• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
7
0
0

Teks penuh

(1)

INEQUALITIES FOR J−CONTRACTIONS INVOLVING THE α−POWER MEAN

G. SOARES

CM-UTAD, UNIVERSITY OFTRÁS-OS-MONTES ANDALTODOURO

MATHEMATICSDEPARTMENT

P5000-911 VILAREAL

[email protected]

Received 22 June, 2009; accepted 14 October, 2009 Communicated by S.S. Dragomir

ABSTRACT. A selfadjoint involutive matrixJ endowsCn

with an indefinite inner product[·,·]

given by[x, y] :=hJ x, yi,x, y∈Cn

.We present some inequalities of indefinite type involving theα−power mean and the chaotic order. These results are in the vein of those obtained by E. Kamei [6, 7].

Key words and phrases: J

−selfadjoint matrix, Furuta inequality,J−chaotic order,α−power mean.

2000 Mathematics Subject Classification. 47B50, 47A63, 15A45.

1. INTRODUCTION

For a selfadjoint involution matrix J, that is, J = J∗ and J2 = I, we consider Cn with

the indefinite Krein space structure endowed by the indefinite inner product [x, y] := y∗Jx,

x, y ∈ Cn. LetM

n denote the algebra ofn×ncomplex matrices. TheJ−adjoint matrixA#

ofA ∈Mnis defined by

[A x, y] = [x, A#y], x, y Cn,

or equivalently,A# =JAJ. A matrixA M

nis said to beJ−selfadjoint ifA# =A, that is,

ifJAis selfadjoint. For a pair of J−selfadjoint matricesA, B, the J−order relationA ≥J B

means that[Ax, x]≥ [Bx, x], x∈ Cn, where this order relation means that the selfadjoint

ma-trixJA−JBis positive semidefinite. IfA,B have positive eigenvalues,Log(A)≥J Log(B)

is called theJ−chaotic order, whereLog(t)denotes the principal branch of the logarithm func-tion. TheJ−chaotic order is weaker than the usualJ−order relationA ≥J B [11, Corollary

2].

A matrix A ∈ Mn is called a J−contraction if I ≥J A#A. If A is J−selfadjoint and I ≥J A, then all the eigenvalues of A are real. Furthermore, if A is a Jcontraction, by a

theorem of Potapov-Ginzburg [2, Chapter 2, Section 4], all the eigenvalues of the productA#A

are nonnegative.

Sano [11, Corollary 2] obtained the indefinite version of the Löwner-Heinz inequality of indefinite type, namely forA, B J−selfadjoint matrices with nonnegative eigenvalues such that

I ≥J A J B, thenI J Aα J Bα, for any0 α 1.The Löwner-Heinz inequality has

(2)

a famous extension which is the Furuta inequality. An indefinite version of this inequality was established by Sano [10, Theorem 3.4] and Bebiano et al. [3, Theorem 2.1] in the following form: LetA, B be J−selfadjoint matrices with nonnegative eigenvalues andµ I ≥J A J B

(orA ≥J B J µ I) for someµ >0. For eachr0,

(1.1) Ar2ApA

r

2 1

q

≥J Ar2BpAr21q

and

(1.2) Br2ApB

r

2 1

q

≥J Br

2BpB

r

2 1

q

hold for allp≥0andq≥1with(1 +r)q≥p+r.

2. INEQUALITIES FORα−POWERMEAN

ForJ−selfadjoint matrices A, B with positive eigenvalues, A ≥J B and0 α 1, the α−power mean ofAandB is defined by

A♯αB = A

1 2

A−12BA− 1 2

α A12.

SinceI ≥J A−12BA− 1

2 (orI ≤J A− 1 2BA−

1

2) theJ−selfadjoint power

A−12BA− 1 2

α

is well defined.

The essential part of the Furuta inequality of indefinite type can be reformulated in terms of

α−power means as follows. If A, B areJ−selfadjoint matrices with nonnegative eigenvalues andµI ≥J AJ Bfor someµ >0, then for allp1andr0

(2.1) A−r1+r

p+rB

p J A

and

(2.2) B−r1+r

p+rA p

≥J B.

The indefinite version of Kamei’s satellite theorem for the Furuta inequality [7] was estab-lished in [4] as follows: If A, B areJ−selfadjoint matrices with nonnegative eigenvalues and

µI ≥J A J B for someµ >0, then

(2.3) A−r

1+r p+rB

p J B J AJ B−r

1+r p+rA

p

for allp≥1andr ≥0.

Remark 1. Note that by (2.3) and using the fact thatX#AX J X#BX for allX M nif

and only ifA≥J B, we haveA1+r J Ar

2BpA

r

2 1+r p+r

and Br2ApB

r

2 1+r

p+r J B1+r

. Applying the Löwner-Heinz inequality of indefinite type, withα= 1

1+r, we obtain

A≥J Ar2BpAr2p+1r

and Br2ApB

r

2 1

p+r

≥J B

for allp≥1andr ≥0.

In [4], the following extension of Kamei’s satellite theorem of the Furuta inequality was shown.

Lemma 2.1. Let A, B be J−selfadjoint matrices with nonnegative eigenvalues and µI ≥J A≥J B for someµ > 0. Then

A−rt+r p+rB

p

≤J Bt and At≤J B−rt+r p+rA

p ,

(3)

Theorem 2.2. Let A, B beJ−selfadjoint matrices with nonnegative eigenvalues andµI ≥J A≥J B for someµ > 0. Then

(2.4) A−r1+r p+rB

p J A−rt+r p+rB

p

1

t

≤J B J AJ B−rt+r p+rA

p

1

t

≤J B−r1+r p+rA

p,

forr ≥0and1≤t≤p.

Proof. Without loss of generality, we may considerµ = 1, otherwise we can replaceAandB

by µ1A and µ1B. Let 1 ≤ t ≤ p. Applying the Löwner Heinz inequality of indefinite type in Lemma 2.1 withα= 1

t, we get

A−r

t+r p+rB

p

1

t

≤J B J AJ B−r t+r p+rA

p

1

t .

LetA1 =AandB1 =A−rt+r p+rB

p

1

t

. Note that

(2.5) A−r1+r

p+rB

p =A−r1+r t+r

A−rt+r p+rB

p=A−r

1 ♯1+t+rrB t 1.

SinceµI ≥J A1 J B1, applying Lemma 2.1 toA1 andB1, witht= 1andp=t, we obtain

A−r1+r p+rB

p

≤J B1 =A−rt+r p+rB

p

1

t .

The remaining inequality in (2.4) can be obtained in an analogous way using the second

in-equality in Lemma 2.1, witht= 1andp=t.

Theorem 2.3. Let A, B beJ−selfadjoint matrices with nonnegative eigenvalues andµI ≥J A≥J B for someµ > 0. Then

A−rt

1 +r p+rB

p

1

t1

≤J A−rt

2 +r p+r B

p

1

t2

and B−rt

1 +r p+r A

p

1

t1

≥J B−rt

2 +r p+r A

p

1

t2

forr ≥0and1≤t2 ≤t1 ≤p.

Proof. Without loss of generality, we may considerµ = 1, otherwise we can replaceAandB

by 1µAand µ1B. LetA1 =AandB1 =A−rt

2 +r p+r B

p

1

t2

. By Lemma 2.1 and the Löwner Heinz

inequality of indefinite type withα = 1

t2,we have B1 ≤

J B J A1 J I. Applying Lemma

2.1 toA1 andB1, withp=t2, we obtain

(2.6) A−r

1 ♯t1 +r t2 +r

Bt2 1 ≤

J Bt1 1 =

A−rt

2 +r p+r

Bp t1

t2 .

On the other hand,

(2.7) A−r

1 ♯t1 +r p+r

Bp =A−r

1 ♯t1 +r t2 +r

A−rt

2 +r p+r

Bp

1

t2

t2

=A−r

1 ♯t1 +r t2 +r

Bt2 1 .

By (2.6) and (2.7),

A−rt

1 +r p+rB

p

≤J A−rt

2 +r p+r B

p t1

t2 .

Using the Löwner-Heinz inequality of indefinite type withα= 1

t1,we have

A−rt

1 +r p+r

Bp

1

t1

≤J A−rt

2 +r p+r

Bp

1

t2 .

(4)

Theorem 2.4. Let A, B beJ−selfadjoint matrices with nonnegative eigenvalues andµI ≥J A≥J B for someµ > 0. Then

A−rt+r p+rB

p

≤J A−r1+r p+rB

pt

≤J Bt≤J At ≤J B−r1+r p+rA

pt

≤J B−rt+r p+rA

p

for0≤t≤1≤pandr≥0.

Proof. By the indefinite version of Kamei’s satellite theorem for the Furuta inequality and since

0≤t≤1, we can apply the Löwner-Heinz inequality of indefinite type withα =t, to get

A−r1+r p+rB

pt

≤J Bt≤J At ≤J B−r1+r p+rA

pt .

Note that

A−rt+r p+rB

p = At−rt t+r

1+r

A−r1+r p+rB

pt 1t

.

Since µI ≥J At, for all t > 0[10] and At J A−r1+r p+rB

pt, applying the indefinite

ver-sion of Kamei’s satellite theorem for the Furuta inequality with A andB replaced by At and

A−r1+r p+rB

pt,respectively, and withrreplaced byr/tandpreplaced by1/t, we have

A−rt+r p+rB

p

≤J A−r1+r p+rB

pt .

The remaining inequality can be obtained analogously.

3. INEQUALITIESINVOLVING THEJ−CHAOTIC ORDER

The following theorem is the indefinite version of the Chaotic Furuta inequality, a result previously stated in the context of Hilbert spaces by Fujii, Furuta and Kamei [5].

Theorem 3.1. Let A, B be J−selfadjoint matrices with positive eigenvalues and µI ≥J A, µI ≥J B for someµ > 0. Then the following statements are mutually equivalent:

(i) Log(A)≥J Log(B);

(ii) Ar2BpA

r

2

r

p+r J Ar, for allp0andr0;

(iii) Br2ApB

r

2

r

p+r J Br, for allp0andr0.

Under the chaotic order Log (A) ≥J Log (B), we can obtain the satellite theorem of the

Furuta inequality. To prove this result, we need the following lemmas.

Lemma 3.2 ([10]). IfA, B areJ−selfadjoint matrices with positive eigenvalues andA ≥J B, thenB−1 J A−1.

Lemma 3.3 ([10]). LetA, BbeJ−selfadjoint matrices with positive eigenvalues andI ≥J A, I ≥J B.Then

(ABA)λ =AB12 B12A2B12λ−1B12A, λ R.

Theorem 3.4 (Satellite theorem of the chaotic Furuta inequality). Let A, B beJ−selfadjoint matrices with positive eigenvalues and µI ≥J A, µI J B for some µ > 0. If Log (A) J

Log (B)then

A−r

1+r p+rB

p J B and B−r

1+r p+rA

p J A

(5)

Proof. LetLog (A) ≥J Log (B). Interchanging the roles ofr and pin Theorem 3.1 from the

equivalence between (i) and (iii), we obtain

(3.1)

Bp2ArB

p

2

p+pr

≥J Bp,

for allp≥0andr ≥0. From Lemma 3.3, we get

A−r2 A

r

2BpA

r

2 1+r p+r

A−r2 =B

p

2

Bp2ArB

p

2

−p+pr p−p1

Bp2.

Hence, applying Lemma 3.2 to (3.1), noting that0≤(p−1)/p≤1and using the Löwner-Heinz inequality of indefinite type, we have

A−r2 A

r

2BpA

r

2 1+r p+r

A−r2 ≤J B

p

2B1−pB

p

2 =B.

The result now follows easily. The remaining inequality can be analogously obtained.

As a generalization of Theorem 3.4, we can obtain the next characterization of the chaotic order.

Theorem 3.5. Let A, B be J−selfadjoint matrices with positive eigenvalues and µI ≥J A, µI ≥J B for someµ > 0. Then the following statements are equivalent:

(i) Log (A)≥J Log (B);

(ii) A−r t+r p+rB

p J Bt, forr0and0tp;

(iii) B−rt+r p+rA

p J At, forr0and0tp;

(iv) A−r

−t+r

p+r B

p J A−t, forr0and0tr;

(v) B−r

−t+r

p+r A

p J B−t, forr0and0δr.

Proof. We first prove the equivalence between (i) and (iv). By Theorem 3.1, Log(A) ≥J

Log(B) is equivalent to Ar2BpA

r

2

r

p+r J Ar, for all p 0 andr 0. Henceforth, since

0≤t≤rapplying the Löwner-Heinz inequality of indefinite type, we easily obtain

Ar2BpA

r

2 −t+r

p+r

=h Ar2BpA

r

2

r p+r

i−t+r

r

≤J Ar−t.

Analogously, using the equivalence between (i) and (iii) in Theorem 3.1, we easily obtain that (i) is equivalent to (v).

(ii)⇔(v) Suppose that (ii) holds. By Lemma 3.3 and using the fact thatX#AX J X#BX

for allX ∈Mnif and only ifA≥J B, we have

Ar2BtA

r

2 ≥J A

r

2BpA

r

2

t+r p+r

= Ar2B

p

2

Bp2ArB

p

2

tp+pr Bp2A

r

2.

It easily follows by Lemma 3.2, that

Bp−tJ Bp2ArB

p

2

pt++rp ,

forr ≥0and0≤t≤p. Replacingpbyr, we obtain (v).

(6)

Remark 2. Consider twoJ−selfadjoint matricesA, Bwith positive eigenvalues andµI ≥J A, µI ≥J B for someµ >0. Let1 t p. Applying the Löwner Heinz inequality of indefinite

type in Theorem 3.5 (ii) withα= 1

t, we obtain thatLog (A)≥

J Log (B)if and only if

A−rt+r p+rB

p

1

t

≤J B.

ConsiderA1 =AandB1 =A−rt+r p+rB

p

1

t

.Following analogous steps to the proof of Theo-rem 2.2 we have

A−r1+r p+rB

p =A−r

1 ♯1+r t+rB

t 1.

SinceB1 ≤J B J µI andA1 J µI, applying Theorem 3.5 (ii) toA1 andB1, witht= 1and p=t, we obtainLog (A1)≥J Log (B1)if and only if

A−r

1+r p+rB

p J A−r t+r p+rB

p

1

t .

Note thatLog (A1) ≥J Log (B1) is equivalent toLog (A) J Log (B), whenr −→ 0+.In

this way we can easily obtain Corollary 3.6, Corollary 3.8 and Corollary 3.8 from Theorem 3.5:

Corollary 3.6. Let A, B be J−selfadjoint matrices with positive eigenvalues and µI ≥J A, µI ≥J B for someµ >0. ThenLog (A)J Log (B)if and only if

A−r1+r p+rB

p J A−rt+r p+rB

p

1

t

≤J B

and A≤J B−rt+r p+rA

p

1

t

≤J B−r1+r p+rA

p,

forr ≥0and1≤t≤p.

Corollary 3.7. Let A, B be J−selfadjoint matrices with positive eigenvalues and µI ≥J A, µI ≥J B for someµ >0. ThenLog (A)J Log (B)if and only if

A−rt

1 +r p+r

Bp

1

t1

≤J A−rt

2 +r p+r

Bp

1

t2

and

B−rt

1 +r p+r

Ap

1

t1

≥J B−rt

2 +r p+r

Ap

1

t2

forr ≥0and1≤t2 ≤t1 ≤p.

Corollary 3.8. Let A, B be J−selfadjoint matrices with positive eigenvalues and µI ≥J A, µI ≥J B for someµ >0. ThenLog (A)J Log (B)if and only if

A−rt+r p+rB

p

≤J A−r1+r p+rB

pt

≤J Bt and At≤J B−r1+r p+rA

pt

≤J B−rt+r p+rA

p ,

forr ≥0and0≤t≤1≤p.

REFERENCES

[1] T. ANDO, Löwner inequality of indefinite type, Linear Algebra Appl., 385 (2004), 73–84.

[2] T.Ya. AZIZOV AND I.S. IOKHVIDOV, Linear Operators in Spaces with an Indefinite Metric, Nauka, Moscow, 1986, English Translation: Wiley, New York, 1989.

[3] N. BEBIANO, R. LEMOS, J. da PROVIDÊNCIA AND G. SOARES, Further developments of Furuta inequality of indefinite type, preprint.

[4] N. BEBIANO, R. LEMOS, J. da PROVIDÊNCIA AND G. SOARES, Operator inequalities for J−contractions, preprint.

[5] M. FUJII, T. FURUTAANDE. KAMEI, Furuta’s inequality and its application to Ando’s theorem,

Linear Algebra Appl., 179 (1993), 161–169.

(7)

[7] E. KAMEI, A satellite to Furuta’s inequality, Math. Japon., 33 (1988), 883–886.

[8] E. KAMEI, Parametrization of the Furuta inequality, Math. Japon., 49 (1999), 65–71.

[9] M. FUJII, J.-F. JIANG AND E. KAMEI, Characterization of chaotic order and its application to

Furuta inequality, Proc. Amer. Math. Soc., 125 (1997), 3655–3658.

[10] T. SANO, Furuta inequality of indefinite type, Math. Inequal. Appl., 10 (2007), 381–387.

Referensi

Dokumen terkait

Balai Pendidikan dan Pelatihan Ilmu Pelayaran Malahayati Aceh Tahun Anggaran 2017. No NAMA PANITIA JABATAN

Penelitian ini bertujuan untuk mengetahui perkembangan Pancasila dan UUD 1945 dalam konteks negara bangsa yang mengalamai perubahan orientasi dari dekolonisasi kepada

Pada hari ini Rabu tanggal Lima bulan Juli tahun Dua Ribu Tujuh Belas (Rabu, 05-07-2017) , bertempat di ruang Pertemuan Kantor Kesyahbandaran dan Otoritas

mempengaruhi kehidupan orang miskin. Dana bergulir, yang merupakan pinjaman modal usaha dari BAZ Kota Bandung, adalah salah satu strategi kebijakan publik dalam

Lebih luas, problem yang membawa dimensi politik identitas juga pernah amat keras dialami bangsa Indonesia dalam beberapa kasus penting.. Kerusuhan etnis Madura-Dayak, kerusuhan

Kelola Profil Keluar Klik link Beranda untuk menuju A01 Klik link Data Produk untuk menuju A02 Klik link Data Kategori untuk menuju A05 Klik link Data Ukuran untuk menuju A06 Klik

Studi ini menjadi sebuah penelitian yang menarik karena tidak hanya menguji faktor internal seorang auditor melainkan juga ingin melihat sejauh mana faktor

Ro sukun karena waqof didahului huruf sukun yang sebelumnya ada kasroh ركذ رحس , Soal 35 : sebutkan ro yang boleh dibaca tafkhim atau tarqiq5. Jawab : ro yang boleh dibaca