• Tidak ada hasil yang ditemukan

KLASIFIKASI. Klasifikasi:

N/A
N/A
Protected

Academic year: 2021

Membagikan "KLASIFIKASI. Klasifikasi:"

Copied!
25
0
0

Teks penuh

(1)

KLASIFIKASI

Tujuan klasifikasi:

- Alat penyampaian informasi

- Sebagai dasar pengembangan sistem identifikasi - Mengetahui sejarah evolusi mahluk hidup (mikrobia) 1. Alat penyampaian informasi

Klasifikasi:

. summarizing & cataloging information about microorganisms (database) . Information retrieval system (large amount)

. Its position in the classification system is denoted by the use of “a name”. . e.g. Bacillus: gram + bacteria, forms

endospore under aerobic conditions

B. subtilis: secret extracellular enzymes, amylase & protease, use nitrate,

(2)

2. Dasar penyusunan sistem identifikasi

Microorganisms must be classified into groups before identification system ca be devised

For recognition of new isolates

Without prior classification of strain into groups -> impossible to assign new isolates to a taxon

3. Mengetahui sejarah evolusi mikroba:Indicate the phylogenetic relationships

For some, phylogeny and classification are identical

Kriteria klasifikasi yang efektif

To serve the purposes effectively, a classification system should:

have high information contentbe stable

be empirical

(3)

Kelemahan Klasifikasi Tradisional

 Tidak prediktif  Tidak stabil

 Tidak objektif (subjektif)

Alasan kelemahan:

Apriory choice of characters (pengaruh Linnaeus)Subjective -> disagreement between scientists

Lengthy discourse concerning the relative important of

characters e.g. misguided assumption: morphological -> genera physiological -> species serological -> sub-species

(4)

Tipe-tipe Klasifikasi

1.Klasifikasi artifisial: tujuan khusus:

.Useful for the specialist

.Little value to microbiology most bacteria are excluded

.artificial seldom display the natural relationship, e.g. Escherichia

coli & Shigella dysenteriae: strain of the taxa share great DNA sequence relatedness, phenotypically are very similar, from every view point they are “single species”.

.E.g. Bacillus cereus & Bacillus thuringiensis: plasmid coding for

-endotoxin

.monothetic ( single character) S. dysenteriae must cause dysentry

(5)

Klasifikasi Artfisial

Based on restricted information: e.g. pathogenicity

Tend to be unstable: Erwinia herbicola (plant pathologist) and Enterobacter agglomerans (clinical microbiologist) Erwinia agglomerans.

Identification system derived from monothetic classificationmissclassification !

Non-pathogenic isolates of S. dysenteriae genus Escherichia.Non-toxic, plasmid deficient strain of B. thuringiensis

identified as B. cereus.

Conclussion: although artificial classification have their use, as a general system of value to all microbiologists, their limitations are severe !!

(6)

2. Klasifikasi alami

a. Fenetik

b. Filogenetik

a. Klasifikasi Alami Fenetik

General purpose classification

A system that is of value to all microbiologists  Encompass all bacteria and all aspects of them  Natural  based on overall similarity (affinity) 

containing all aspects (molecular  physiological  habitat relationship)

Phenetic: refer to similarities based on the complete

organism (phenotype & genotype) as it exists at present with no reference to the evolutionary pathways or ancestry of the organism.

Contrast with the term natural used in evolutionary contextPolythetic: good predictivity

(7)

b. Klasifikasi Alami Filogenetik

Natural: a unique history of decent with modification

Based on phylogenetic relationship

This will be congruent with phenetic if there is no

parallel and convergent evolution and the rate of

changes proceed constantly in all lineages

Cladistic: the branching pattern that describes the

pathway of ancestry of a group of organism

monophyletic group (posses a homologous

characters: primitive or derived characters

Traditional evolutionist: classification is practised

with reference to the phylogeny but without the

requirement that all groups be monophyletic

(8)

Keunggulan klasifikasi fenetik vs filogenetik

1. Goodness of the classification:

Phylogenetic classification: reflect the evolutionary

pathway of the organisms  it is impossible to compare with the true cladogeny

Phenetic classification: less well defined, but represent

the similarities between and every organism. Various statistical methods have been developed. The accuracy of the classification cannot be evaluated  difficult to define the ultimate phenetic classification

(9)

Keunggulan Klasifikasi

2. Keterujian (Veriviability)

Phylogenetic approach : difficult to verifyPhenetic classification: more accesible to

verification, objective and can be repeated

3. Kepraktisan (Practicalities):

Phylogenetic approach: rely on gene sequences data, hybridization technology offering simple

identification procedures molecular systematics Phenetic approach: can be analised to select the

most diagnostic characters for delineation of

(10)

Pilihan antara Klasifikasi fenetik

dan Filogenetik

Jensen (1983) suggested that the classification what is needed are:

 Classification that reflect what is known about the

taxa

 Procedures for generating hypothesis about

evolutionary relationships.

Many systematists now agree that the two

systems (phenetic & phylogenetic) should be combined as far as possible

(11)

KLASIFIKASI NUMERIK – FENETIK

(Taksonomi Adansonian)

Taksonomi Numerik:

pengelompokan unit takson dengan metode kuantitatif berdasarkan keeadaan sifat-sifat

 Perintis Aplikasi Sistematik Numerik : Peter H.A. Sneath

(1957)

Lima Prinsip Taksonomi Adansonian:

1.Taksonomi alami ideal: taksonomi yang mengandung informasi terbesar

yaitu yang didasarkan atas sebanyak-banyaknya sifat.

2. Masing-masing sifat diberi “nilai” yang setara dalam mengkonstruksi taksa alami.

3. Similaritas keseluruhan (afinitas) merupakan fungsi proporsi sifat yang dimiliki bersama.

4. Taksa yang berbeda didasarkan atas sifat yang dimiliki. 5. Similaritas tidak besifat filogenetis.

(12)

Taksonomi Tradisional:

monotetik

karakter tunggal

dipilih secara subyektif

tidak dapat mengakomodasi variasi (mutan)

Taksonomi Numerik:

mengandung banyak informasi

sebanyak-banyak karakter (politetik)

dapat mengakomodasi variasi

sistem simpanan informasi yang berharga

sistem retrieval bagi para ilmuwan

(13)

Prosedur Taksonomi Numerik:

1. Pemilihan strain dan uji karakter

Pemilihan strain (OTU) Pemilihan karakter

Akuisisi data secara tepat

Pengkodean data (data coding)

2. Evaluasi Eror

Estimasi test error

Komputasi resemblance

Konstruksi dendrogram (pengklasteran)

Evaluasi dendrogram (co-phenetic-correlation test) 3. Pendefinisian tingkat takson

(14)

Contoh: Tabel n x t

Karakter Strain Mikroba (Operational Taxonomical Unit)

A B C D E 1 + + - - -2 + - + - -3 + - - - -4 - - + - + 5 + + + + + 6 - - + + + 7 + + - - + 8 + + - + + 9 - - + - + 10 - - - + +

(15)

Komputasi nilai resemblance (similaritas):

Hasil Uji Strain B Hasil uji Strain A

+

-+ a b

(16)

Indeks similaritas:

 Simple matching coefficient

a + d (SSM) = --- x 100% a + b + c + d  Jaccard coefficient

a (SJ) = --- x 100% a + b + c

(17)

Contoh kalkulasi SSM

SSM (A-B) : a = 4; b = 2; c = 0; d = 4: SSM = 80%

SSM (A-C) : a = 2; b = 4; c = 3; d = 1: SSM = 30%

SSM (A-D) : a = 2; b = 4; c = 2; d = 2: SSM = 40%

SSM (A-E) : a = 3; b = 3; c = 4; d = 0: SSM = 30%

…………dan selanjutnya !!!

(18)

Matriks Similaritas

A B C D E A 100 B 80 100 C 30 30 100 D 40 60 50 100 E 30 50 60 70 100

(19)

Clustring analysis (Analisis Kluster)

Sim (%) Strain Mikrobia (OTU)

100 A B C D E 90 A B C D E 80 (A, B) C D E 70 (A, B) C (D,E) 60 (A, B) C (D,E) 55 (A, B) (C)(D,E)} 50 (A, B) (C)(D,E)} 40 (A, B) } (C)(D,E)}] 30 (A, B) } (C)(D,E)}] 20 (A, B) } (C)(D,E)}] 10 (A, B) } (C)(D,E)}]

(20)

Algoritme Pengklasteran (Clustering

Algoritm)

1. Single linkage: fusi klaster dengan nilai

similaritas tertinggi

2. Average linkage: fusi klaster dengan nilai

similaritas rerata (UPGMA)

3. Complete linkage: fusi klaster dengan

nilai similaritas terkecil

UPGMA: Unweighted Paired Group Method with

Arithmetic Averages

(21)

Konstruksi dendrogram

Hasil klasifikasi:

A B D E C 100 90 80 70 60 50 40 30

(22)

Evaluasi dendrogram: Analisis korelasi ko-fenetik A B C D E A 100 B 80 100 C 30 30 100 D 40 60 50 100 E 30 50 60 70 100

(23)

Matriks similaritas derived from Dendrogram

(Y)

A B C D E A 100 B 80 100 C 40 40 100 D 40 40 55 100 E 40 40 55 70 100

(24)

Analisis Kofenetik-korelasi

SSM X Y X2 Y2 XY A-B 80 80 A-C 30 40 A-D 40 40 A-E 30 40 B-C 30 40 B-D 60 40 B-E 50 40 C-D 50 55 C-E 60 55 D-E 70 70

(25)

Koefisien Korelasi (r)

(n

XY –

X

Y)

r =

---

(n

X

2

– (

X)

2

) (n (

Y

2

) – (

Y)

2

)

Referensi

Dokumen terkait

Salah satu cara untuk meningkatkan aktivitas peserta didik dalam proses belajar mengajar adalah dengan menerapkan model pembelajaran kooperatif tipe think pair share

Pembelian barang berdasarkan daftar persediaan barang yang dicatat pada bagian persediaan. Bagian persediaan menyerahkan daftar persediaan barang kepada bagian administrasi.

Jakarta: Dept Pulmonologi & Ilmu Kedokteran Respirasi FKUI (Perhimpunan Dokter Paru Indonesia).. Asma Pedoman Diagnosis & Penatalaksanaan di

Hasil ini mengindikasikan bahwa protein telah mengalami denaturasi yang disebabkan oleh perbedaan antara kemasan vakum dan non vakum dimana kemasan non vakum yang

Berdasarkan hasil penelitian yang telah dilakukan, dapat disimpulkan bahwa perbedaan konsentrasi garam berpengaruh terhadap komposisi proksimat ikan biang asin kering.

Friend (2015: 211) menyatakan bahwa keputusan besar yang terkait dengan diagnosis menyangkut kelayakan atas layanan pendidikan khusus, pertimbangan berdasarkan

Kenaikan dead-time atau konstanta waktu non-dominan (lebih kecil) dari lup menghasilkan penurunan gain lup ultimate dan frekuensi ultimate.. Kenaikan pada konstanta waktu

150mm Diameter longkang separuh bulatan 75mm tebal, termasuk semua kerja penggalian, membentuk bebendul 75mm tebal di kedua-dua belah, purata 75mm tinggi dan permukaan terdedah