Penyimpulan data
numerik & kategorik
Elsa Roselina
Dewi Gayatri
• Tendensi sentral (mean, median, modus)
• Hubungan mean, median, modus
• Ukuran variasi (range , interkuartil range, mean deviasi, varian, SD, COV)
• Ukuran posisi (median, kuartil, desil, persentil)
P. data numerik
P. data kategorik:
ProporsiTendensi sentral
(ukuran pemusatan)
Mean
Median
Modus
Mean (Arithmatic Mean)
Nilai yg mewakili himpunan/
sekelompok data yg didapat dg menjumlahkan semua data, lalu membagi dg jmh pengamatan.
X = Jumlah data = x1 + x2 + ... + xn
n n
Mean (lanjutan - 1)
C/: data usia 6 org klien hipertensi
55 th, 60 th, 55 th, 65 th, 70 th, 75 th X = 55 + 60 + 55 + 65 + 70 + 75
6
= 63,3 th
Mean (lanjutan - 2)
Sifat-sifat dari mean:
1. Mrpkn wakil dr keseluruhan nilai 2. Sgt dipengaruhi nilai ekstrim
kecil/besar
3. Berasal dr semua nilai pengamatan
Median (nilai tengah)
Nilai yg terletak di tengah pd
observasi setelah data disusun/
diurutkan (array)
Letak nilai median = n + 1 2
Jk jmh data ganjil, median pd letaknya.
Jk genap, nilai yg mengapit dibagi dua.
Median (lanjutan - 1)
C/: data usia 6 org klien hipertensi
55 th, 60 th, 55 th, 65 th, 70 th, 75 th.
55 th, 55 th, 60 th, 65 th, 70 th, 75 th.
Letak nilai median = n + 1 = 3,5 2
Median = 60 + 65 = 62,5 th.
2
Median (lanjutan - 2)
Sifat-sifat dari median:
1. Disebut jg nilai posisi
2. Tdk dipengaruhi nilai ekstrim 3. Letaknya selalu di tengah
4. Jk jmh observasi ganjil, median adalah titik data yg ditengah
5. Jk jmh observasi genap, median adalah rata-rata dua titik terdekat
Modus
Nilai yg paling byk ditemui dlm suatu pengamatan.
C/: data usia 6 org klien hipertensi
55 th, 60 th, 55 th, 65 th, 70 th, 75 th
Modus data di atas adalah 55 th, krn pd pengamatan data tsb muncul 2x.
Modus (lanjutan)
Pd sekelompok data, dpt ditemui:
1. Tdk ada nilai yg lbh byk diobservasi (tdk ada modus)
2. Ditemui satu modus (uni modal) 3. Tdpt dua modus (bi modal)
4. Tdpt 3 atau lebih modus (multi modal)
Hubungan mean, median, modus
Jk distribusi frekuensi memiliki
kurva yg simetris dg satu puncak saja, mk letak mean, median dan modus akan sama/berhimpit.
Hubungan mean, median, modus (lanjutan - 1)
Jk kurva menceng ke kanan, mk
nilai mean adalah yg paling besar, baru diikuti dg median, kmdn
modus
Hubungan mean, median, modus (lanjutan - 2)
Jk kurva menceng ke kiri, mk nilai mean paling kecil diikuti median, kemudian modus.
Hubungan mean, median, modus (lanjutan - 3)
Jk distribusi tdk terlalu menceng/
normal, mk tdpt hubungan:
Modus = mean – 3 x (mean – med)
C/: Diketahui rata2 BB anak 30 kg, median 28 kg, mk dpt diketahui modus 24 kg
Ukuran variasi
Range
Interkuartil range
Mean deviasi
Varian
SD (standar deviasi)
Koefisien varian (COV)
Range
Nilai yg m’perlihatkan p’bedaan nilai p’amatan yg paling besar dg nilai yg paling kecil.
C/: data usia 6 org klien hipertensi
55 th, 60 th, 55 th, 65 th, 70 th, 75 th Range = 75 th – 55 th = 20 th
Interkuartil Range
Nilai yg m’perlihatkan p’bedaan nilai kuartil ke-3 dg kuartil ke-4.
IQR = Q3 - Q1 2
Mean deviasi
Rata-rata dr seluruh p’bedaan
pengamatan dibagi dg banyaknya pengamatan, diambil nilai mutlak.
Kelemahan: mengabsolutkan nilai selisih.
Md = x – x n
Varian
Rata-rata p’bedaan antara mean dg nilai masing-masing.
Kelemahan: satuan ikut kuadrat.
V (S2) = [( x – x ) 2 ] n – 1
• Mean = 380/6 = 63,3
• Mean deviasi (Md) = 40/6 = 6,7 th
• Varian (V) = 333,34/5 = 66,7
x (th) x – x ( x – x ) 2
55 8,3 68,89
55 8,3 68,89
60 3,3 10,89
65 1,7 2,89
70 6,7 44,89
75 11,7 136,89
380 40 333,34
Standar Deviasi (SD)
Akar dr varian.
Disebut jg simpangan baku, krn merupakan patokan luas area di bawah kurva normal.
x ± 1 s = 68%
x ± 2 s = 95%
x ± 3 s = 99%
Koefisien Deviasi (COV)
Membandingkan variasi nilai antara 2 variabel yg b’beda unitnya.
Misalnya BB dg TB.
COV = (s / x ) x 100%
Ukuran posisi
Median
Kuartil: nilai yg m’bagi
pengamatan mjd 4 bagian
Desil: nilai yg m’bagi pengamatan mjd 10 bagian
Persentil : nilai yg m’bagi
pengamatan mjd 100 bagian
Ukuran posisi (lanjutan)
Kuartil (Qi) = nilai yg ke i (n+1) 4
Desil (Di) = nilai yg ke i (n+1) 10
Persentil (Pi) = nilai yg ke i (n+1) 100
P. data kategorik
Proporsi = persentase
Proporsi = (ni / N) x 100%
C/: Pada 10 bayi yg dinyatakan
hiperbilirubinemia, 6 diantaranya lahir dgn sectio caesaria.
Proporsi bayi sc yg m’alami
hiperbilirubinemia = (6/10) x 100% = 60%
LATIHAN
Berikut ini adalah data pasien yg dirawat kr PJK
No Res Jenis kelamin Kriteria hipertensi Jumlah rokok yg dihisap/hari
1 Laki-laki Berat 20
2 Perempuan Sedang 6
3 Perempuan Sedang 6
4 Laki-laki Berat 22
5 Laki-laki Krisis 30
6 Perempuan Krisis 12
7 Laki-laki Berat 26
8 Perempuan Berat 10
9 Perempuan Sedang 6
10 Laki-laki Sedang 8
11 Laki-laki Berat 24
12 Perempuan Sedang 8
Berdasarkan data tsb, jawablah pertanyaan berikut:
1. Bagaimanakah gambaran kurva dari jmh rokok yg dihisap/hari?
2. Hitunglah nilai: range, mean deviasi,
varian dan standar deviasi dari jmh rokok yg dihisap/hari!
3. Bagaimanakah proporsi pasien PJK berdasarkan jenis kelamin dan kriteria hipertensinya?