

µ

(

T

1

)

i

T

1

isa

treeoftypeIwith aharateristivertex, say,

c

,and oneof thefollowing onditions

holds:

(a)

T

e

isoftype Iwithaharateristivertex

c

.

(b)

c

isinident to

e

and

ρ

(

M

u,T

2

)

1

µ

(

T

1

)

.

Weonludethe bakgroundresultswiththe analogueofTheorem 2.5 fortype

IItreesandtwopropositionsthatwillbeusedinprovingthemainresult.

Theorem 2.9. [9,Th.1℄Aweightedtree

T

isof typeIIiateveryvertex

T

has

auniquePerronbranh. Ifthe harateristiverties,

i

and

j

,of

T

arejoinedby an

edge ofweight

θ

,thenthereexistsanumber

0

< γ <

1

,suhthat

ρ

(

M

i→j,T

γ

θ

J

) =

ρ

(

M

j→i,T

1

γ

θ

J

)

, and

µ

(

T

) =

1

ρ

(

M

i→j,T

γ

θ

J

)

=

1

ρ

(

M

j→i,T

1

−γ

θ

J

)

,

whereJdenotes an allonesmatrix.

Proposition2.10. [8,Cor. 1.1℄Theharateristivertiesof

T

v

ω

lieonthe path

between theharateristivertiesof Tand

u

.

Proposition 2.11. [12, Claim 3.2℄ Let Tbea tree. Let

{

i

k

, j

k}

beedges in T

withweights

α

k

,for

k

= 1

,

2

,suhthatthepathfrom

i

1

to

j

2

ontains

j

1

and

i

2

,and let

0

< γ

1

, γ

2

<

1

. Then

ρ

(

M

j

1

→i

1

,T

γ

1

α

1

J

)

< ρ

(

M

j

1

→i

1

,T

)

< ρ

(

M

j

2

→i

2

,T

γ

2

α

2

J

)

.

3. Assigninganarbitrarilylargeweighttoapendantedgeofatree. In

thissetionweonsidertheasewhere

T

isatreeand

u

isapendantvertexof

T

e

where

e

=

{

v, u

}

and

v

T

.

In some sense the question in this ase may be onsidered asa speial ase of

thedisussion in [12℄. Todo this,

{

u

}

isto beonsidered asa "treewith algebrai
(5)

Ourdisussionisbasedontheanalysisofthelimitsofthebottlenekmatriesof

T

v

ω

when

ω

inreasesto

;namely

M

v,T

v

ω

=

M

v,T

1

ω

,

M

u,T

v

ω

= (

M

v,T

(0)) +

1

ω

J

andif

s

=

v

isavertexof

T

,

M

s,T

v

ω

=

M

s,T

M

(

v

)

M

(

v

)

t

m

vv

+

ω

1

,

where

M

(

v

)

istheolumnof

M

s,T

orrespondingto

v

and

m

vv

isthediagonalentry

of

M

s,T

, orresponding to

v

. In partiular, for all the branhes of

T

at

s

that do

not ontain

v

, the diagonal bloks of

M

s,T

v

ω

and of

M

s,T

are the same. Denoting

lim

ω→∞

M

s,T

v

ω

by

M

s,T

v

weseethatfor

s /

e

M

s,T

v

=

M

s,T

M

(

v

)

M

(

v

)

t

m

vv

(3.1)

and

M

v,T

v

=

M

u,T

v

=

M

v,T

(0)

.

(3.2)

Thereadershouldnotbeonfusedbythefatthat

T

v

denotesafamilyoftrees

while

M

s,T

v

denotesasinglematrix(upto permutationsimilarity).

Example3.1.

1

/

2

a

@

@

@

@

@

@

@

c

1

v

ω

u

1

/

2

b

~

~

~

~

~

~

~

M

v,T

v

=

M

u,T

v

=

3 1

1 0

1 3

1 0

1 1

1 0

0 0

0 0

,

M

c,T

v

=

2 0

0 0

0 2

0 0

0 0

1 1

0 0

1 1

(6)

M

a,T

v

=

M

b,T

v

=

4

2 2

2

2

2 2

2

2

2 3

3

2

2 3

3

.

Remark 3.2. Thematries

M

s,T

v

are ofourse singular, but theydo ontain

informationon

lim

ω→∞

µ

(

T

v

ω

)

.

As in theaseofnonsingularbottlenek matrieswe allthe diagonalbloks of

M

s,T

v

whosespetralradiusismaximal,Perronbloks. Theorrespondingbranhes

of

T

v

ω

donotdependon

ω

;theywillbealledthePerronbranhesofthefamily

T

v

.

Lemma 3.3. If

M

s,T

v

hasmorethanonePerronblok, then

lim

ω→∞

µ

(

T

v

ω

) =

1

ρ

(

M

s,T

v

)

.

Proof. Considertheprinipal submatrix

L

s,T

v

ω

obtainedfromtheLaplaian

ma-trixof

T

v

ω

bydeleting therowandolumn orrespondingto

s

. Then

M

s,T

v

= lim

ω→∞

(

L

s,T

v

ω

)

1

.

By[7,Th. 4.3.15℄for

r

=

n

1

, k

= 1

and

k

= 2

,

λ

1

(

L

s,T

v

ω

)

µ

(

T

v

ω

)

λ

2

(

L

s,T

v

ω

)

,

so

lim

ω→∞

λ

1

(

L

s,T

v

ω

)

ω→∞

lim

µ

(

T

v

ω

)

ω→∞

lim

λ

2

(

L

s,T

v

ω

)

,

Sine

M

s,T

v

hasatleasttwoPerronbloksweobtain

lim

ω→∞

λ

2

(

L

s,T

v

ω

) = lim

ω→∞

λ

1

(

L

s,T

ω

v

) =

ρ

(

M

s,T

v

)

.

Remark 3.4. Ifthere existsan

ω

0

suh thattwoofthePerronbloksof

M

s,T

v

arePerronbloksof

M

s,T

v

ω

for

ω

ω

0

then

λ

2

(

L

s,T

v

ω

) =

λ

1

(

L

s,T

ω

v

)

for

ω

ω

0

.

Lemma 3.5. Let

s

be a vertex of

T

. Suppose

M

s,T

v

has at least two Perron

bloks andlet

t

beanother vertexof

T

. Then

ρ

(

M

t,T

v

(7)

Proof. Byassumption, thefamily

T

v

has atleast twoPerron branhesat

s

, so

oneofthem,say

s

x

,doesnotontain

t

. Let

t

s

bethebranhat

t

thatontains

s

. Thenitontainsthebranh

s

x

,andweobtain

ρ

(

M

t,T

v

)

ρ

(

M

t→s,T

v

)

> ρ

(

M

s→x,T

v

) =

ρ

(

M

s,T

v

)

,

wherethestritinequalityfollowsfrom [1,Cor. 2.1.5℄andthefat that

M

s→x,T

v

is

asubmatrixof

M

t→s,T

v

,whihispositive.

Corollary3.6. Thereisatmost onevertex, say

c

,suhthat

M

c,T

v

has more

thanonePerronblok.

Definition 3.7. Intheasethatthere isavertex

c

suhthat

M

c,T

v

hasmore

thanonePerronblok,wewillsaythatthefamilyoftrees

T

v

isatrii(treeininnity)

oftypeI. Ifnosuh

c

existswesaythat

T

v

isatriioftypeII.

Remark 3.8.

(a)If thetrees

T

v

ω

are oftypeI

c

for allsuientlylarge

ω

, then thefamily

T

v

isatriioftypeI

c

(andalsoatypeI treeat innitywithharateristivertex

c

). In

otherwords,if

T

v

isatriioftypeII,thenforall

ω

largeenough,

T

v

ω

aretreesoftype

II.

(b)Supposethetrees

T

v

ω

areoftypeII

p,q

forallsuientlylarge

ω

,thenbythe

representationof

L

ω

intheproofofTheorem1.1 andbyTheorem2.1,

{

p, q

}

annot

bethependantedge

{

v, u

}

.

() It is possible that

T

v

ω

are of type II for all suiently large

ω

(so

T

v

is a

typeII treeat innity) but

T

v

ω

is atriiof typeI;see Lemma3.10and Subase 4of

Example3.13in thefollowingdisussion.

Remark3.9. TheproofofLemma3.5showsthatif

T

isatreeoftypeIwitha

harateristivertex

c

, thenforanyothervertex

s

of

T

ρ

(

M

s,T

)

> ρ

(

M

c,T

)

.

(ThishasalreadybeenestablishedinProposition2of[9℄.)

ConsiderTheorem2.9 where

T

v

ω

isoftypeII

i,j

andtheweightoftheedge

{

i, j

}

is

θ

. Thenforevery

ω

(suientlylarge)there existanumber

γ

ω

,between0and1,

suhthat

µ

(

T

ω

v

) =

1

ρ

(

M

i→j,T

v

ω

γ

ω

θ

J

)

=

1

ρ

(

M

j→i,T

v

ω

1

−γ

ω

θ

J

)

.

Whathappenstothethenumber

γ

ω

when

ω

goesto

? Welaimthat

lim

ω→∞

γ

ω

exists. Indeed,oneofthebranhesorrespondingto

M

i→j,T

v

ω

and

M

j→i,T

v

ω

doesnot

ontain

u

. Suppose it is the seond, so

M

j→i,T

v

ω

=

M

j→i,T

. The numbers

µ

(

T

v

ω

)

inreasetoalimit,seeTheorem1.1,sothenumbers

ρ

(

M

j→i,T

v

ω

1

−γ

ω

θ

J

)

dereaseto

alimit,whihmeansthatthenumbers1-

γ

ω

inreasetoalimit. Thislimitisatmost

1sine

0

< γ

ω

<

1

.

Lemma 3.10. If the trees

T

v

ω

are of type II, with harateristi verties

i, j

for

ω

0

< ω <

,andif

γ

= lim

ω→∞

γ

ω

= 0

,where

ρ

(

M

i→j,T

v

ω

γ

ω

θ

J

) =

ρ

(

M

j→i,T

ω

v

1

−γ

ω

(8)

and

θ

isthe weightof theedge

{

i, j

}

,then

T

v

isatrii oftypeI

i

. Similarly,if

γ

= 1

then

T

v

isatrii oftype I

j

.

Proof.

M

j→i,T

v

= (

M

i

j,T

v

(0)) +

1

θ

J

so if

γ

= 0

, then

ρ

(

M

i→j,T

v

) =

ρ

(

M

j→i,T

v

1

θ

J

) =

ρ

(

M

i

j,T

v

)

so

T

e

isatriioftypeI

i

.

Corollary 3.11. If the trees

T

v

ω

are of type II and if

T

v

is atrii of type II, then

0

< γ

= lim

ω→∞

γ

ω

<

1

.

Remark 3.12. Thetree

T

anbeatree oftypeI with aharateristivertex,

say

c

,or atreeoftypeII.Intherstasethereare3possibilities:

1

T

v

is atriioftypeI

c

,

2

T

v

is atriioftypeI

s

, where

s

=

c

,

3

T

v

is atriioftypeII.

Intheseond asethere aretwopossibilities:

4

T

v

is atriioftypeI

s

forsome

s

,

5

T

v

is atriioftypeII.

Thefollowingexampledemonstratesthatallvesubasesarepossible.

Example 3.13.

Subase1

x

@

@

@

@

@

@

@

c

1

v

ω

u

x

~

~

~

~

~

~

~

0

< x

1

2

.

Here

M

c,T

v

ω

=

1

/x

0

0

0

0

1

/x

0

0

0

0

1

1

0

0

1 1 +

ω

1

,

sofor

x <

1

2

, T

v

isatreeoftypeI withaharateristivertex

c

andfor

x

=

1

2

,

itis onlyatriioftype

I

c

.

Anotherexampleiswhen

c

=

v

x

@

@

@

@

@

@

@

c

ω

u

x

~

~

~

~

~

~

~

(9)

Subase2

x

@

@

@

@

@

@

@

c

10

s

1

v

ω

u

x

~

~

~

~

~

~

~

where

ρ

1

/x

+ 0

.

1

0

.

1

0

.

1

0

.

1

1

/x

+ 0

.

1

0

.

1

0

.

1

0

.

1

0

.

1

= 2

.

Subase3

x

@

@

@

@

@

@

@

c

1

v

ω

u

x

~

~

~

~

~

~

~

1

2

< x

1

,

or

1

c

1

v

ω

.

Subase4

1

x

s

1

v

ω

, ρ

1 + 1

/x

1

/x

1

/x

1

/x

= 2

.

Subase5

Herewesuggest3examples:

x

@

@

@

@

@

@

@

1

ω

x

~

~

~

~

~

~

~

x >

1

,

x

1

ω

(10)

1

@

@

@

@

@

@

@

v

ω

u

x

~

~

~

~

~

~

~

x

= 1

.

Wearenowreadytostateandprovethemainresult.

Theorem 3.14. Let

T

beatree. Then

lim

ω→∞

µ

(

T

v

ω

) =

µ

(

T

)

(3.3)

if andonlyif

(a)

T

isatreeof typeIwith harateristi vertexsay

c

,

and

(b)

ρ

(

M

c→u,T

v

)

ρ

(

M

c,T

) =

1

µ

(

T

)

.

Proof. We provethetheorem byonsidering the vesubases of Remark 3.12,

andshowingthat(3), (a)and(b)holdinSubase1andonlyinthisase,i.e. ifand

onlyif

T

and

T

v

areoftypeI

c

forsomevertex

c

.

Subase 1: Obviously (a) holds. From (1) and (2) follows that

ρ

(

M

c,T

v

ω

)

ρ

(

M

c,T

)

. Butif

T

and

T

v

ω

areoftype

I

c

,thenequalityholds. Thus

ρ

(

M

c→u,T

v

)

ρ

(

M

c,T

)

,

proving(b),and

µ

(

T

) =

1

ρ

(

M

c,T

)

=

1

ρ

(

M

c,T

v

ω

)

= lim

ω→∞

µ

(

T

v

ω

)

,

proving(3). ThisompletestheproofinSubase1.

If

T

is atreeof type

I

c

and(b) holds, then itfollowseasily that

T

v

ω

is atrii of

typeI

c

. Therefore(b) doesnot hold in Subases 2and 3,while (a) obviouslydoes

nothold in Subases4 and5. Nowwewill provethat (3) doesnothold in thelast

foursubases.

Subase2: Wehaveto showthat(3)doesnothold. Indeed

µ

(

T

) =

1

ρ

(

M

c,T

)

>

1

ρ

(

M

s,T

)

=

1

ρ

(

M

s,T

v

ω

)

,byLemma3.5

= lim

ω→∞

µ

(

T

v

ω

)

, byLemma 3.3.

Subase3: ByRemark 3.8(a)thetrees

T

v

ω

areforsuientlylarge

ω

oftype

II

,
(11)

3.8(b)itdoesnotdependon

ω

. Withoutlossofgenerality,

p

liesonthepathbetween

q

and

c

.

ByProposition2.10theverties

p

and

q

lie onthepathbetween

c

and

u

. Let

i

beaneighborof

c

suhthat

c, p

and

q

lieonthepathbetween

i

and

u

and

c

i

isa

Perronbranhof

T

. Thenweobtain

lim

ω→∞

µ

(

T

v

ω

) = lim

ω→∞

1

ρ

(

M

q→p,T

v

ω

γ

ω

θ

J

)

,byTheorem2.9,

= lim

ω→∞

1

ρ

(

M

q→p,T

γ

θ

ω

J

)

,sine

q

p

isin

T

,

=

1

ρ

(

M

q→p,T

γ

θ

J

)

,where

0

< γ <

1

,byCorollary3.11,

<

1

ρ

(

M

c→i,T

)

,byProposition2.11,

=

1

ρ

(

M

c,T

)

, sine

c

i

isaPerronbranhof

T,

=

µ

(

T

)

,sine

T

isoftype

I

c

,

so(3)doesnothold.

Subase4: Here againwehaveto showthat (3)doesnothold. Suppose

T

is of

type

II

ij

, where

j

lies on thepathfrom

i

to

u

. Let

θ

and

γ

beasin Theorem 2.9.

Sine

T

v

ω

is atriioftype

I

s

, thebyProposition 2.10,

s

lies onthepathfrom

i

to

u

. Therefore

lim

ω→∞

µ

(

T

v

ω

) = lim

ω→∞

1

ρ

(

M

s→i,T

v

ω

)

= lim

ω→∞

1

ρ

(

M

s→i,T

)

1

ρ

(

M

j→i,T

)

<

1

ρ

(

M

j→i,T

γ

θ

J

)

=

µ

(

T

)

.

Subase5: HereTisof,say,typeII

ij

andfor

ω

largeenough,

T

v

ω

areof,say,type

II

pq

, whereby Proposition 2.10,we maytake, withoutlossofgenerality,

p

and

q

to

liebetween

i

and

q

. Let

θ

and

γ

beas in Theorem2.9 forthe edge

{

i, j

}

in

T

and

let

θ

ˆ

and

γ

ω

betheorrespondingpairfortheedge

{

p, q

}

in

T

v

ω

. Observethat

θ

ˆ

does

notdependon

ω

byRemark3.8(b). Let

γ

ˆ

= lim

ω→∞

γ

ω

. ByCorollary3.13wehave

0

< γ <

1

. Now

lim

ω→∞

µ

(

T

v

ω

) = lim

ω→∞

1

ρ

(

M

q→p,T

v

ω

γ

ω

ˆ

θ

J

)

= lim

ω→∞

1

ρ

(

M

q→p,T

γ

θ

ˆ

ω

J

)

=

1

ρ

(

M

q→p,T

γ

ˆ

θ

ˆ

J

)

<

1

ρ

(

M

j→i,T

γ

θ

J

)

=

µ

(

T

)

,

wheretheinequalityfollowsfromProposition2.11.

Aknowledgments. We are indebted to Mr. Felix Goldberg [5℄ for suggesting

Example1.5 whih showsthat

G

doesnothaveto beatree for

lim

ω→∞

µ

(

G

v

(12)

tohold. Thequestionofwhen does

lim

ω→∞

µ

(

G

v

ω

) =

µ

(

G

)

, when

G

isageneralgraph,

seems to be muh more diult than the one in the ase that

G

is a tree. We

are grateful to thereferee for his orherimportant remarks and forsuggestingthat

Propositions 1.3and1.4, as wellasLemma 2.2of[2℄, maybeusefulin dealingwith

thegeneralase.

REFERENCES

[1℄ A.Bermanand R.J.Plemmons.NonnegativeMatriesinthe MathematialSienes,SIAM,

Philadelphia,1994.

[2℄ S.FallatandS.Kirkland.Extremizingalgebraionnetivitysubjettographtheoreti

on-straints. EletroniJournalofLinearAlgebra,3:4874,1998.

[3℄ M.Fiedler.Algebraionnetivityofgraphs.CzehoslovakMathematialJournal,23: 298305,

1973.

[4℄ M.Fiedler.Apropertyofeigenvetorsofnonnegativesymmetrimatriesanditsappliations

tographtheory.CzehoslovakMathematialJournal,25: 619633,1975.

[5℄ F.Goldberg.Privateommuniation.

[6℄ R.Grone,R.Merris,and V.Sunder.TheLaplaianspetrumofagraph. SIAMJournal on

MatrixAnalysisandAppliations,11: 218-238,1990.

[7℄ R.J.HornandC.R.Johnson.MatrixAnalysis.CambridgeUniversityPress,Cambridge,1985.

[8℄ S.Kirklandand M. Neumann.Algebrai onnetivity ofweighted trees underperturbation.

LinearandMultilinearAlgebra,42: 187203,1997.

[9℄ S.Kirkland,M.Neumann,andB.Shader.CharateristivertiesofweightedtreesviaPerron

values.LinearandMultilinearAlgebra,40: 311325,1996.

[10℄ S.Kirkland, M.Neumann,and B.Shader. Distanesinweightedtrees andgroup inverse of

LaplaianMatries. SIAM Journal on MatrixAnalysis and Appliations, 18: 827841,

1997.

[11℄ R.Merris.Charateristivertiesoftrees.LinearandMultilinearAlgebra,22: 115131,1987.

[12℄ J.J.MolitiernoandM.Neumann.Thealgebraionnetivityoftwotreesonnetedbyanedge

Referensi

Dokumen terkait

Democratization and decentralization process indeed provide more opportunities for local economic brokers and local strongmen to fill important political and bureaucratic posts

Berdasarkan hasil penelitian dan setelah dilakukannya pengujian alpha dan betha terhadap sistem informasi pengendalian dan perencanaan persediaan bahan baku di Maika-Etnik,

publik dapat mengganti pemerintahan dengan tanpa mengubah aturan dasarnya dalam penyelenggaraan pemerintahan tersebut, penyelenggaraan sistem pemerintahan demokrasi bertujuan

Berkenaan dengan adanya proses updating dan migrasi data Sistem Pengadaan Secara Elektronik (SPSE) dari versi 3.0 ke versi 4.0 pada Layanan Pengadaan Secara

The research aim to answer how overall and individual four source models (source credibility model, source attractiveness model, product match-up model, and meaning

Tujuan perancangan media informasi ini untuk memberitahu unsur – unsur penting dalam kegiatan Roda de Capoeira yang belum banyak diketahui anggota baru yaitu musik,

Terkait hasil pengumuman pemenang tersebut di atas, kepada seluruh peserta lelang yang telah memasukkan penawaran kepada Pokja Paket Pekerjaan Supervisi Pengerukan Alur Pelayaran

Sementara diplomasi bencana alam Indonesia dalam bentuk inter-state atau antar negara dalam isu bencana alam yang telah berhasil dilaksanakan adalah berbagai kerjasama yang