• Tidak ada hasil yang ditemukan

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1

N/A
N/A
Protected

Academic year: 2021

Membagikan "JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1"

Copied!
6
0
0

Teks penuh

(1)

Abstrak Reverse osmosisadalah suatu proses pembalikan dari proses osmosis. Osmosis adalah proses perpindahan larutan dari larutan dengan konsentrasi zat terlarut rendah menuju larutan dengan konsentrasi zat terlarut lebih tinggi sampai terjadi kesetimbangan konsentrasi. Dalam penelitian ini telah dilakukan pengendalian proses RO dalam Simulink Matlab dengan menggunakan metode Internal Model Control (IMC) secara invers yang menanggulangi rawan pecahnya membrane RO kembali. Pada RO pertama dan RO kedua menggunakan menggunakan IMC controller untuk pengendali tekanan. Pengendalian dengan model IMC ini menggunakan sistem pengendalian unity, dimana masukan dari sistem proses akan distabilkan pada keluaran proses sehingga sesuai dengan setpoint dari masukan proses. Faktor utama dalam penstabilan pengendalian ini adalah pada nlai gain flter, hingga mencapai respon signal yang sesuai dengan setpoint. Dari hasil penelitian terlihat bahwa saat pengendali IMC unity ini diberikan suatu disturbance berupa signal sinus maka yang terjadi pada respon sistem membentuk signal osilasi yang stabil tetapi tanpa terjadi redaman sempurna. Hasil untuk metode controller IMC unity ini yaitu pada RO1; maksimal overshoot sebesar 16.5%, settling time saat 19 detik, dan pada RO2; maksimal overshoot sebesar 0.84% , settling time saat 17 detik.

Kata Kunci— membran reverseosmosis, tekanan membran, Internal Model Control (IMC)

I. PENDAHULUAN

everse osmosis adalah suatu proses pembalikan dari

proses osmosis. Osmosis adalah proses perpindahan larutan dari larutan dengan konsentrasi zat terlarut rendah menuju larutan dengan konsentrasi zat terlarut lebih tinggi sampai terjadi kesetimbangan konsentrasi (Rusdi 1996) , oleh karena itu cara ini sangat cocok digunakan untuk desalinasi air laut menjadi air payau. Proses seawater desalination di PT.YTL Jawa Power menggunakan sistem membran reverse

osmosis (RO). Sering pecahnya membran RO akibat tekanan

yang terkadang berlebihan menjadikan sebuah permasalahan penting. Hal ini mengakibatkan dapat mengganggu proses lain dan seringnya dilakukan penggantian membran dimana tingkat biaya perusahaan pun menjadi lebih tinggi

Dalam penelitian sebelumnya (Pratama,2011) telah dilakukan simulasi untuk mengatasi permasalahan tersebut dengan sistem umpan balik pengontrol PID, tetapi masih mempunyai beberapa kelemahan, keluaran sistem menjadi tidak sesuai dengan setpoint atau lama dalam mencapai harga yang diinginkan dan terjadi osilasi cukup lama untuk mencapai

steady state. Dalam penelitian kali ini akan mencoba untuk

mengatasi permaslahan tersebut dengan munggunakan metode

Internal Model Control Internal Model Control (IMC) adalah

salah satu metode kontrol, yang menggunakan model dari plant

yang ingin dikontrol. IMC merupakan suatu metode untuk merancang suatu pengontrol umpan balik untuk membuat keluaran suatu proses yang stabil untuk (1) memberikan respon sesuai yang diinginkan terhadap perubahan setpoint, dan (2) mengatasi pengaruh gangguan yang langsung masuk pada keluaran proses. Sehingga diharapkan dapat mengatasi permasalahan yang terjadi terutama tentang pecahnya membran RO di PT.YTL Jawa Power.

II. METODOLOGI PENELITIAN

Gambar 1. Flowchart Penelitian

A. Studi Literatur

Dalam pengerjaan tugas akhir ini diawali dengan studi literatur dari data-data yang telah didapat dari penelitian sebelumnya yaitu “Design Of Pid Pressure Control System On Seawater Desalination Unit – Reverse Osmosis (RO) At PT.

YTL Jawa Power, Paiton East Java” beserta data – data dari

perusahaan.. Dari refrensi tersebut dapat mempermudah pengerjaan tugas akhir ini. Studi literatur lain mengenai prinsip kerja pengendali dengan metode Internal Model Control.

Kemudian selanjutnya mengarah pada identifikasi permasalahn yang terjadi dimana menjadi latar belakang utama penelitian ini yaitu pada unit seawater desalination tepatnya pada sistem

reverse osmosis sering terjadi kerusakan pada membran

dimana fungsi membrane yaitu untuk menyaring air laut yang nantinya akan dijadikan menjadi air tawar. Kerusakan membran RO ini hingga mencapai tingkat tekanan yang

PERANCANGAN SISTEM

INTERNAL MODEL CONTROL

(

IMC

) TEKANAN

PADA UNIT

SEAWATER DESALINATION-

REVERSE

OSMOSIS

(

RO

)

Yohanes Bondan S.P, Fitri Adi Iskandarianto

Jurusan Teknik Fisika, Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember (ITS)

Jl. Arief Rahman Hakim, Surabaya 60111

E-mail: fiskandarianto@ep.its.ac.id

(2)

berlebihan mengakibatkan pecah nya membran RO tersebut. Dari penelitian sebelumnya dengan meninjau studi lapangan maka didapatkan variabel yang menjadi komponen penting dalam proses kinerja plant reverse osmosis di perusahan ini. Komponen yang dapat di manipulasi adalah pressure yang diberikan pada membran, dan yang mempengaruhi perubahan tekanan tersebut adalah besarnya flow yang mengalir masuk pada membran.

B.

Sistem Reverse Osmosis

Pada penelitian ini proses Reverse Osmosis diterapkan pada unit seawater desalination yang bertujuan untuk memisahkan komponen garam yang terkan dung dalam air laut dan menghasilkan keluaran berupa air tawar. Perubahan air laut menjadi air tawar tersebut terajadi karena pada system Reverse

Osmosis (RO) terdapat membran yang diberikan tekanan besar

oleh pompa hidraulik. Proses reverse osmosis pada tahap pertama yaitu saat air laut masuk melalui RO pertama.Input

atau masukan umpan bertekanan dari sistem RO pertama didapat dari satu sistem pendukung yang disebut dengan ultra

filtration (UF) melalui pengirim sistem tersebut yaitu UF

filtrate transfer pump. Kemudian selanjutnya terdapat

cartridge filter yang berfungsi untuk membuang partikel yang

berkukuran lebih dari 5 µm, karena jika partikel lebih dari

ukuran tersebut maka akan menyebabkan kerusakan pada elemen membran dan high pressure. Kemudian pada proses selanjutnya terdapat membran yang berfungsi menghilangkan kadar garam air laut yang merupakan proses penting dari plant tersebut.

Gambar 2. P&ID Plant RO Pertama

Sama seperti sistem RO pertama dimana pada RO kedua terdapat juga bagian penting yaitu cartridge filter yang juga berfungsi untuk menyaring pertikel – partilkel yang berukuran lebih dari 5 μm. Pada dasar nya RO kedua bertugas menyaring kembali keluaran dari proses RO pertama.

Gambar 3. P&ID Plant RO Kedua

C. Spesifikasi dan karakteristik dari membran RO

RO pertama :

• Model membran yaitu BW30-400.

• Konfigurasi membran RO pertama yaitu 2 train, setiap train 47 vessel (1 vessel = 7 membran).

RO kedua :

• Model membran yaitu BW30-400.

• Konfigurasi membran RO kedua yaitu terdapat 2 train dengan masing-masing train ada 2 stage dimana first stage terdapat 12 vessel dan second stage 6 vessel.

D.

Merancang Filter Sistem RO

Dalam Pengendalian Internal Model Control filter biasanya ditambah dengan controller yang optimal untuk melemahkan efek dari proses-model ketidakcocokan dan menghapus bagian frekuensi yang lebih tinggi dari kebisingan dalam sistem dalam rangka untuk memenuhi spesifikasiyang kuat. Filter memainkan peran penting dalam sistem karena ketidakpastian desain sistem sehingga sistem kontrol yang dirancang dapat mencapai tujuan desain stabilitas kuat dan kinerja yang kuat.

Filter dimodelkan sebagai berikut dari teori sistem kontrol dasar :

Gf (s) =

f dimana parameter filter adalah urutan filter. Urutan filter dipilih sedemikian sehingga mendapatkan GIMC(s) yang tepat untuk mencegah aksi diferensial kontrol. Parameter filter dalam desain dapat dipilih sebagai cara praktis untuk mendapatkan nilai G IMC, maka nilai parameter filter sering dipengaruh oleh bentuk pemodelan dari komponen – komponen dalam kinerja sistem RO itu sendiri, dalam desain,tetap satu-satunya parameter tuneable. Dalam aplikasi ini kita ingin mensimulasikan sistem dengan n=2 untuk membuat GIMC(s) yang tepat.

(3)

Gcdidapat dari perkalian nilai total antara model matematis High Pressure Pump(GPRO) dengan model matematis

E.

Merancang IMC Controller

Prinsip utama skema IMC controller ini dalam Gp(s) adalah untuk merancang suatu controller IMC (GIMC)(s) yang terdiri dari kombinasi serangkaian Gc(s) dan Gf(s) dimana Gf(s) adalah parameter filter yang telah ditemukan nilai tepatnya. Oleh karena itu, dari langkah-langkah dalam

merancang controller, kita sudah menetapkan bahwa

kontroler akan mereplikasi kebalikan dari model

proses sesuai Persamaan di bawah ini:

Gc(s) = Gpm(s) -1 (1) Sehingga, GIMC(s) = Gf(s)Gc(s)

Membran Reverse Osmosis (PRO)maka didapat persamaan sebagai berikut :

Gc = GPRO x PRO (2)

Dari persamaan diatas maka dapat di modelkan kembali model matematis GIMC masing – masing Reverse Osmosis sebagai berikut;

GcRO1 = GPRO1 x PRO1

= x

= (3)

Setelah didapatkan nilai Gc maka akan dilakukan pemodelan berikutnya yaitu membentuk sebuah pengendali IMC dengan cara mengubah model matematis Gc kedalam bentuk inverse atau pembalikan sebagai berkut yang dikalikan dengan parameter filter;

GIMC RO1= GcRO1-1 x Gf(s)

= x

GIMC RO1= (4)

Parameter filter τf dapat di ubah hingga mendapatkan G IMC yang tepat. Seperti telah di jelaskan sebelumnya, parameter filter yang tepat pada sistem ini adalah bernilai n=2. Dari persamaan diatas didapatkan GIMC RO1 dalambentuk orde

2 dimana dalam simulasi akan dimasukan dalam model IMC pula.

GcRO2 = GPRO2 x PRO2

= x

= (5)

GIMC RO2= GcRO2-1 x Gf(s)

= x

GIMC RO2 = (6)

mengukur berapa daya listrik yang tersalur ke load dan baterai.

Sehingga dari persamaan 3.6 dan 3.8 dapat di susun sebuah diagram blok pengendalian IMC masing – masing Reverse Osmosis; r set poi nt t T i m e Step Scope 0.4 0.75s+1 Pressure transm i tter

0.0213 0.01792s +0.007056s2 M odel Mem bran RO1 21.62 0.007056s Mem bran RO1 0.01792s +0.07056s2 0.0213s +0.0426s+0.02132 IMC Control l er 0.000986 2.54s+1 Hi gh Pressure Pum p Cl ock

Gambar 4. Diagram Blok Pengendalian IMC RO1 Dalam diagram blok diatas terdapat tiga komponen penting dalam kinerja proses reverse osmosis seperti yang telah dijelaskan sebelumnya, dan dalam metode IMC ini ditambahkan beberapa komponen controller yaitu IMC

controller dan model membrane RO 1. Perlakuan invers pun

sudah d terapkan. Dan nantinya akan dilihat hasil respon sinyal nya pada bab berikutnya. Sama halnya dengan blok diagram pengendalian IMC pada RO1, berikut merupakan blok diagram hasil dari simulasi dengan model matematis yang telah dimasukan dari berbagai komponen utama serta komponen control metode IMC.

r set point t Time Step Scope 0.4 0.75s+1 Pressure transmitter 0.00457 0.018s +0.007056s2 Model membran RO2

5.76 0.007056s Membran RO2 0.018s +0.07056s2 0.00457s +0.00914s+0.004572 IMC Controller 0.000793 2.67s+1 High Pressure Pump

Clock

(4)

III. HASIL DAN PEMBAHASAN

A.

Uji Sistem Open Loop

Gambar 6. Diagram Blok Sistem Open Loop RO Pertama

Gambar 7. Diagram Blok Sistem Open Loop RO kedua

Dalam setiap penelitian menggunakan suatu plan maka diperlukan sebuah uji open loop untuk mengetahui bahwa sistem dari suatu proses plan membutuhkan suatu bentuk pengendali tertentu dan memperoleh karakteristik dasar dari parameter – parameter plan tersebut. Seperti yang telah dilakukan pada penelitian sebelumnya tentang uji open loop

ini. (Pratama, 2011)

Pada gambar 6 menjelaskan bahwa proses dari sistem RO pertama memiliki hasil linearitas yang nantinya dapat diberikan suatu metode pengendalian tertentu.

Sama seperti sistem RO pertama, untuk sistem RO kedua ini juga dapat diberikan suatu metode pengendali baru, pada RO pertama diberikan setpoint 21 bar sedangkan pada RO kedua diberikan setpoint sebesar 41 bar, apabila pada masing – masing RO tersebut mengalami kenaikan tekanan yang berlebihan maka membran pada masing - ,masing RO tersebut pun juga akan pecah. Oleh karena itu perlu diberikan sebuah pengendalian yang sesuai dengan karakteristik proses plan tersebut yang nantinya model dari pengendalian itu dapat mengoptimalkan kinerja dari plan RO dan mengurangi pecah nya membran RO itu sendiri

B. Uji Respon Sistem IMC Controller

Gambar 8. Respon IMC Controller RO Pertama

Dengan memasukkan nilai parameter yang diperoleh dari perhitungan maka respon yang diperoleh pada RO pertama dapat dilihat pada gambar 8.

Sesuai respon diatas maka bias

dianalisa bahwa respon dengan menggunakan IMC

(Internal Model Control). Dari respon diatas IMC

(

Internal Model Control

) sangat mendekati nilai set

point sebab metode

control

ini berdasarkan pada

ketepatan satu model yang sudah ada dari suatu proses

yang menjadi pedoman untuk mendesain

system

control

yang stabil.

Gambar 9. Respon IMC Controller RO Kedua Sesuai dengan hasil respon pada simulink MATLAB bahwa hasil respon dengan menggunakan metode control IMC. Pengendali ini menerapakan pengendali unity dimana pengendali unity merupakan suatu pengendalian yang menstabilkan antara masukan dan keluaran dari suatu proses, karena keluaran dari proses ini bernilai sebanding dengan masukan setpoint yang diberikan. Sedangkan apabila diberi beban atau disturbance maka akan terjadi osilasi stabil hingga titik tak hingga. Begitu pula dengan respon RO2

.

C. Uji Beban Sistem IMC Controller

(5)

Sebelum di uji dengan tracking setpoint pada pengendalian reverse osmosis ini akan diujiloadnya dimana nantinya respon IMC akan diberi gangguan berupa signal

input sinus, pada saat respon tersebut sudah steady. Dari hasil

uji beban maka dapat diketahui bahwa masukan dan keluaran dari proses sistem pengendalian IMC ini terjadi osilasi yang sangat stabil. Terlihat perbedaan sebelum dan sesudah sistem RO diberi beban atau disturbance. Seperti telah dijelaskan sebelumnya bahwa pengendali IMC ini merupakan pengendali

unity, dimana respon selalu berjalan stabil sesuai masukan yang

diberikan. Pada sistem ini tidak terjadi redaman untuk mencapai kondisi steady state saat diberi beban, hal ini dikarenakan belum diberikan pengendali PID untuk meredam osilasi dari amplitudo stabil tersebut.

Gambar 11. Respon Uji Beban Controller RO Kedua

Sama seperti RO pertama saat diberi beban berupa signal

input sinus, hasil respon akan berosilasi stabil hingga titik tak

hingga, pada penelitian kali ini pengendali IMC sangat berpengaruh dari perubahan paremeter filter yang diberikan pada proses sistem tersebut, sehingga respon dapat mencapai kondisi

steady state sempurna sesuai setpoint, proses ini sama seperti

proses trying and error, untuk mengurangi proses tersebut maka secara keseluruhan pengendali IMC ini dapat diberikan masukan berupa pengendali PID untuk mutlak meredam adanya osilasi secara terus menerus. Pada proses reverese osmosis ini dilakukan tanpa memberikan beban signal sinus, sehingga hasil dari respon ini dapat mencapai kondisi steady state. Setelah melakukan uji beban, maka dilakukan tracking setpoint kembali pada kondisi awal sebelum diberikan beban berupa signal sinus. Sehingga hasil dari tracking setpoint merupakan respon asli dari pengendalian IMC dalam sistem unity.

D. Tracking Set Point

Pada pengujian ini bertujuan untuk mengetahui respon

plant dapat mengikuti perubahan dari setpoint ketika proses

masih berjalan. Perubahan setpoint diatur sebesar 11 bar kemudian tekanan dinakikkan menjadi 21 bar, dinaikkan menjadi 31 bar, diturunkan menjadi 21 bar kembali dan penurunan terakhir diubah menjadi 11 bar.

Gambar 12. Tracking Set Point pada RO pertama

Respon sistem control RO pertama tidakmemiliki

maximum Saat diuji dengan tracking setpoint pada

pengendalian level tersebut masih bias mengikuti setpoint

yang diinginkan. Disini bias disimpulkan bahwa pada perhitungan tersebut benar. Pada saat setpoint pertama sekitar 38% hasil respon IMC masih bias mengikuti nilai setpoint

yang diberikan saat di tracking ke setpoint berikutnya sekitar 97% ternyata masih bias mengikutinya tetapi nilai maximum

overshoot lebih besar dibandingkan dengan step yang pertama,

walaupun masih terdapat maximum overshoot pada detik ke 123 IMC masih bias mengikuti respon dari setpoint

yang diinginkan

.

Gambar 13. Tracking Set Point pada RO kedua

Sama dengan hasil track set point RO1 Saat diuji dengan tracking setpoint pada pengendalian level tersebut masih bias mengikuti setpoint yang diinginkan. Disini bias disimpulkan bahwa pada perhitungan tersebut benar. Pada saat setpoint pertama sekitar 89% hasil respon IMC masih bias mengikuti nilai setpoint yang diberikan saat di

tracking ke setpoint berikutnya sekitar 97% ternyata masih bias

mengikutinya tetapi nilai maximum overshoot lebih besar dibandingkan dengan step yang pertama, walaupun masih terdapat maximum overshoot pada detik ke 123 IMC masih bias mengikuti respon dari setpoint yang diinginkan. Terlihat pada gambar hasil tracking point, pada setiap perpindahan step dalam perubahan setpoint terjadi delay waktu yang diakibatkan karena penstabilan dari controll yang

(6)

dimodelkan menjadi bentuk invers dari pembalikan jika dikalikan dengan denumerator yang sama dengan nilai nya sendiri akan tetap bernilai satu. Dan yang menyebabkan terjadi

delay waktu adalah lamanya waktu yang dibutuhkan untuk

mencapai nilai satu dalam arti sesuai dengan masukan setpoint

dimana proses tersebut melewati beberapa gain dari device –

device yang terpasang dalam suatu plan.

r set point t Time Step Scope 0.4 0.75s+1 Pressure transmitter 0.0213 0.01792s +0.007056s2 Model Membran RO1 21.62 0.007056s Membran RO1 0.01792s +0.07056s2 0.0213s +0.0426s+0.02132 IMC Controller 0.000986 2.54s+1 High Pressure Pump

Clock

Gambar 14. Proses IMC yang menyebabkan delay waktu Seperti gambar diatas ada high pressure pump, Membran RO, device tersebutlah yang menyebabkan terjadinya dela y

dari respon yang dihasilkan.

IV. KESIMPULAN

Dari hasil laporan tugas akhir ini dapat diperoleh beberapa kesimpulan yaitu sebagai berikut, telah dirancang sebuah sistem Internal Model Control (IMC) pada Unit

Seawater Desalination-Reverse Osmosis (RO), hasil untuk

metode controller IMC dengan sistem unity yaitu pada RO1; maksimal overshoot sebesar 16.5%, settling time saat 19 detik, dan pada RO2; maksimal overshoot sebesar 0.84% , settling time saat 17 detik. Pada penelitian ini apabila pegendali IMC diberikan beban berupa signal input sinus maka hasil dari respon akan menunjukan osilasi yang stabil tanpa redaman hingga detik tak hingga. Untuk mengoptimalkan amplitudo dan

settling time proses ini diperlukan penggabungan antara

pengendali IMC dan PID.

DAFTAR PUSTAKA

[1] Anonim, Profil PT. YTL Jawa Power, PT. YTL Jawa Power, 2000.

[2] CCR, Seawater Desalination Central Control Room 1980

[3] Donald A. Mohutsiwa, Bachelor of Engineering (Instrumentation and Control) , 1995

[4] Fisher, A., Reisig, J., Powell, P., Walker, M., 2007, Reverse osmosis (R/O): How it Works., University of Nevada

[5] Mustofa, G.M., 2007, The Study of Pretreatment Options for Composite Fouling of Reverse osmosis Membrane Used in Water Treatment and Production. School of Chemical Science and Engineering. University of South Wales.

[6] Saputra FA, erancangan Pengontrol Dan Analisis Respon Pada Sistem Internal Model Control (IMC) , thn 2010 [7] Pratama D.A . “Perancangan Sistem Kontrol Pid

Tekanan Pada Unit Seawater DesalinationReverse

Osmosis (RO) Di PT. YTL Jawa Power, Paiton Jawa

Timur” Tugas Akhir Jurusan Teknik Fisika FTI-ITS Surabaya 2011.

[8] Rusidy, A.F PUSAT PENELITIAN

GEOTEKNOLOGI LEMBAGA ILMU

PENGETAHUAN INDONESIA ,Anna Fadliah Rusydi, ST, 1996

[9] William, M.E., 2003, A Brief Review of Reverse osmosis Membrane Technology., EET Corporation and Williams Engineering Services Company.

Gambar

Gambar 1.  Flowchart Penelitian A.  Studi Literatur
Gambar 2. P&ID Plant RO Pertama
Gambar 4.  Diagram Blok Pengendalian IMC RO1
Gambar 8. Respon IMC Controller RO Pertama
+3

Referensi

Dokumen terkait

Jadi berdasarkan observasi dan wawancara yang dilakukan bahwa jenis- jenis hukuman dalam membentuk perilaku disiplin pada anak usia 5-6 tahun adalah bentuk hukuman yang

Hasil pengalaman kami dengan produk ini dan pengetahuan kami mengenai komposisinya kami menjangka tidak terdapat bahaya selagi produk ini digunakan dengan cara yang sesuai

Untuk membandingkan perubahan yang terjadi atas penerapan SAK ETAP dan PA-BPR, laporan yang akan dikomparasikan adalah laporan keuangan periode 2009.

Adapun beberapa strategi yang dapat diterapkan antara lain: pemerintah desa segera memetakan potensi ekowisata yang ada pada kawasan hutan Selelos dan merancang serta

Alhamdulillah, puji syukur kehadirat Allah SWT yang telah mencurahkan nikmat-Nya, rahmat, karunia serta hidayah-Nya sehingga terselesainya Skripsi ini dengan judul: Pengaruh

Konsentrasi aerosol tinggi dengan indeks aerosol adalah dalam kisaran 7-9 dan 5-7 terjadi di Sulawesi Utara, Sulawesi Selatan, Jawa Timur terus Bali dan Lombok, Nusa Tenggara Barat

Pola hidup sehat berarti kegiatan yang dilakukan secara terus menerus dan teratur menjadi kebiasaan dalam gaya hidup dengan memperhatikan hal-hal yang

Namun, karena tahapan dan kondisi pengujian untuk media kontrol dan perlakuan dibuat sama, kolesterol yang terbuang pada keduanya diasumsikan sama, sehingga