• Tidak ada hasil yang ditemukan

DAFTAR PUSTAKA

N/A
N/A
Protected

Academic year: 2023

Membagikan "DAFTAR PUSTAKA"

Copied!
5
0
0

Teks penuh

(1)

DAFTAR PUSTAKA

[1] H. Widowati, “Indonesia Produsen Nanas Terbesar ke-9 di Dunia,” Databoks, 2019.

https://databoks.katadata.co.id/datapublish/2019/06/05/indonesia-produsen-nanas- terbesar-ke-9-di-dunia (accessed Jul. 19, 2021).

[2] A. Syauqi and S. S. Inasari, “Pemanfaatan Limbah Kulit Nanas (Ananas comosus L.) Menjadi Bioetanol dengan Penambahan Ragi (Saccharomyces cerevisiae) yang Berbeda,” Bul. LOUPE, vol. 16, no. 02, pp. 67–68, 2020, Accessed: Jun. 10, 2021.

[Online]. Available: https://media.neliti.com/media/publications/331137-pemanfaatan- limbah-kulit-nanas-ananas-co-42d002f7.pdf

[3] W. Subchan, S. Winarso, and E. Indriyanti, “Decomposition rate of pineapple peel waste by earthworms (Lumbricus rubellus, Hoff.) at different doses and water content Decomposition rate of pineapple peel waste byearthworms (Lumbricus rubellus, Hoff.) at different doses and water content,” IOP Conf. Ser. Earth Environ. Sci, vol. 759, p.

12021, 2021, doi: 10.1088/1755-1315/759/1/012021.

[4] T. Chalchisa and B. Dereje, “From waste to food: utilization of pineapple peels for vinegar production,” MOJ Food Process. Technol., vol. 9, no. 1, pp. 1–5, 2021, doi:

10.15406/mojfpt.2021.09.00254.

[5] S. Wahyuni, “PEMANFAATAN KULIT NANAS (Ananas comosus) SEBAGAI BAHAN BAKU PEMBUATAN CUKA DENGAN PENAMBAHAN Acetobacter aceti,” 2015.

[6] D. I. Santos et al., “Pineapple (Ananas comosus l.) by-products valorization: Novel bio ingredients for functional foods,” Molecules, vol. 26, no. 11, Jun. 2021, doi:

10.3390/MOLECULES26113216.

[7] E. H. Wandono, E. Kusdiyantini, and Hadiyanto, “Analysis of potential bioethanol production from pineapple (Ananas Comosus L. Merr) peel waste Belik District- Pemalang-Central Java,” vol. 2296, p. 20015, 2020, doi: 10.1063/5.0030343.

[8] A. S. Sandika, S. Rezeki Muria, and S. R. Yenti, “FERMENTASI KULIT NANAS MENJADI BIOETANOL MENGGUNAKAN ZYMOMONAS MOBILIS DENGAN VARIASI PEMEKATAN MEDIUM DAN WAKTU FERMENTASI,” JOM

FTEKNIK, vol. 4, no. 1, pp. 1–5, 2017.

[9] A. W. Lubis and J. Maulina, “Pemanfaatan Ekstrak Kulit Nanas (Ananas comosus L.) Dalam Pembuatan Hand Wash Sebagai Antibakteri,” BEST J. (Biology Educ. Sains Technol., vol. 3, no. 1, pp. 70–75, Apr. 2020, doi: 10.30743/best.v3i1.2438.

[10] I. F. Arsyada, D. Rianti, and E. Munadziroh, “Antibacterial activity of mixed pineapple peel (Ananas comosus) extract and calcium hydroxide paste against Enterococcus faecalis,” Dent. J. (Majalah Kedokt. Gigi), vol. 51, no. 1, p. 20, Mar.

2018, doi: 10.20473/J.DJMKG.V51.I1.P20-24.

[11] A. Azizan et al., “Potentially Bioactive Metabolites from Pineapple Waste Extracts and Their Antioxidant and α-Glucosidase Inhibitory Activities by 1H NMR,” Foods 2020, Vol. 9, Page 173, vol. 9, no. 2, p. 173, Feb. 2020, doi: 10.3390/FOODS9020173.

[12] T. Li et al., “Major polyphenolics in pineapple peels and their antioxidant interactions,” Int. J. Food Prop., vol. 17, no. 8, pp. 1805–1817, Sep. 2014, doi:

10.1080/10942912.2012.732168.

(2)

[13] B. B. Gunwantrao, S. K. Bhausaheb, B. S. Ramrao, and K. S. Subhash, “Antimicrobial activity and phytochemical analysis of orange (Citrus aurantium L.) and pineapple (Ananas comosus (L.) Merr.) peel extract,” Ann. Phytomedicine An Int. J., vol. 5, no.

2, pp. 156–160, Dec. 2016, doi: 10.21276/ap.2016.5.2.22.

[14] B. Salehi et al., “Antioxidants: Positive or Negative Actors?,” Biomolecules, vol. 8, no.

124, pp. 1–11, Dec. 2018, doi: 10.3390/BIOM8040124.

[15] M. M. Rashad, A. E. Mahmoud, M. M. Ali, M. U. Nooman, and A. S. Al-Kashef,

“Antioxidant and anticancer agents produced from pineapple waste by solid state fermentation,” Int. J. Toxicol. Pharmacol. Res., vol. 7, no. 6, pp. 287–296, 2015.

[16] S. Rizal, S. U. Nurdin, S. Suharyono, and M. Marniza, “STUDY ON POTENTIALS OF PINEAPPLE SKIN EXTRACT FERMENTED WITH Lactobacillus casei AS A PROBIOTIC BEVERAGE BY IN VIVO,” J. Agroindustri, vol. 10, no. 1, pp. 12–20, May 2020, doi: 10.31186/j.agroindustri.10.1.12-20.

[17] M. Verni, V. Verardo, and C. Rizzello, “How Fermentation Affects the Antioxidant Properties of Cereals and Legumes,” Foods, vol. 8, no. 9, p. 362, Aug. 2019, doi:

10.3390/foods8090362.

[18] S. J. Yang, K.-T. Kim, T. Y. Kim, and H.-D. Paik, “Probiotic Properties and

Antioxidant Activities of Pediococcus pentosaceus SC28 and Levilactobacillus brevis KU15151 in Fermented Black Gamju,” Foods, vol. 9, no. 9, p. 1154, Aug. 2020, doi:

10.3390/foods9091154.

[19] L. P. Sari, “Pembuatan Media Pertumbuhan Bakteri dengan Menggunakan Umbi Ubi Jalar Cilembu (Ipomoea batatas (L.) Lam) untuk Bakteri Lactobacillus acidophilus, Salmonella typhii dan Escherichia coli,” Universitas Sumatera Utara, Medan, 2019.

Accessed: Dec. 12, 2022. [Online]. Available:

https://repositori.usu.ac.id/handle/123456789/25424

[20] S. F. Hatam, E. Suryanto, and J. Abidjulu, “Aktivitas Antioksidan Dari Ekstrak Kulit Nanas (Ananas comosus (L) Merr),” PHARMACON, vol. 2, no. 1, pp. 8–11, Feb.

2013, doi: 10.35799/PHA.2.2013.880.

[21] S. L. Jothy, Z. Zuraini, and S. Sasidharan, “Phytochemicals screening, DPPH free radical scavenging and xanthine oxidase inhibitiory activities of Cassia fistula seeds extract,” J. Med. Plants Res., vol. 5, no. 10, pp. 1941–1947, 2011, Accessed: Jul. 26, 2021. [Online]. Available: http://www.academicjournals.org/JMPR

[22] Y. Martono and S. Martono, “Analisis Kromatografi Cair Kinerja Tinggi untuk

Penetapan Kadar Asam Galat, Kafein dan Epigalokatekin Galat pada Beberapa Produk Teh Celup,” agriTECH, vol. 32, no. 4, Mar. 2013, doi: 10.22146/AGRITECH.9578.

[23] C. Windson, I. Haminiuk, M. Salvador, and V. Plata-Oviedo, “Extraction and

quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents,” J Food Sci Technol, vol. 51, no. 10, pp. 2862–2866, 2014, doi:

10.1007/s13197-012-0759-z.

[24] H. Metrouh-Amir, C. M. M. Duarte, and F. Maiza, “Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens,” Ind. Crops Prod., vol. 67, pp. 249–256, 2015, doi: 10.1016/j.indcrop.2015.01.049.

[25] Q. D. Do et al., “Effect of extraction solvent on total phenol content, total flavonoid

(3)

content, and antioxidant activity of Limnophila aromatica,” J. Food Drug Anal., vol.

22, no. 3, pp. 296–302, Sep. 2014, doi: 10.1016/J.JFDA.2013.11.001.

[26] G. Dhar et al., “Effect of extraction solvents on phenolic contents and antioxidant capacities of Artocarpus chaplasha and Carissa carandas fruits from Bangladesh,” J.

Appl. Biol. Biotechnol., vol. 5, no. 03, pp. 39–44, 2017, doi:

10.7324/JABB.2017.50307.

[27] E. Brglez Mojzer, M. Knez Hrnčič, M. Škerget, Ž. Knez, and U. Bren, “Polyphenols:

Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects,” Molecules, vol. 21, no. 7, 2016, doi: 10.3390/molecules21070901.

[28] R. Hosseinzadeh, K. Khorsandi, and S. Hemmaty, “Study of the Effect of Surfactants on Extraction and Determination of Polyphenolic Compounds and Antioxidant Capacity of Fruits Extracts,” PLoS One, vol. 8, no. 3, p. e57353, Mar. 2013, doi:

10.1371/JOURNAL.PONE.0057353.

[29] S. J. Hur, S. Y. Lee, Y. C. Kim, I. Choi, and G. B. Kim, “Effect of fermentation on the antioxidant activity in plant-based foods,” Food Chem., vol. 160, pp. 346–356, 2014, doi: 10.1016/j.foodchem.2014.03.112.

[30] R. Nazarni, D. Purnama, S. Umar, and H. Eni, “The effect of fermentation on total phenolic, flavonoid and tannin content and its relation to antibacterial activity in jaruk tigarun (Crataeva nurvala, Buch HAM),” Int. Food Res. J., vol. 23, no. 1, pp. 309–315, 2016.

[31] M. W. Kuria, J. W. Matofari, and J. M. Nduko, “Physicochemical, antioxidant, and sensory properties of functional mango (Mangifera indica L.) leather fermented by lactic acid bacteria,” J. Agric. Food Res., vol. 6, p. 100206, 2021, doi:

10.1016/j.jafr.2021.100206.

[32] E. D. Wijayanti, N. Candra, E. Setiawan, and J. P. Cristi, “Effect of Lactic Acid Fermentation on Total Phenolic Content and Antioxidant Activity of Fig Fruit Juice (Ficus carica),” Adv. Heal. Sci. Res., vol. 2, pp. 282–289, Oct. 2017, doi:

10.2991/HSIC-17.2017.44.

[33] S. Li et al., “Effect of solid-state fermentation with Lactobacillus casei on the

nutritional value, isoflavones, phenolic acids and antioxidant activity of whole soybean flour,” Lwt, vol. 125, no. February, p. 109264, 2020, doi: 10.1016/j.lwt.2020.109264.

[34] B. T. Nguyen et al., “Probiotic beverage from pineapple juice fermented with Lactobacillus and Bifidobacterium strains,” Front. Nutr., vol. 6, no. May, pp. 1–7, 2019, doi: 10.3389/fnut.2019.00054.

[35] B. A. Acosta-Estrada, J. A. Gutiérrez-Uribe, and S. O. Serna-Saldívar, “Bound phenolics in foods, a review,” Food Chem., vol. 152, pp. 46–55, 2014, doi:

10.1016/j.foodchem.2013.11.093.

[36] Y. Liu, H. Chen, W. Chen, Q. Zhong, G. Zhang, and W. Chen, “Beneficial effects of tomato juice fermented by lactobacillus plantarum and lactobacillus casei:

Antioxidation, antimicrobial effect, and volatile profiles,” Molecules, vol. 23, no. 9, pp. 1–18, 2018, doi: 10.3390/molecules23092366.

[37] B. J. Muhialdin, A. S. Meor Hussin, H. Kadum, A. Abdul Hamid, and A. H. Jaafar,

“Metabolomic changes and biological activities during the lacto-fermentation of

(4)

jackfruit juice using Lactobacillus casei ATCC334,” Lwt, vol. 141, no. November 2020, p. 110940, 2021, doi: 10.1016/j.lwt.2021.110940.

[38] R. Kaprasob, O. Kerdchoechuen, N. Laohakunjit, D. Sarkar, and K. Shetty,

“Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria,” Process Biochem., vol. 59, no.

February, pp. 141–149, 2017, doi: 10.1016/j.procbio.2017.05.019.

[39] L. J. Martin and C. Matar, “Increase of antioxidant capacity of the lowbush blueberry ( Vaccinium angustifolium ) during fermentation by a novel bacterium from the fruit microflora,” J. Sci. Food Agric., vol. 85, no. 3, pp. 1477–1484, 2005, doi:

10.1002/jsfa.2142.

[40] M. H. Johnson, A. Lucius, T. Meyer, and E. G. De Mejia, “Cultivar Evaluation and Effect of Fermentation on Antioxidant Capacity and in Vitro Inhibition of R -Amylase and R -Glucosidase by Highbush Blueberry ( Vaccinium corombosum ),” J. Agric.

Food Chem., vol. 59, no. 7, pp. 8923–8930, 2011, doi: dx.doi.org/10.1021/jf201720z.

[41] X. Zheng et al., “Comparing product stability of probiotic beverages using litchi juice treated by high hydrostatic pressure and heat as substrates,” Innov. Food Sci. Emerg.

Technol., vol. 23, pp. 61–67, Jun. 2014, doi: 10.1016/j.ifset.2014.01.013.

[42] K. Mishra, H. Ojha, and N. K. Chaudhury, “Estimation of antiradical properties of antioxidants using DPPH Å assay : A critical review and results,” Food Chem., vol.

130, no. 4, pp. 1036–1043, 2012, doi: 10.1016/j.foodchem.2011.07.127.

[43] S. B. I. Assanga et al., “Solvent effects on phytochemical constituent profiles and antioxidant activities , using four different extraction formulations for analysis of Bucida buceras L . and Phoradendron californicum,” BMC Res. Notes, pp. 1–14, 2015, doi: 10.1186/s13104-015-1388-1.

[44] M. C. P. Santos and É. C. B. A. Gonçalves, “Effect of different extracting solvents on antioxidant activity and phenolic compounds of a fruit and vegetable residue flour,”

Sci. Agropecu., vol. 7, no. 1, pp. 7–14, 2016, doi: 10.17268/sci.agropecu.2016.01.01.

[45] J. A. Curiel, H. Rodríguez, J. M. Landete, B. de las Rivas, and R. Muñoz, “Ability of Lactobacillus brevis strains to degrade food phenolic acids,” Food Chem., vol. 120, no.

1, pp. 225–229, 2010, doi: 10.1016/j.foodchem.2009.10.012.

[46] P. Filannino, R. Di Cagno, and M. Gobbetti, “Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth,” Curr. Opin. Biotechnol., vol. 49, pp. 64–72, 2018, doi: 10.1016/j.copbio.2017.07.016.

[47] Y. Zhou et al., “Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation,” J.

Sci. Food Agric., vol. 100, no. 8, pp. 3283–3290, 2020, doi: 10.1002/jsfa.10272.

[48] S. Alavi Rafiee, R. Farhoosh, and A. Sharif, “Antioxidant Activity of Gallic Acid as Affected by an Extra Carboxyl Group than Pyrogallol in Various Oxidative

Environments,” Eur. J. Lipid Sci. Technol., vol. 120, no. 11, pp. 1–8, 2018, doi:

10.1002/ejlt.201800319.

[49] A. T. Bernal-Mercado et al., “Comparison of single and combined use of catechin, protocatechuic, and vanillic acids as antioxidant and antibacterial agents against uropathogenic Escherichia coli at planktonic and biofilm levels,” Molecules, vol. 23,

(5)

no. 11, 2018, doi: 10.3390/molecules23112813.

[50] R. C. M. Lizardo, H. D. Cho, Y. S. Won, and K. Il Seo, “Fermentation with mono- and mixed cultures of Lactobacillus plantarum and L. casei enhances the phytochemical content and biological activities of cherry silverberry (Elaeagnus multi fl ora Thunb.) fruit,” J Sci Food Agric, vol. 100, no. April, pp. 3687–3696, 2020, doi:

10.1002/jsfa.10404.

[51] A. Duda-chodak, T. Tarko, and M. Statek, “The effect of antioxidants on Lactobacillus casei cultures,” Acta Sci. Pol., Technol. Aliment., vol. 7, no. December 2008, pp. 39–

51, 2014.

[52] Y. Q. Xu, P. Yu, and W. Zhou, “Combined effect of pH and temperature on the stability and antioxidant capacity of epigallocatechin gallate (EGCG) in aqueous system,” J. Food Eng., vol. 250, no. January, pp. 46–54, 2019, doi:

10.1016/j.jfoodeng.2019.01.016.

Referensi

Dokumen terkait

Flavonoid, Phenolic Contents and Antioxidant Properties of Thai Hot Curry Paste Extract and Its Ingredients As Affected of PH, Solvent Types and Hidh

Antioxidant Activity and The Phenolic Profile of White Saffron (Curcuma Mangga Val.) as Affected by Blanching Method.. Pengaruh Ratio Kombinasi Maltodekstrin,

The effects of formic acid, molasses, and inoculant as silage additives on corn silage composition and ruminal fermentation characteristics in sheep.. The effect of lactic acid

(Poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in

Harvest Maturity, Storage Temperature and Relative Humidity Effect Fruit Quality, Antioxidant Contents and Activity, and Inhibition of Cell Proliferation of

Influence of Different Extracts Addition on Total Phenols, Anthocyanin Content and Antioxidant Activity of Blackberry Juice During Storage.. Studies on the Mechanism of The

Title: Solid state fermentation parameters effect on cellulase production from empty fruit bunch Corresponding authors: Vita Wonoputri Other authors: Subiantoro, Made Tri Ari Penia

Phenolic compounds of mango Mangifera indica by-products: Antioxidant and antimicrobial potential, use in disease prevention and food industry, methods of extraction and