81
Rezdy Anugrah Perdana, 2014
Aplikasi Pengenalan Suara Pembicara Menggunakan Hidden Markov Model (HMM) Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu
DAFTAR PUSTAKA
Abdalla, M. I., & Ali, H. S. (2010, March). Wavelet-Based Mel-Frequency Cepstral Coefficients for Speaker Identification using Hidden Markov Models. JOURNAL OF TELECOMMUNICATIONS, 1(2), pp. 16-21. Abdallah, S. J., Osman, I. M., & Mustafa, M. E. (2012). Text-Independent
Speaker Identification Using Hidden Markov Model. World of Computer Science and Information Technology Journal (WCIST), 2(6), pp. 203-208.
Antoniou, A. (2006). Digital Signal Processing. New York: McGraw-Hill.
Buono, Agus., Mandasari. Yani., & Neyman, Shelvie Nidya. (2010)
Pengembangan Model Markov Tersembunyi untuk Pengenalan Kata
Berbahasa Indonesia. Seminar dan Call for Paper Munas Aptikom.
Bandung, Indonesia.
Fang, Chunsheng., 2009, From Dynamic Time Warping (DTW) to Hidden Markov
Model (HMM), Final project report for ECE742 Stochastic Decision, University of Cincinnati, USA.
Gangisetty, Smitha. 2005. “Text-Independent Speaker Recognition”. College of Engineering and Mineral Resources. Morgantown: West Virginia
University.
82
Rezdy Anugrah Perdana, 2014
Aplikasi Pengenalan Suara Pembicara Menggunakan Hidden Markov Model (HMM) Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu
Ihsan, Mahyus. 2006. “Pengembangan Model Markov Tersembunyi Pada
Identifikasi Pembicara”. Sekolah Pascasarjana. Bogor: Institut Pertanian Bogor.
Ilyas, M. Z., Samad, S. A., Hussain, A., & Ishak, K. A. (2007). Speaker Verification using Vector Quantization and Hidden Markov Model. Student Conference on Research and Development, pp. 1 - 5.
Khairulvani, Feni. 2007. “Identifikasi Individu Melalui Suara Ucapan Dengan Ekstraksi Ciri Mel-Frequency Cepstral Coefficient(MFCC) Sebagai Input Jaringan Syaraf Tiruan”, Tugas Akhir, Institut Teknologi Bandung, Bandung, Indonesia.
Manunggal, Heri Sugianto. 2010. “Perancangan dan pembuatan perangkat lunak pengenalan suara pembicara dengan menggunakan analisa MFCC feature extraction”. Program Studi Teknik Informatika. Surabaya: Universitas Kristen Petra.
Muda, L., Begam, M., & Elamvazuthi, I. (2010, March 1). Voice Recognition
Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and
Dynamic Time Warping (DTW) Techniques. JOURNAL OF
COMPUTING, vol 2(3), pp. 138-143.
Park, T. H. (2009). Introduction To Digital Signal Processing: Computer
83
Rezdy Anugrah Perdana, 2014
Aplikasi Pengenalan Suara Pembicara Menggunakan Hidden Markov Model (HMM) Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu
Pressman, R. S. (2005). Software engineering a practitioner's approach. New
York: McGraw- Hill.
Rabiner, L. R. (1989, February 1). A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition. Proc. IEEE, 7(2), pp.
257-286.
Saha, G., Chakroborty. Sandipan., & Senapati, S. (2005) A New Silence Removal
and Endpoint Detection Algorithm for Speech and Speaker Recognition
Applications. Eleventh National Conference On Communications.
Kharagpur, India.
Santamarina, J. C. (2005). Discrete Signals And Inverse Problems An Introduction For Engineers And Scientists. New Jersey: John Wiley & Sons.
Suwandy. 2011. “Perancangan Program Aplikasi Absensi Pada Binus Learning Community SAC Dengan Menggunakan Hidden Markov Model”. Program Ganda Teknik Informatika dan Matematika. Jakarta: Universitas
Bina Nusantara.
Vaseghi, S. V. (2007). Multimedia Signal Processing. New Jersey: John Wiley &