• Tidak ada hasil yang ditemukan

BAB III. Metodologi Penelitian

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB III. Metodologi Penelitian"

Copied!
24
0
0

Teks penuh

(1)

34

BAB III

Metodologi Penelitian

Pada bab ini dibahas mengenai metodologi penelitian yang digunakan pada penelitian ini. Secara umum metodologi yang digunakan dalam penelitian ini digambarkan sebagai berikut.

(2)

35

Penelitian ini menggunakan pendekatan secara kuantitatif dengan melakukan studi lapangan di international switching center PT. Indosat, Tbk. Penelitian ini melakukan 7 tahapan untuk menjawab permasalahan dalam penelitian ini, sebagaimana terlihat pada gambar di atas. Mulai dari studi literatur sampai dengan pengambilan kesimpulan. Pada metode penelitian ini juga dimulai analisa perangkat apa saja yang diperlukan pada setiap langkah penelitian ini.

3.1 Studi Literatur

Studi litelatur yang dilakukan dalam penelitian ini diawali dengan pemahaman materi tentang VoIP yang menggunakan protokol pensinyalan SIP (SIP-Based VoIP), materi tentang keamanan sistem SIP-Based VoIP terhadap serangan DOS yang dapat terjadi menggunakan protokol pensinyalan SIP. Selain itu, materi tentang pengukuran performansi kualitas pensinyalan SIP dan juga kualitas layanan jaringan.Kemudian juga dicari penelitian yang terkait dengan penelitian yang dilakukan dengan penjelasan lebih rinci dijabarkan pada subbab 2.1.

3.2 Konfigurasi Interkoneksi SIP IDD

Pada subbab ini dijelaskan mengenai konfigurasi interkoneksi IDD menggunakan sistem SIP-Based VoIP. Berikut dibawah ini gambar konfigurasi interkoneksi IDD sebagai berikut.

(3)

36

Gambar 3.2 Konfigurasi Interkoneksi SIP IDD

Elemen jaringan utama pembentuk interkoneksi SIP pada interkonesi IDD diantaranya adalah Softswitch dan SBC. Softswitch pada penelitian ini adalah Xener Softswitch Class 4 (C4) sebagai core network PT. Indosat, Tbk sedangkan elemen keamanan jaringan yang digunakan adalah Acme Packet Session Border

Controller (SBC).

3.2.1 Xener Softswitch Class 4

Softswitch Xener C4 digunakan di internasional switching center pada PT.

Indosat Tbk berfungsi sebagai switching sebagaimana fungsi switching pada umumnya, sebagai interkoneksi switching internasional untuk melakukan panggilan incoming dan outgoing maupun terminating dari / ke lokal TDM

switching Indosat (domestik) dan Mobile Switching Center (MSC) Indosat, saat

ini interkoneksi sambungan langsung internasional (SLI) melalui Xener softswitch C4, sebagai salah satu SLI yang dimiliki Indosat, memiliki access code +01016 dari nomer domestik atau mobile Indosat.

(4)

37

Gambar 3.1 menggambarkan tentang arsitektur pada Xener softswitch C4. Pada Xener softswitch C4 terdapat 3 lapisan utama server hardware diantaranya adalah server untuk DAS/RAID, server untuk Operation and Maintenance (OAM) dan Database (DB) dan server untuk Routing & Call.

Gambar 3.4 Arsitekur Sistem Xener Softswitch C4 [10]

Secara hardware OAM server dan Call server memiliki sistem redundansi. Masing-masing server terdiri dari 1 hardware active dan 1 hardware stand-by. Fungsi dari masing-masing server adalah sebagai berikut:

 DAS/RAID server, berfungsi menjalankan salah satu entitas fungsional software Xener softswitch yang berfungsi untuk menyimpan informasi subscriber, data ruting, call log, back-up data CDR yang sudah jadi.

 OAM server, berfungsi menjalankan Graphic User Interface (GUI) untuk aktifitas Operation And Maintenance (OAM), mengolah

(5)

data-38

data (alarm, performance) secara real time, melakukan pembentukan CDR dan interkoneksi ke sistem billing.

 Call server, berfungsi untuk melakukan kontrol panggilan (call control) dengan berbagai protocol VoIP (seperti: MGCP, SIP, ISUP, H.323, MEGACO), menjalankan fungsi ruting dan number translation. Secara fungsional sistem arsitektur Xener softswitch C4 terdapat beberapa sub sistem yang saling berkolerasi diantaranya adalah Centralized OAM Control

Sub-System (COCS), Centralized Service Control Sub-System (CSCSS), Media

Gateway Control Sub-System (MGCSS), Session Initiation Protocol Sub-System

(SIPSS) dan H.323 Control Sub-System (H3CSS).

Gambar 3.5 Arsitektur Fungsional Xener Softswitch C4 [10] Berikut dibawah ini fungsi dari masing-masing server pada sub sistem:

Xener Softswitch Xener Softswitch COCSS CSCSS H.323 Registration & Registration & Load

Load--Dist ribution ServerDist ribution Server

Registration & Registration & Load

Load--Dist ribution ServerDist ribution Server

Registration & Registration & Load

Load--Dist ribution ServerDist ribution Server

Call Server

Call Server Call ServerCall Server Call ServerCall Server

Call Server

Call Server Call ServerCall Server

Call Server

Call Server Call ServerCall Server Call ServerCall Server

. . . Scalability Scalability Flexibility MGCP/H.248 SIP RS CS OAM Server OAM Server CDR Server CDR Server Routing Server

Routing Server Interface ServerInterface ServerASAS Feature Server Feature Server Xener Softswitch Xener Softswitch COCSS CSCSS H.323 Registration & Registration & Load

Load--Dist ribution ServerDist ribution Server

Registration & Registration & Load

Load--Dist ribution ServerDist ribution Server

Registration & Registration & Load

Load--Dist ribution ServerDist ribution Server

Call Server

Call Server Call ServerCall Server Call ServerCall Server

Call Server

Call Server Call ServerCall Server

Call Server

Call Server Call ServerCall Server Call ServerCall Server

. . . Scalability Scalability Flexibility MGCP/H.248 SIP RS CS OAM Server OAM Server CDR Server CDR Server Routing Server

Routing Server Interface ServerInterface ServerASAS Feature Server

Feature Server

SIPSS

MGCSS

(6)

39  OAM server:

GUI-based man-machine interface, system start-up and restart control,

system configuration management, sata backup and retrieve, system

statistics and measurement control, traffic management, fault

management, test management, NMS interface (SNMP, CORBA) CCS

interface

 CDR server:

Call event collection and management function, CDR generation

function, Billing mediation server (billing system) interface function,

CDR management, call traffic statistics collection function.

 Routing server:

Number translation function, Routing function.

 AS Interface server:

Application server interface function – PSTN/IP SCP, SIGTRAN

(SCTP/SUA) signaling adaptation function, AIN SSF function

(centralized control functions), application server interface function.

Aktifitas implementasi perancangan penelitian pada Xener softswitch C4 akan dilakukan pada OAM server yang memiliki fungsi sebagai user interface untuk melakukan managemen konfigurasi sistem. Melalui OAM dapat dilakukan

provisioning interkoneksi SIP, membuat routing, numbering / prefix, monitoring

performansi dan lain-lain. MGCSS, SIPSS dan H3CSS merupakan sub-system khusus yang menjalankan kemampuan interoperability terhadap konfigurasi jaringan menggunakan Xener softswitch C4.

(7)

40

Gambar 3.6 Arsitektur Fungsional Xener Softswitch C4 – 2 [10]

Setiap sub sistem MGCSS, SIPSS dan H3CSS memiliki call server yang berbeda walaupun secara hardware masih didalam 1 hardware call server yang sama dengan sistem redudansi, sehingga dalam 1 sistem arsitektur Xener

softswitch C4 dapat mendukung interoperability beberapa protocol (seperti:

MGCP, SIP, ISUP, H.323, MEGACO).

3.2.1.2 SIP Building Blocks

Sistem arsitektur Xener softswitch merupakan suatu kesatuan sub sistem dimana masing-masing sub-sistem terdiri dari beberapa fungsional server yang memiliki fungsinya masing-masing. Perlu diketahui secara khusus tentang SIP

building blocks pada SIP Sub-System (SIPSS) didalam sistem arsitektur Xener

(8)

41

berfungsi berdasarkan protokol SIP untuk mengelola dan mengontrol panggilan, memberikan fungsi interkoneksi ke external SIP network.

Gambar 3.7 SIP Building Blocks Xener Softswitch C4 [10]

SIP building blocks pada SIP Sub-System (SIPSS). SIPSS dibagi dibagi menjadi 2 fungsional yaitu, SIP subscriber dan SIP trunk. Xener softswitch C4 yang digunakan di PT. Indosat Tbk tidak difungsikan SIP subscriber dikarenakan Xener softswitch C4 difungsikan secara penuh untuk trunking tidak difungsikan untuk mennghandle subscriber secara langsung. Fungsi SIP subscriber dijalankan pada sistem yang berbeda menggunakan Xener softswitch Class 5. Untuk interkoneksi SIP pada Xener softwitch C4 mengunakan SIP trunking, berikut dibawah ini tabel fungsional blok SIP trunk didalam SIPSS:

(9)

42

Tabel 3.1 SIP Trunk Block Function [10]

Blocks Function

STDH

SIP Trunk Add, Change Delete Block / Unblock

Un-Registration

Protocol Trace Registration

STRC

Processing Message Register

Registration Message Generation Failure Terminal Authentication

Terminal Location Info Call State Management

STCC

SIP Intermediate Step, Incoming Call Control, Invite Message Processing

Integration between others Call Control Signaling Protocol Trace, Call Trace

Relay Terminal Reserves Management

STLC

SIP Incoming, outgoing Processing Server Issue to be processed for:

-SIP Protocol Message Relay -STRC Interworking

Blok-blok fungsional pada SIP Sub-System yang terdiri dari SIP Trunk Data

Handling (STDH), SIP Trunk Registration Control (STRC), SIP Trunk Call

Control (STCC) dan SIP Trunk-Load Distribution Control (STLC).

3.2.1.3 Interkoneksi SIP Softswitch Xener Class 4

Interkoneksi SIP pada Xener softswitch C4 dilakukan dengan beberapa tahap membuat database interkoneksi SIP pada SIPSS melalui OAM server. Berikut dibawah ini asosiasi data routing SIP yang pada Softswitch Xener C4.

(10)

43

Gambar 3.8 Asosiasi Data Routing Xener Softswitch C4 [6]

Gambar 3.8 adalah diagram perutingan panggilan. Didalam proses merutekan panggilan sebagai fungsi switching pada softswitch, softswitch memiliki beberapa parameter yang saling memiliki asosiasi satu sama lain yang digunakan sebagai proses perutingan panggilan. Parameter parameter yang saling berasosiasi tersebut diantaranya adalah Trunk Entity (TE), Route (RTE),

Originating Number (OGN), Prefix, Special Route Sequence (SSEQ) dan Normal

Route Sequence (RSEQ). Parameter parameter tersebut harus di-define secara

benar agar proses perutingan panggilan tidak gagal dan seluruh panggilan (call) dapat terhubung dengan baik. Berikut dibawah ini definisi dari masing-masing parameter tersebut:

i. Trunk Entity (TE) for IP: a physical connection to the termination

partner. It ties to the IP address and route (RTE).

ii. Route (RTE): a logical connection to the termination partner. iii. Origination Group Number (OGN): is ties with TM name iv. Prefix: a table which contains prefix/numbers

(11)

44

v. Special Route Sequence (SSEQ): to define the percentage and time

based routing

vi. Normal Route Sequence (RSEQ): to define the outgoing route (RTE) Pada penelitian ini interkoneksi SIP yang digunakan adalah interkoneksi SIP menuju partner Taiwan NCI dengan nama entity di sofswitch adalah 1E-TWA-NCIC-SIP-ISBC dengan tipe SIG (signaling) SIP dan IP port 5060. Seperti pada Gambar 3.2 konfigurasi interkoneksi SIP IDD, protokol SIP digunakan untuk interkoneksi softswitch ke SBC. Berikut dibawah ini tabel setting SIP Trunk Entity pada softswitch C4:

Tabel 3.2 SIP Trunk Entity ENT_NAME DOMAI N TYP E COM P

IP_AUTH IP_ADDR IP_POR T RTE TWA-NCI- JKT-ISBC1-10.253.126.3 3 SIP CS1 STATIC_IP_POR T 10.253.126.3 3 5060 188 4

SIP trunk merupakan physical koneksi softswith ke sisi lawan. Physical koneksi ini direpresentasikan dengan alamat IP 10.253.126.33 point to point softwitch dengan SIP trunking disisi lawan dimana alamat IP tersebut merupakan IP

trunking SBC, bukan merupakan direct IP Taiwan NCI. SIP trunk Taiwan NCI

memiliki nomer perutingan / RTE 1884 pada softswitch. Nomer RTE kemudian akan didaftarkan pada distribusi perutingan trunk pada Normal Route Sequence (RSEQ).

(12)

45

Nomer perutingan / RTE adalah logical koneksi untuk setiap trunk. Pada

softswitch masing-masing RTE dimiliki oleh masing-masing trunk / partner /

carrier. pada RTE dapat dibuat manipulasi nomer seperti insert / delete digit

untuk A ataupun B number dan juga setting direction / arah panggilan yang diperbolehkan melalui RTE tersebut. Direction dapat di set sebagai incoming maupun outgoing only ataupun di set sebagai Both (incoming dan outgoing). Berikut dibawah ini taber data setting pada RTE 1884:

Tabel 3.3 Data RTE

RTE NAME SIG CARRIER DIR HUNT SEL INS DEL

1884

1E-TWA-NCIC-SIP-ISBC

SIP

TWA-NCIC

BOTH CIR ASC 00 0

Kemudian prefix / number akan ditujukan ke SIP trunk entity menggunakan perutingan RSEQ. Prefix adalah digit nomer yang akan diarahkan ke suatu trunk. Seluruh prefix / number dikelompokan menggunakan Originating Number (OGN).

Tabel 3.4 Prefix

OGN PFX NUM_TYPE CALL_TYPE SEQ_TYPE SEQ MIN MAX SZ

85 00639 NORM INTL RSEQ 631 7 32 7

101 00639 NORM INTL RSEQ 631 7 32 7

102 00639 NORM INTL RSEQ 631 7 32 7

197 00639 NORM INTL RSEQ 631 7 32 7

Prefix yang menuju ke partner / carrier Taiwan – NCI memiliki 5 digit pertama ‘00639’ dengan tipe panggilan internasional. Sedangkan untuk panggilan nasional

(13)

46

dari partner akan dirutingkan ke masing-masing trunk nasional yang dituju melaui RSEQ yang berbeda.

Gambar 3.9 Normal Route Sequence

Didalam suatu RSEQ bisa terdapat satu atau lebih RTE, pada RSEQ 631 terdapat RTE 1884 menuju ke parter Taiwan – NCI yang akan melalui interkoneksi SBC terlebih dahulu. Pada RSEQ dapat diaktifkan salah satu dari sequential routing,

circular routing dan re-routing. Ketika sequential routing dikonfigurasi,

softswitch akan merutekan panggilan ke RTE pada order paling pertama sampai

RTE tersebut penuh dan kemudian menggunakan RTE order berikutnya dengan catatan seluruh panggilan akan dicoba dirutingkan ke RTE pertama terlebih dahulu.

Gambar 3.10 Softswitch C4 - Sequential routing pada RSEQ [6]

Circular routing, softswitch akanmerutekan panggilan ke semua RTE secara

berurutan. Panggilan pertama akan dirutekan ke RTE pertama, panggilan kedua akan dirutekan ke RTE kedua dan seterusnya.

(14)

47

Gambar 3.11 Softswitch C4 - Circular routing pada RSEQ [6]

3.2.2 Acme Packet Session Border Controller

Acme Packet Session Border Controller (SBC) ditempatkan di perbatasan (border) jaringan packet based menggunakan protokol SIP untuk layanan keamanan interkoneksi International Direct Dialing (IDD) PT. Indosat Tbk. SBC melakukan fungsi kontrol yang diperlukan didalam interkoneksi sesi signaling dan kontrol media.

SBC difungsikan sebagai SIP Back-to-Back User Agent (B2BUA) yang berarti bahwa SBC dioperasikan sebagai source dan destination dari seluruh

signaling dan media yang masuk ke core network dari IDD maupun yang keluar

dari core network menuju ke IDD dimana antara core network Indosat dengan masing-masing partener IDD memiliki perbedaan domain network, core network Indosat dalam hal ini adalah Xener softswtich C4. SBC sebagai B2BUA yang dioperasikan tersebut merupakan model layanan sebagai peering.

(15)

48

Gambar 3.12 SBC Sebagai Back to Back User Agent [1]

B2BUA merupakan sebuah logical entity. B2BUA yang menerima dan memproses SIP request seperti sebagai User Agent Server (UAS). B2BUA bertindak sebagai User Agent Client (UAC) pada saat mengirim request. SBC sebagai B2BUA memelihara dialog state dan berpartisipasi terhadap seluruh

request yang dikirim. SBC sebagai SIP B2BUA melakukan terminasi SIP session

dan melakukan re-originate session tersebut sebagai session baru yang kemudian di routing-kan melalui SBC. Untuk beberapa session, memungkinkan dilakukan

Network Address and Port Translation (NAPT) dan re-write SDP agar

memungkinkan apapun session media di routing-kan melalui SBC. SBC menghasilkan call ID baru dan melakukan modifikasi SIP header untuk mencegah agar alamat SIP dan informasi routing core network yang diproteksi oleh SBC tersebut tidak terkirim ke sisi lawan / external peers. [1]

(16)

49

3.2.2.1 Routing Policy [1]

Routing SIP session pada SBC, next-hop dipilih berdasarkan informasi yang

diterima. Routing Policy dapat dibuat sederhana dengan merutekan seluruh panggilan ke salah satu proxy atau merutekan seluruh panggilan dari satu network ke network yang lain. Routing Policy juga dapat dibuat lebih terperinci, menggunakan batasan-batasan untuk mengatur jumlah dan tingkat traffik yang dirutekan ke network tertentu.

Ketika call request diterima, oleh SBC diproses apakah request tersebut datang dari suatu Session Agent. Kemudian dilakukan pengecekan apakah Session

Agent tersebut berhak melakukan panggilan. Kemudian local policy menentukan

kemana panggilan tersebut selanjutnya dikirimkan. Session Agent, Session Agent

Group dan Local Policy dapat digunakan untuk mendefinisikan perutingan.

Namun, mendefinisikan Session Agent atau Session Agent Group tidak diharuskan. Realm dapat juga digunakan untuk penentuan perutingan ketika SBC berkomunikasi dengan beberapa network elemen melalui satu koneksi.

 Session Agent: Mendefinisikan sebuah endpoint signaling. Sebagai

next-hop signaling yang dapat dikonfigurasi untuk menjalankan

traffic shaping attributes.

 Session Agent Group: Pengelompokan Session Agent.

 Local Policy: Mengindikasikan / menentukan kemana session request, seperti invite message, dirutekan dan diteruskan. Local policy menetapkan preferensi untuk memilih rute satu atas yang lain.

(17)

50

Suatu Session Agent mendefinisikan suatu endpoint signaling. Session Agent adalah next-hop signaling yang dapat dikonfigurasi untuk menjalankan traffic

shaping attributes. Gateway, Softswitch dan Gatekeeper didefinisikan oleh SBC

secara otomatis sebagai Session Agent. Untuk setiap Session Agent, kapasitas

concurrent session dan rate attribute dapat didefinisikan. Session Agent juga

dapat dikelompokan menjadi suatu Session Agent Group. Service element yang termasuk kedalam Session Agent adalah sebagai berikut:

 Softswitch  SIP Proxies  Application Server  SIP Gateway  SIP Endpoint

3.2.2.2 SIP Header Manipulation Rules (HMR) [1]

Pada SBC dilakukan manipulasi SIP header seperti menambahkan, menghilangkan dan merubah SIP header dan elemen-elemen SIP header seperti

header value, header parameter, URI, dan lain-lain. Menggunakan SIP Header

Manipulation Rule pada SBC dapat dilakukan:

1. Delete header berdasarkan pada penyesuaian header name

2. Delete header berdasarkan pada penyesuaian header name dan header

value

3. Menambahkan header

(18)

51

SIP header dan parameter manipulation rule dapat digunakan pada arah inbound dan outbound pada SIP interface, Session Agent maupun Realm.

3.3 Implementasi Interkoneksi SIP IDD Pada SBC

Subbab ini menjelaskan langkah-langkah implementasi layanan keamanan interkoneksi SIP pada SBC didalam konfigurasi interkoneksi SIP IDD secara keseluruhan yang digambarkan pada Gambar 3.2. Adapun asosiasi interkoneksi SIP pada Xener softswitch C4 sebagai core network sumber perutingan panggilan sudah dijelaskan seperti pada gambar 3.8. Berikut dibawah ini langkah-langkah implementasi interkoneksi SIP yang akan dilakukan:

1. Membuat Session Agent. 2. Membuat SIP Interface. 3. Membuat Realm. 4. Membuat Local Policy. 5. Membuat SIP Manipulation.

Proses implementasi interkoneksi SIP pada SBC selanjutnya akan dijelaskan secara rinci pada subbab 4.1.

3.4 Perancangan Test Bed Interkoneksi IDD

Sub bab ini akan menjelaskan langkah ke empat pada Gambar 3.1 yang berisikan tentang perancangan test bed untuk interkoneksi IDD. Penulis membuat

(19)

52

terjadi didalam interkoneksi SIP. Gambar dari test bed interkoneksi IDD yang digunakan pada penelitian ini adalah sebagai berikut:

Gambar 3.13 Test Bed Interkoneksi IDD yang Digunakan

SBC menyediakan keamanan jaringan untuk softswitch sebagai core

network dari serangan DOS. Seperti penjelasan yang ditemukan pada penelitian

sebelumnya bahwa serangan DOS dapat membuat node, dalam hal ini softswitch / SIP server, didalam jaringan menjadi unavailable / out of services. Hasil tes bed akan dapat memberikan evaluasi terhadap hasil provisioning pada SBC. Apakah hasil layanan keamanan yang diberikan SBC seperti local policy dan manipulasi SIP yang diterapkan dapat melindungi dari serangan DOS. Alat / perangkat yang digunakan dan terlibat didalam penget qesan ini adalah attack generation software dan monitoring software yang sudah di install didalam PC. Attack generation

(20)

53

invite message sedangkan monitoring software yang digunakan adalah Wireshark

sebagai perangkat lunak untuk melakukan analisa berkas monitoring protokol-protokol SIP.

3.5 Pengujian Layanan Keamanan, Pengukuran Performansi Pensinyalan

SIP dan Kualitas Panggilan

Pada penelitian ini akan dibuat skenario pengujian berdasarkan dari Gambar 3.1. Untuk mendapatkan data-data yang diperlukan dalam penelitian ini, diperlukan pengujian terhadap layanan kemanan (security service), pengukuran terhadap performansi pensinyalan SIP dan juga kualitas panggilan SIP-Based VoIP yang dihasilkan pada interkoneksi IDD.

3.5.1 Pengujian Layanan Keamanan

Pada pengujian layanan keamanan akan berfokus pada aspek Availability didalam interkoneksi SIP. Pada layanan keamanan yang pertama akan membahas tentang topology hiding infrasturktur core network yang dihasilkan setelah diterapkanya SIP Manipulation pada SBC. Kemudian, layanan keamanan yang kedua membahas tentang pengujian serangan DOS yang akan dilakukan dengan cara mengirimkan ilegal invite message ke SBC menggunakan test bed.

Pada pengujian layanan keamanan yang pertama menggunakan panggilan (call) secara real time untuk melakukan analisa terhadap topology hiding infrastruktur core network. Sedangkan, untuk melakukan pengujian seranan DOS, PC yang dapat mengirim serangan diasumsikan sebagai external node seperti

(21)

54

halnya peering partner pada interkoneksi IDD. PC diasumsikan mengetahui alamat IP SBC yang digunakan Indosat untuk interkoneksi SIP.

3.5.2 Pengukuran Performansi Pensinyalan SIP

Pengukuran performansi pensinyalan SIP pada interkoneksi SIP IDD ditujukan untuk mengetahui seberapa bagus performansi softswitch dan SBC didalam menyambungkan panggilan. Berdasarkan standar IETF RFC 6076 tahun 2011 tentang “Basic Telephony SIP End-to-End Performance Metrics”, parameter yang akan digunakan untuk pengukuran performansi interkoneksi SIP IDD didalam penelitian ini adalah sebagai berikut.

1. Session Establishment Effectiveness Ratio (SEER) 2. Session Establishment Ratio (SER)

Untuk mendapatkan data-data pengukuran performansi pensinyalan SIP menggunakan Network Management System (NMS) yang sudah terintegrasi dengan Call Detail Record (CDR) dari softswitch seperti pada Gambar 3.2. Batas minimum yang digunakan PT. Indosat untuk parameter SEER adalah 98% sedangkan batas minimum untuk parameter SER adalah 20%. Adapun hasil prosentase SEER dan SER diperoleh dengan model perhitungan sebagai berikut:

(22)

55

3.5.3 Pengukuran Kualitas Panggilan

Setelah pengujian performansi pensinyalan SIP selanjutnya adalah mengukur kualitas panggilan yang dihasilkan setelah terbentuknya pensinyalan panggilan melalui interkoneksi SIP IDD. Hasil dari pengukuran tersebut akan memberikan informasi kualitas panggilan (session / call) yang terjadi.

Parameter pengukur kualitas panggilan yang digunakan pada penelitian ini berdasarkan standar ITU-T G.107 dan G.10 yaitu, R-Factor dan Mean Opinion

Score (MOS). Menurut standarisasi ITU-T G.10, Mean Opinion Score (MOS)

adalah nilai-nilai yang telah ditetapkan, dan pengguna menetapkan pendapat mereka mengenai kualitas penggilan yang digunakan baik untuk percakapan atau untuk mendengarkan materi pembicaraan. Namun, saat ini partisipasi pengguna untuk memberikan pendapat tidak lagi dibutuhkan untuk menentukan kualitas dari panggilan suara (audio).

MOS adalah tolak ukur yang bersifat subjektif. Pengukuran kualitas panggilan VoIP tidak cukup hanya menggunakan parameter MOS, selain MOS,

R-Factor adalah alternatif parameter lain untuk mengukur kualitas panggilan

VoIP. R-factor dihitung dengan mengevaluasi persepsi pengguna dan juga faktor-faktor objektif yang berdampak kepada sistem VoIP. R-Factor memiliki skala 0 – 120 disisi lain MOS memiliki skala 1 – 5. Tabel dibawah ini adalah nilai / skala MOS dan R-Factor yang merepresentasikan tingkat penilaian pengguna didalam pengukuran kualitas panggilan sebagai berikut:

(23)

56

Tabel 3.5 MOS dan R-Factor

Pada penelitian ini digunakan network analyzer yaitu SD Reporter yang dapat memberikan pengukuran kualitas panggilan berdasarkan parameter MOS dan

R-Factor untuk mengetahui seberapa tingkat kepuasan pelanggan dalam menilai

kualitas panggilan yang dihasilkan, dengan cara mengolah data Call Detail

Record (CDR) panggilan yang berlangsung. Seperti pada Gambar 3.2 SD

Reporter yang digunakan telah terintegrasi dengan Call Detail Record (CDR) dari SBC.

3.6 Pembahasan Hasil

Pada langkah ke enam dari Gambar 3.1, hasil pengujian dan kualitas pengukuran yang diperoleh pada penelitian ini akan dijabarkan sebagai jawaban dari permasalahan pada penelitian ini yaitu tentang layanan keamanan, performansi pensinyalan dan kualitas panggilan melalui interkoneksi SIP IDD. Kemudian juga akan dicoba dijabarkan pembahasan hasil yang didapat dengan penelitian terkait.

(24)

57

3.7 Kesimpulan dan Saran

Kesimpulan dan saran dari penelitian ini akan dibahas lengkap pada bab 5. Kesimpulan merupakan hasil yang diperoleh dari penelitian ini, sedangkan saran adalah penelitian lebih lanjut yang dapat dilakukan dari penelitian ini.Kesimpulan dan saran merupakan langkah terkhir pada penelitian ini sebagaimana pada Gambar 3.1.

Gambar

Gambar 3.1 Metodologi penelitian
Gambar 3.2 Konfigurasi Interkoneksi SIP IDD
Gambar  3.1  menggambarkan  tentang  arsitektur  pada  Xener  softswitch  C4.
Gambar 3.5 Arsitektur Fungsional Xener Softswitch C4 [10]
+7

Referensi

Dokumen terkait

Setelah menempuh mata kuliah ini, mahasiswa mampu menerapkan dan menguasai konsep dasar analisis survival dalam melakukan inferensi pada bidang ilmu kehidupan

• Hanya satu proses yang boleh berjalan (executing) dalam monitor pada

Jarak antara terminal penumpang dan landasan parkir dari garis landasan pacu untuk berbagai variasi tinggi bangunan, 1 : 7 = permukaan imajinatif yang sebaiknya tidak tertutup

RSIA Permata Bunda pengolahan data pasien rawat inap telah dilakukan komputer tetapi pengunaan sarana komputer tidak dilakukan dengan secara maksimal sehingga hasil

Turbin angin cross-flow berasal dari konsep turbin air banki dapat menjadi alternatif untuk mengekstrak energi potensial angin menjadi energi listrik.Turbin cross-flow

Meningkatnya konsentrasi ambien menyebabkan meningkatnya dampak pencemaran pada kesehatan manusia dan nilai ekonomi dari gangguan kesehatan tersebut (Gambar 4 dan Gambar 5).. Gambar

Surat Keputusan Pembetulan adalah surat keputusan yang membetulkan kesalahan tulis, kesalahan hitung, dan/atau kekeliruan dalam penerapan ketentuan tertentu dalam peraturan

Lampiran 29 Struktur ekonomi produk domestik regional bruto (PDRB) Bodetabek menurut lapangan usaha 1999 (%) Lapangan Usaha.