• Tidak ada hasil yang ditemukan

Bipolar Neutrosophic Graph Structures | Akram | Journal of the Indonesian Mathematical Society 442 946 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "Bipolar Neutrosophic Graph Structures | Akram | Journal of the Indonesian Mathematical Society 442 946 1 PB"

Copied!
26
0
0

Teks penuh

(1)

Vol. 23, No. 1 (2017), pp. 55–80.

BIPOLAR NEUTROSOPHIC GRAPH STRUCTURES

Muhammad Akram

1

and Muzzamal Sitara

2

1

Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan,

makrammath@yahoo.com

2

Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan,

muzzamalsitara@gmail.com

Abstract.In this research study, we introduce the concept of bipolar single-valued neutrosophic graph structures. We discuss certain notions of bipolar single-valued neutrosophic graph structures with examples. We present some methods of con-struction of bipolar single-valued neutrosophic graph structures. We also investigate some of their prosperities.

Key words and Phrases: Graph structure, bipolar single-valued neutrosophic graph structure, operations.

Abstrak. Pada penelitian ini, kami memperkenalkan konsep struktur graf neu-trosofik bipolar bernilai tunggal. Kami mengkaji ide-ide tertentu dari struktur graf neutrosofik bipolar bernilai tunggal berserta contoh-contohnya. Kami menya-jikan beberapa metode konstruksi struktur graf neutrosofik bipolar bernilai tunggal. Kami juga memeriksa beberapa sifat-sifat mereka.

Kata kunci: Striktur graf, struktur graf neutrosofik bipolar bernilai tunggal, operasi

1. Introduction

Fuzzy graph theory has a number of applications in modeling real time sys-tems where the level of information inherent in the system varies with different levels of precision. Fuzzy models are becoming useful because of their aim in re-ducing the differences between the traditional numerical models used in engineering and sciences and the symbolic models used in expert systems. In 1973, Kauffmann [13] illustrated the notion of fuzzy graphs based on Zadeh’s fuzzy relations [24]. Rosenfeld [16] discussed several basic graph-theoretic concepts, including bridges,

2000 Mathematics Subject Classification: 03E72, 68R10, 68R05. Received: 02-02-2017, revised: 02-03-2017, accepted: 03-02-2017.

(2)

cut-nodes, connectedness, trees and cycles. Later on, Bhattacharya [8] gave some remarks on fuzzy graphs. In 1994, Mordeson and Chang-Shyh [14] defined some operations on fuzzy graphs. The complement of fuzzy graph was defined in [14]. Further, this concept was discussed by Sunitha and Vijayakumar [20]. Akram de-scribed bipolar fuzzy graphs in 2011 [1]. Akram and Shahzadi [5] dede-scribed the concept of neutrosophic soft graphs with applications. Dinesh and Ramakrishnan [12] introduced the concept of the fuzzy graph structure and investigated some re-lated properties. Akram and Akmal [4] proposed the notion of bipolar fuzzy graph structures. On the other hand, Dhavaseelan et al. [10] defined strong neutrosophic graphs. Akram and Sarwar [3] portrayed bipolar neutrosophic graphs with appli-cations. Akram and Shahzadi [5] introduced the notion of neutrosophic soft graphs with applications. Akram [2] introduced the notion of single-valued neutrosophic planar graphs. Representation of graphs using intuitionistic neutrosophic soft sets was discussed in [6]. Single-valued neutrosophic minimum spanning tree and its clustering method were studied by Ye [22]. In this research study, we introduce the concept of bipolar single-valued neutrosophic graph structures. We discuss certain notions of bipolar single-valued neutrosophic graph structures with examples. We present some methods of construction of bipolar single-valued neutrosophic graph structures. We also investigate some of their prosperities.

2. BIPOLAR SINGLE-VALUED NEUTROSOPHIC GRAPH

STRUCTURES

Smarandache [19] introduced neutrosophic sets as a generalization of fuzzy sets and intuitionistic fuzzy sets. A neutrosophic set has three constituents: truth-membership, indeterminacy-membership and falsity-truth-membership, in which each membership value is a real standard or non-standard subset of the unit interval ]0−

,1+[. In real-life problems, neutrosophic sets can be applied more appropriately

by using the single-valued neutrosophic sets defined by Smarandache [19] and Wang et al [21].

Definition 2.1. [19] Aneutrosophic set N on a non-empty setV is an object of the form

N ={(v, TN(v), IN(v), FN(v)) :v∈V} where, TN, IN, FN :V →]0

,1+[ and there is no restriction on the sum of T

N(v),

IN(v) andFN(v) for allv∈V.

Definition 2.2. [21]A single-valued neutrosophic set N on a non-empty set V is an object of the form

N ={(v, TN(v), IN(v), FN(v)) :v∈V}

(3)

Deli et al. [9] defined bipolar neutrosophic sets a generalization of bipolar fuzzy sets. They also studied some operations and applications in decision making problems.

Definition 2.3. [9]Abipolar single-valued neutrosophic seton a non-empty setV

is an object of the form

B={(v, TP B(v), I

P B(v), F

P B(v), T

N B(v), I

N B(v), F

N

B(v)) :v∈V}

where, TP B, I

P B, F

P

B :V →[0,1] andT N B, I

N B, F

N

B :V →[−1,0]. The positive values

TP B(v), I

P B(v), F

P

B(v) denote the truth, indeterminacy and falsity membership values of an element v ∈ V, whereas negative valuesTN

B(v), I N B(v), F

N

B(v) indicates the implicit counter property of truth, indeterminacy and falsity membership values of an elementv∈V.

Definition 2.4. A bipolar single-valued neutrosophic graphon a non-empty setV

is a pairG= (B, R), whereBis a bipolar single-valued neutrosophic set onV and

R is a bipolar single-valued neutrosophic relation inV such that

TP

R(bd)≤T P B(b)∧T

P B(d), I

P

R(bd)≤I P B(b)∧I

P

B(d), F P

R(bd)≤F P B(b)∨F

P B(d),

TN

R(bd)≥T N B(b)∨T

N B(d), I

N

R(bd)≥I N B(b)∨I

N

B(d), F N

R(bd)≥F N B(b)∧F

N B(d), for allb, d∈V.

We now define bipolar single-valued neutrosophic graph structure.

Definition 2.5. Gˇbn= (B, B1, B2, . . . , Bm) is calledbipolar single-valued

neutro-sophic graph structure(BSVNGS) of graph structure ˇGs = (V, V1, V2, . . . , Vm) if

B=< b, TP (b), IP

(b), FP (b), TN

(b), IN (b), FN

(b)>and

Bk =<(b, d), T P k (b, d), I

P k(b, d), F

P k (b, d), T

N k (b, d), I

N k (b, d), F

N

k (b, d)>are bipolar single-valued neutrosophic(BSVN) sets onV andVk, respectively, such that

TP

k (b, d)≤min{T P

(b), TP

(d)},IP

k (b, d)≤min{I P

(b), IP (d)},

FP

k (b, d)≤max{F P

(b), FP

(d)}, TN

k (b, d)≥max{T N

(b), TN (d)},

IN

k (b, d)≥max{I N

(b), IN

(d)},FN

k (b, d)≥min{F N

(b), FN (d)},

for allb, d∈V.Note that 0≤TP

k (b, d) +I P

k (b, d) +F P

k (b, d)≤3,

−3≤TN

k (b, d) +I N

k (b, d) +F N

k (b, d)≤0 for all (b, d)∈Vk.

Example 2.6. Consider graph structure(GSR) ˇGs = (V, V1, V2) such that V =

{b1, b2, b3, b4},V1={b1b3, b1b2, b3b4},V2={b1b4, b2b3}. By defining bipolar

single-valued neutrosophic setsB,B1andB2onV,V1 andV2, respectively, we can draw

a bipolar SVNGS as depicted in Fig. 1.

Definition 2.7. Let ˇGbn = (B, B1, B2, . . . , Bm) be a BSVNGS of GS ˇGs. If ˇ

Hbn= (B

′ , B′

1, B ′ 2, . . . , B

m) is a BSVNGS of ˇGs such that

T′P

(b)≤TP (k), I′P

(b)≤IP (b), F′P

(b)≥FP (b),

T′N

(b)≥TP (k), I′N

(b)≥IP (b), F′N

(4)

b

Figure 1. A bipolar single-valued neutrosophic graph structure

b

Figure 2. A BSVN subgraph structure

T′P

Then ˇHbn is named as abipolar single-valued neutrosophic(BSVN) subgraph

struc-tureof BSVNGS ˇGbn.

Example 2.8. Consider a BSVNGS ˇHbn = (B′, B1′, B2′) of GS ˇGs = (V, V1, V2) as depicted in Fig. 2. Routine calculations indicate that ˇHbnis BSVN subgraph-structure of BSVNGS ˇGbn.

Definition 2.9. A BSVNGS ˇHbn= (B′, B1′, B′2, . . . , Bm′ ) is called aBSVN induced

(5)

b

b

b

b3(0 .3,0

.4,0 .3,−

0.3, −0.

4,− 0.3) b2

(0

.

2

,

0

.

2

,

0

.

3

,

0

.

2

,

0

.

2

,

0

.

3

)

b1

(0. 2,

0. 3,

0. 4,

− 0.

2,

0. 3,

− 0.

4)

B′

1(0.2,0.3,0.4,−0.2,−0.3,−0.4)

B′

2(0

.2, 0.

2, 0.

3,

0.2

,

0. 2,

− 0.

3) B′1(0.2

,0.2,0.4,−0.2,−0.2,−0.4)

Figure 3. A BSVN induced subgraph-structure

T′P

(b) =TP (b), I′P

(b) =IP (b), F′P

(b) =FP (b),

T′N

(b) =TN (b), I′N

(b) =IN

(b), F′N

(b) =FN (b),

T′P

k (b, d) =T P k (b, d),I

′P

k (b, d) =I P

k(b, d),F

′P

k (b, d) =F P k (b, d),

T′N

k (b, d) =T N

k (b, d),I

′N

k (b, d) =I N

k (b, d),F

′N

k (b, d) =F N k (b, d), ∀b, d∈Q,k= 1,2, . . . , m.

Example 2.10. A BSVNGS depicted in Fig.3 is a BSVN induced subgraph-structure of BSVNGS represented in Fig. 1.

Definition 2.11. A BSVNGS ˇHbn= (B′, B1′, B′2, . . . , Bm′ ) is calledBSVN spanning

subgraph-structureof BSVNGS ˇGbn= (B, B1, B2, . . . , Bm) ifB

=B and

T′P

k (b, d)≤T P k (b, d),I

′P

k (b, d)≤I P

k(b, d),F

′P

k (b, d)≥F P k (b, d),

T′N

k (b, d)≥T N

k (b, d),I

′N

k (b, d)≥I N

k (b, d),F

′N

k (b, d)≤F N

k (b, d), k= 1,2, . . . , m.

Example 2.12. A BSVNGS represented in Fig. 4 is a BSVN spanning subgraph-structure of BSVNGS represented in Fig. 1.

Definition 2.13. Let ˇGbn= (B, B1, B2, . . . , Bm) be a BSVNGS. Thenbd∈Bk is called aBSVNBk-edgeor shortlyBk-edge, if

TP

k (b, d)> 0 orI P

k(b, d)> 0 orF P

k (b, d)> 0 orT N

k (b, d) <0 or I N

k (b, d)< 0 or

FN

(6)

b

b

b

b

B ′ 1

(0. 1, 0. 2, 0. 4, − 0. 1, − 0. 2, − 0. 4) b4

(0. 3,0

.2 ,0

.3 ,−

0.3 ,−

0.2 ,−

0.3)

b3(0 .3,0.4

,0.3, −0.3

,−0 .4,−0

.3) b2(0

.2, 0.2

,0. 3,−

0.2 ,−

0.2 ,−

0.3)

b1(0.2,0.3,0.4,−0.2,−0.3,−0.4)

B′2(0

.2,0

.1,0

.4,

−0

.2,

−0

.1,− 0.4)

B 1(0

.2, 0.1

,0. 3,−

0.2,

0.1 ,−

0.3)

B′

2(0. 1,0.

1,0. 3,−0

.1,−0 .1,−0

.3) B′1(0

.1,0.1 ,0.4,

−0.1 ,−0.

1,−0

.4)

Figure 4. A BSVN spanning subgraph-structure

supp(Bk) = {bd ∈ Bk : T P

k (b, d) > 0} ∪ {bd ∈ Bk : I

P

k(b, d) > 0} ∪ {bd ∈ Bk :

FP

k (b, d)>0} ∪ {bd∈Bk :T

N

k (b, d)<0} ∪ {bd∈Bk :I

N

k (b, d)<0} ∪ {bd∈Bk :

FN

k (b, d)<0},k= 1,2, . . . , m.

Definition 2.14. Bk-path in BSVNGS ˇGbn = (B, B1, B2, . . . , Bm) is a sequence

b1, b2, . . . , bmof distinct nodes(vertices) (exceptbm=b1) inV such that bk−1bk is a BSVNBk-edge for allk= 2, . . . , m.

Definition 2.15. A BSVNGS ˇGbn = (B, B1, B2, . . . , Bm) is Bk-strong for any

k∈ {1,2, . . . , m}if

TP

k (b, d) = min{T P

(b), TP

(d)},IP

k (b, d) = min{I P

(b), IP (d)},

FP

k (b, d) = max{F P

(b), FP

(d)}, TN

k (b, d) = max{T N

(b), TN (d)},

IN

k (b, d) = max{I N

(b), IN

(d)},FN

k (b, d) = min{F N

(b), FN (d)},

∀ bd∈supp(Bk). If ˇGbn isBk-strong for allk∈ {1,2, . . . , m}, then ˇGbn is called

strong BSVNGS.

Example 2.16. Consider BSVNGS ˇGbn = (B, B1, B2, B3) as depicted in Fig. 5.

Then ˇGbnis strong BSVNGS, since it isB1−,B2−andB3−strong.

(7)

b

Figure 5. A Strong BSVNGS

(1) ˇGbnis strong BSVNGS.

(2) supp(Bk)6=∅, for all k = 1, 2, . . . , m. (3) For allb, d∈V,bdis aBk−edgefor some k.

Example 2.18. Let ˇGbn = (B, B1, B2) be BSVNGS of GS ˇG = (V, V1, V2), such that V ={b1, b2, b3, b4},V1={b1b2, b3b4}, V2={b1b3, b2b3, b1b4, b2b4}.

(8)

b

Figure 6. A complete BSVNGS

(9)

b b

Lexicographic product of BSVNGSs ˇGb1and ˇGb2 shown in Fig. 7 is defined as:

ˇ

(10)

b

b4d 2(0.3,

0.2,0.6 ,−0.3

,−0.2 ,−0.6)

b

b b b

b3d 1(0

.2,0 .1,

0.4,

0.2,

0.1,

0.4)

b3d3(0

.4,0.2,0.5,−0.4, −0.2,

−0.5)

b4d 3(0

.5 ,0.

2,0. 6,−

0.5,

0.2 ,−

0.6)

b4d 1(0

.2,0

.1,0.6 ,−0.

2,−0.

1,−0

.6)

b3d2(0 .3,0.

2,0.4 ,−0

.3,− 0.2,−

0.4)

B 11•B

21(0 .2,

0.1, 0.6,−

0.2,− 0.1,−

0.6) B11

•B 21(0

.2,0 .1,0

.4,− 0.2,

−0

.1,

−0

.4)

B

1

2

B

2

2

(0

.

3

,

0

.

2

,

0

.

5

,

0

.

3

,

0

.

2

,

0

.

5

)

b

B12•B22(0.3,0.2,0.6,−0.3,−0.2,−0.6)

B12•B22(0.3,0.2,0.6,−0.3,−0.2,−0.6) B12•B22(0.3,0.2,0.6,−0.3,−0.2,−0.6)

Figure 8. Gˇb1•Gˇb2

Theorem 2.21. Lexicographic product ˇGb1•Gˇb2 = (B1•B2, B11• B21, B12• B22, . . . , B1m•B2m) of two BSVNSGSs of GSs Gˇs1 and Gˇs2 is a BSVNGS of

ˇ

Gs1•Gˇs2.

proof. Consider two cases:

Case 1.: Forb∈V1,d1d2∈V2k

TP

(B

1k•B2k)((bd1)(bd2)) =T P B

1(b)∧T P B

2k(d1d2)

≤TBP

1(b)∧[T P B

2(d1)∧T P B

2(d2)] = [TP

B1(b)∧T P

B2(d1)]∧[T

P B1(b)∧T

P B2(d2)]

=T(PB1•B2)(bd1)∧T

P

(B1•B2)(bd2), T(NB

1k•B

2k)((bd1)(bd2)) =T N B

1(b)∨T N B

2k(d1d2)

≥TBN

1(b)∨[T N B

2(d1)∨T N B

2(d2)] = [TN

B1(b)∨T N

B2(d1)]∨[T

N B1(b)∨T

N B2(d2)]

=T(NB1•B2)(bd1)∨T

N

(B1•B2)(bd2),

IP

(B

1k•B2k)((bd1)(bd2)) =I P B1(b)∧I

P B

2k(d1d2)

≤IP

B1(b)∧[I P

B2(d1)∧I P B2(d2)] = [IP

B 1(b)∧I

P B

2(d1)]∧[I P B

1(b)∧I P B

2(d2)] =IP

(11)

I(NB

1k•B2k)((bd1)(bd2)) =I N B

1(b)∨I N B

2k(d1d2)

≥IN

B

1(b)∨[I N B

2(d1)∨I N B

2(d2)] = [IN

B1(b)∨I N

B2(d1)]∨[I N B1(b)∨I

N B2(d2)] =IN

(B

1•B2)(bd1)∨I N

(B

1•B2)(bd2),

FP

(B

1k•B2k)((bd1)(bd2)) =F P B1(b)∨F

P B

2k(d1d2)

≤FP

B1(b)∨[F P

B2(d1)∨F P B2(d2)] = [FP

B

1(b)∨F P B

2(d1)]∨[F P B

1(b)∨F P B

2(d2)] =FP

(B1•B2)(bd1)∨F(PB1•B2)(bd2),

FN

(B

1k•B2k)((bd1)(bd2)) =F N B1(b)∧F

N

B2k(d1d2)

≥FN

B

1(b)∧[F N B

2(d1)∧F N B

2(d2)] = [FN

B

1(b)∧F N B

2(d1)]∧[F N B

1(b)∧F N B

2(d2)] =FN

(B

1•B2)(bd1)∧F N

(B

1•B2)(bd2), forbd1, bd2∈V1•V2.

Case 2.: Forb1b2∈V1k,d1d2∈V2k

TP

(B

1k•B2k)((b1d1)(b2d2)) =T P B

1k(b1b2)∧T P B

2k(d1d2)

≤[TP

B1(b1)∧T P

B1(b2]∧[T P

B2(d1)∧T P B2(d2)] = [TP

B

1(b1)∧T P B

2(d1)]∧[T P B

1(b2)∧T P B

2(d2)] =TP

(B1•B2)(b1d1)∧T(PB1•B2)(b2d2),

TN

(B

1k•B2k)((b1d1)(b2d2)) =T N

B1k(b1b2)∨T N

B2k(d1d2)

≥[TN

B

1(b1)∨T N B

1(b2]∨[T N B

2(d1)∨T N B

2(d2)] = [TN

B

1(b1)∨T N B

2(d1)]∨[T N B

1(b2)∨T N B

2(d2)] =TN

(B

1•B2)(b1d1)∨T N

(B

1•B2)(b2d2),

IP

(B

1k•B2k)((b1d1)(b2d2)) =I P B

1k(b1b2)∧I P B

2k(d1d2)

≤[IP

B1(b1)∧I P

B1(b2]∧[I P

B2(d1)∧I P B2(d2)] = [IP

B

1(b1)∧I P B

2(d1)]∧[I P B

1(b2)∧I P B

2(d2)] =IP

(12)

I(NB is defined as:

(13)

b

(14)
(15)

I(NB

1k⊠B2k)((bd1)(bd2)) =I N B

1(b)∨I N B

2k(d1d2)

≥IN

B

1(b)∨[I N B

2(d1)∨I N B

2(d2)] = [IN

B1(b)∨I N

B2(d1)]∨[I N B1(b)∨I

N B2(d2)] =IN

(B1⊠B

2)(bd1)∨I N

(B1⊠B 2)(bd2),

FP

(B

1k⊠B2k)((bd1)(bd2)) =F P B1(b)∨F

P B

2k(d1d2)

≤FP

B1(b)∨[F P

B2(d1)∨F P B2(d2)] = [FP

B

1(b)∨F P B

2(d1)]∨[F P B

1(b)∨F P B

2(d2)] =FP

(B1⊠B2)(bd1)∨F(PB1⊠B2)(bd2),

FN

(B

1k⊠B2k)((bd1)(bd2)) =F N B1(b)∧F

N

B2k(d1d2)

≥FN

B

1(b)∧[F N B

2(d1)∧F N B

2(d2)] = [FN

B

1(b)∧F N B

2(d1)]∧[F N B

1(b)∧F N B

2(d2)] =FN

(B1⊠B

2)(bd1)∧F N

(B1⊠B 2)(bd2), forbd1, bd2∈V1⊠V2.

Case 2.: Forb∈V2,d1d2∈V1k

TP

(B

1k⊠B2k)((d1b)(d2b)) =T P B2(b)∧T

P B

1k(d1d2)

≤TP

B2(b)∧[T P

B1(d1)∧T P B1(d2)] = [TP

B 2(b)∧T

P B

1(d1)]∧[T P B

2(b)∧T P B

1(d2)] =TP

(B1⊠B2)(d1b)∧T(PB1⊠B2)(d2b),

TN

(B

1k⊠B2k)((d1b)(d2b)) =T N B2(b)∨T

N

B1k(d1d2)

≥TN

B

2(b)∨[T N B

1(d1)∨T P B

1(d2)] = [TN

B 2(b)∨T

N B

1(d1)]∨[T N B

2(b)∨T N B

1(d2)] =TN

(B1⊠B

2)(d1b)∨T N

(B1⊠B 2)(d2b),

IP

(B

1k⊠B2k)((d1b)(d2b)) =I P B2(b)∧I

P B

1k(d1d2)

≤IP

B2(b)∧[I P

B1(d1)∧I P B1(d2)] = [IP

B 2(b)∧I

P B

1(d1)]∧[I P B

2(b)∧I P B

1(d2)] =IP

(16)

I(NB

1k⊠B2k)((d1b)(d2b)) =I N B

2(b)∨I N B

1k(d1d2)

≥IN

B

2(b)∨[I N B

1(d1)∨I N B

1(d2)] = [IN

B2(b)∨I N

B1(d1)]∨[I N B2(b)∨I

N B1(d2)] =IN

(B1⊠B

2)(d1b)∨I N

(B1⊠B 2)(d2b),

FP

(B

1k⊠B2k)((d1b)(d2b)) =F P B2(b)∨F

P B

1k(d1d2)

≤FP

B2(b)∨[F P

B1(d1)∨F P B1(d2)] = [FP

B

2(b)∨F P B

1(d1)]∨[F P B

2(b)∨F P B

1(d2)] =FP

(B1⊠B2)(d1b)∨F(PB1⊠B2)(d2b),

FN

(B

1k⊠B2k)((d1b)(d2b)) =F N B2(b)∧F

N

B1k(d1d2)

≥FN

B

2(b)∧[F N B

1(d1)∧F N B

1(d2)] = [FN

B

2(b)∧F N B

1(d1)]∧[F N B

2(b)∧F N B

1(d2)] =FN

(B1⊠B

2)(d1b)∧F N

(B1⊠B 2)(d2b), ford1b, d2b∈V1⊠V2.

Case 3.: Forb1b2∈V1k,d1d2∈V2k

TP

(B

1k⊠B2k)((b1d1)(b2d2)) =T P B

1k(b1b2)∧T P B

2k(d1d2)

≤[TP

B1(b1)∧T P

B1(b2]∧[T P

B2(d1)∧T P B2(d2)] = [TP

B

1(b1)∧T P B

2(d1)]∧[T P B

1(b2)∧T P B

2(d2)] =TP

(B1⊠B2)(b1d1)∧T(PB1⊠B2)(b2d2),

TN

(B

1k⊠B2k)((b1d1)(b2d2)) =T N

B1k(b1b2)∨T N

B2k(d1d2)

≥[TN

B

1(b1)∨T N B

1(b2]∨[T N B

2(d1)∨T N B

2(d2)] = [TN

B

1(b1)∨T N B

2(d1)]∨[T N B

1(b2)∨T N B

2(d2)] =TN

(B1⊠B

2)(b1d1)∨T N

(B1⊠B

2)(b2d2),

IP

(B

1k⊠B2k)((b1d1)(b2d2)) =I P B

1k(b1b2)∧I P B

2k(d1d2)

≤[IP

B1(b1)∧I P

B1(b2]∧[I P

B2(d1)∧I P B2(d2)] = [IP

B

1(b1)∧I P B

2(d1)]∧[I P B

1(b2)∧I P B

2(d2)] =IP

(17)

I(NB is defined as:

(18)

b b

b b b

b

b

B11∪B21(0.2,0.05,0.4,−0.2,−0.05,−0.4) B12∪B22(0.3,0.1,0.5,−0.3,−0.1,−0.5)

B12∪B22(0.4,0.1,0.6,−0.4,−0.1,−0.6) B11∪B21(0.5,0.05,0.8,−0.5,−0.05,−0.8)

b3(0.4,0.1,0.4,−0.4,−0.1,−0.4) d1(0.2,0.05,0.3,−0.2,−0.05,−0.3)

b1(0.5,0.05,0.6,−0.5,−0.05,−0.6) d3(0.5,0.15,0.5,−0.5,−0.15,−0.5)

b

2

(0

.

5

,

0

.

1

,

0

.

8

,

0

.

5

,

0.

1

,

0

.

8

)

b

4

(0

.

5

,

0

.

1

,

0

.

6

,

0

.

5

,

0

.

1

,

0

.

6

)

d2(0.3,0.1,0.4,−0.3,−0.1,−0.4)

Figure 11. Gˇb1∪Gˇb2

Example 2.26. Union of two BSVNGSs ˇGb1 and ˇGb2 shown in Fig. 7 is defined as ˇGb1∪Gˇb2={B1∪B2, B11∪B21, B12∪B22}and is depicted in Fig. 11.

Theorem 2.27. Union ˇGb1∪Gˇb2= (B1∪B2, B11∪B21, B12∪B22, . . . , B1m∪B2m) of two BSVNGSs of the GSs ˇG1 and ˇG2 is BSVNGS of ˇG1∪Gˇ2.

proof.Letb1b2V1k∪V2k. Two cases arise:

Case 1.: Forb1, b2∈V1, by definition 2.25 TP

B

2(b1) = T P B

2(b2) =T P B

2k(b1b2) = 0, I P B

2(b1) = I P B

2(b2) =I P B

2k(b1b2) = 0,

FP B

2(b1) =F P B

2(b2) =F P B

2k(b1b2) = 1,

TN

B2(b1) = T N

B2(b2) =T N B

2k(b1b2) = 0, I N

B2(b1) = I N

B2(b2) =I N B

2k(b1b2) = 0,

FN B

2(b1) =F N B

2(b2) =F N B

2k(b1b2) =−1, so

T(PB1k∪B2k)(b1b2) =T P B

1k(b1b2)∨T P B

2k(b1b2) =TBP

1k(b1b2)∨0

≤[TP

B1(b1)∧T P

B1(b2)]∨0 = [TP

B

1(b1)∨0]∧[T P B

1(b2)∨0] = [TP

B

1(b1)∨T P B

2(b1)]∧[T P B

1(b2)∨T P B

2(b2)] =TP

(B

1∪B2)(b1)∧T P

(B

1∪B2)(b2),

TN

(B

1k∪B2k)(b1b2) =T N B

1k(b1b2)∧T N B

2k(b1b2) =TN

B

1k(b1b2)∧0

≥[TBN

1(b1)∨T N B

1(b2)]∧0 = [TN

B1(b1)∧0]∨[T N

B1(b2)∧0] = [TN

B

1(b1)∧T N B

2(b1)]∨[T N B

1(b2)∧T N B

2(b2)] =TN

(19)

F(PB

1k∪B2k)(b1b2) =F P B

1k(b1b2)∧F P B

2k(b1b2) =FP

B

1k(b1b2)∧1

≤[FP

B1(b1)∨F P

B1(b2)]∧1 = [FP

B

1(b1)∧1]∨[F P B

1(b2)∧1] = [FBP

1(b1)∧F P B

2(b1)]∨[F P B

1(b2)∧F P B

2(b2)] =FP

(B

1∪B2)(b1)∨F P

(B

1∪B2)(b2),

FN

(B

1k∪B2k)(b1b2) =F N

B1k(b1b2)∨F N B2k(b1b2) =FN

B

1k(b1b2)∨ −1

≥[FN

B

1(b1)∧F N B

1(b2)]∨ −1 = [FBN

1(b1)∨ −1]∧[F N B

1(b2)∨ −1] = [FN

B1(b1)∨F

N

B2(b1)]∧[F

N

B1(b2)∨F

N B2(b2)]

=F(NB1∪B2)(b1)∧F

N

(B1∪B2)(b2),

IP

(B

1k∪B2k)(b1b2) =

IP B

1k(b1b2) +I P B

2k(b1b2) 2

=I P B

1k(b1b2) + 0 2

≤[I

P B

1(b1)∧I P B

1(b2)] + 0 2

= [I P B1(b1)

2 + 0]∧[

IP B1(b2)

2 + 0]

=[I P B

1(b1) +I P B

2(b1)]

2 ∧

[IP B

1(b2) +I P B

2(b2)] 2

=IP

(20)

I(NB 1k∪B

2k)(b1b2) =

IN B

1k(b1b2) +I N B

2k(b1b2) 2

=I N B

1k(b1b2) + 0 2

≥[I

N B

1(b1)∨I N B

1(b2)] + 0 2

= [I N B

1(b1)

2 + 0]∨[

IN B

1(b2)

2 + 0]

=[I N B

1(b1) +I N B

2(b1)]

2 ∨

[IN B

1(b2) +I N B

2(b2)] 2

=IN

(B

1∪B2)(b1)∨I N

(B

1∪B2)(b2),

forb1, b2∈V1∪V2.

Case 2.: Forb1, b2∈V2, by definition 2.25 TP

B

1(b1) = T P B

1(b2) =T P B

1k(b1b2) = 0, I P B

1(b1) = I P B

1(b2) =I P B

1k(b1b2) = 0,

FP B

1(b1) =F P B

2(b2) =F P B

1k(b1b2) = 1,

TN

B1(b1) = T N

B1(b2) =T N B

1k(b1b2) = 0, I N

B1(b1) = I N

B1(b2) =I N B

1k(b1b2) = 0,

FN B

1(b1) =F N B

2(b2) =F N B

1k(b1b2) =−1, so

TP

(B

1k∪B2k)(b1b2) =T P B

1k(b1b2)∨T P B

2k(b1b2) =TP

B

2k(b1b2)∨0

≤[TBP

2(b1)∧T P B

2(b2)]∨0 = [TP

B2(b1)∨0]∧[T

P

B2(b2)∨0]

= [TP B

2(b1)∨T P B

1(b1)]∧[T P B

2(b2)∨T P B

1(b2)] =TP

(B

1∪B2)(b1)∧T P

(B

1∪B2)(b2),

TN

(B

1k∪B2k)(b1b2) =T N B

1k(b1b2)∧T N B

2k(b1b2) =TN

B

2k(b1b2)∧0

≥[TBN

2(b1)∨T N B

2(b2)]∧0 = [TN

B2(b1)∧0]∨[T N

B2(b2)∧0] = [TN

B

2(b1)∧T N B

1(b1)]∨[T N B

2(b2)∧T N B

1(b2)] =TN

(21)

F(PB

1k∪B2k)(b1b2) =F P B

1k(b1b2)∧F P B

2k(b1b2) =FP

B

2k(b1b2)∧(1)

≤[FP

B2(b1)∨F P

B2(b2)]∧(1) = [FP

B

2(b1)∧(1)]∨[F P B

2(b2)∧(1)] = [FBP

2(b1)∧F P B

1(b1)]∨[F P B

2(b2)∧F P B

1(b2)] =FP

(B

1∪B2)(b1)∨F P

(B

1∪B2)(b2),

FN

(B

1k∪B2k)(b1b2) =F N

B1k(b1b2)∨F N B2k(b1b2) =FN

B

2k(b1b2)∨(−1)

≥[FN

B

2(b1)∧F N B

2(b2)]∨(−1) = [FBN

2(b1)∨(−1)]∧[F N B

2(b2)∨(−1)] = [FN

B2(b1)∨F

N

B1(b1)]∧[F

N

B2(b2)∨F

N B1(b2)]

=F(NB1∪B2)(b1)∧F

N

(B1∪B2)(b2),

IP

(B

1k∪B2k)(b1b2) =

IP B

1k(b1b2) +I P B

2k(b1b2) 2

=I P B

2k(b1b2) + 0 2

≤[I

P B

2(b1)∧I P B

2(b2)] + 0 2

= [I P B2(b1)

2 + 0]∧[

IP B2(b2)

2 + 0]

=[I P B

2(b1) +I P B

1(b1)]

2 ∧

[IP B

2(b2) +I P B

1(b2)] 2

=IP

(22)
(23)

Definition 2.29. Let ˇGb1= (B1, B11, B12, . . . , B1m) and ˇGb2= (B2, B21, B22, . . . , B2m) be BSVNGSs and letV1∩V2 =∅. Joinof ˇGb1 and ˇGb2, denoted by

ˇ

Gb1+ ˇGb2= (B1+B2, B11+B21, B12+B22, . . . , B1m+B2m), is defined as:

(i)

3. CONCLUDING REMARKS

(24)

b

(3) BSVN interval-valued hypergraph structures, and(4) BSVN rough hypergraph structures.

Acknowledgement. The authors are highly thankful to Executive Editor and the referees for their valuable comments and suggestions.

References

[1] Akram, M., ”Bipolar fuzzy graphs”, Information Sciences”,181:24(2011), 5548-5564.

[2] Akram, M., ”Single-valued neutrosophic planar graphs”,International Journal of Algebra and Statistics,5(2) (2016), 157-167.

[3] Akram, M. and Sarwar, M., ”Novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs”, viXra:1701.0190, 2015. [4] Akram, M. and Akmal, R., ”Application of bipolar fuzzy sets in graph structures”,Applied

Computational Intelligence and Soft Computing, (2016), 13 pages.

[5] Akram, M. and Shahzadi, S., ”Neutrosophic soft graphs with application”,Journal of Intel-ligent & Fuzzy Systems,32(2017), 841-858.

[6] Akram, M. and Shahzadi, S., ”Representation of graphs using intuitionistic neutrosophic soft sets”,Journal of Mathematical Analysis,7:6(2016), 31-53.

[7] Atanassov, K., ”Intuitionistic fuzzy sets”,Fuzzy Sets and Systems,20:1(1986), 87-96. [8] Bhattacharya, P., ”Some remarks on fuzzy graphs”,Pattern Recognition Letters,6:5(1987),

297-302.

(25)

[10] Dhavaseelan, R., Vikramaprasad, R. and Krishnaraj, V., ”Certain types of neutrosophic graphs”,Int. Jr. of Mathematical Sciences and Applications,5:) (2015), 333-339.

[11] Dinesh, T., A study on graph structures, incidence algebras and their fuzzy ana-logues[Ph.D.thesis], Kannur University, Kannur, India, (2011).

[12] Dinesh, T. and Ramakrishnan, T.V., ”On generalised fuzzy graph structures”,Applied Math-ematical Sciences,5:4(2011), 173-180.

[13] Kauffman, A.,Introduction a la Theorie des Sous-emsembles Flous, Masson et Cie, Vol.1

(1973).

[14] Mordeson, J.N. and Chang-Shyh, P., ”Operations on fuzzy graphs”,Information Sciences,

79(1994), 159-170.

[15] Peng, J.J., Wang, J.Q., Zhang, H.Y. and Chen, X.H, ”An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets”,Applied Soft Comput-ing,25(2014), 336-346.

[16] Rosenfeld, A., ”Fuzzy graphs”, In Fuzzy Sets and their Applications( L.A.Zadeh, K.S.Fu, M.Shimura, Eds.), Academic Press, New York, (1975), 77-95.

[17] Sampathkumar, E., ”Generalized graph structures”,Bulletin of Kerala Mathematics Asso-ciation,3:2(2006), 65-123.

[18] Shah, N. and Hussain, A., ”Neutrosophic soft graphs”, Neutrosophic Set and Systems,11

(2016), 31-44.

[19] Smarandache, F., Neutrosophy Neutrosophic Probability, Set, and Logic, Amer Res Press, Rehoboth, USA, (1998).

[20] Sunitha, M.S. and Vijayakumar, A., ”Complement of a fuzzy graph”,Indian Journal of Pure and Applied Mathematics,33:) (2002), 1451-1464.

[21] Wang, H., Smarandache, F., Zhang, Y.Q. and Sunderraman, R., ”Single valued neutrosophic sets”,Multispace and Multistructure,4(2010), 410-413.

[22] Ye, J., ”Single-valued neutrosophic minimum spanning tree and its clustering method”, Jour-nal of Intelligent Systems,23:3(2014), 311-324.

[23] Zadeh, L.A., ”Fuzzy sets”,Information and control,8:3(1965), 338-353.

[24] Zadeh, L.A., ”Similarity relations and fuzzy orderings”, Information Sciences,3:2(1971), 177-200.

(26)

Gambar

Figure 1. A bipolar single-valued neutrosophic graph structure
Figure 3. A BSVN induced subgraph-structure
Figure 4. A BSVN spanning subgraph-structure
Figure 5. A Strong BSVNGS
+7

Referensi

Dokumen terkait

Sedangankan Tabel VI, dapat disimpulakn bahwa pengaruh interaksi Z*X 2 terhadap Y hasilnya adalah negatif yang berarti bahwa moderasi dari pengawasan kerja memperlemah

Dalam mata kuliah ini dibahas hakekat, rasionel dan manfaat etnomatematika; dimensi, perspektif dan kedudukan etnomatematika; subjek, objek, pendekaan dan metode

[r]

U nit Layanan Pengadaan Baranq/Jasa (U LP) Pem erintah prov. Kalsel di Banjarm asin. .'.. Dalam

Jumlah Penyedia Barang/jasa yang mendaftar sebagai peserta lelang sampai pada tahap Penjelasan. Dokumen Lelang sebanyak

sedangkan high development countries dan low development countries menunjukkan gejala bahwa indikator kerusakan lingkungan terus meningkat dan belum mencapai titik balik,

Dinas pendidikan Nasional Kota Bengkulu, bersama ini karni umumkan penyedia untuk. pekerjaan tersebut di atas adalah sebagai berikut

Sayangnya / harus diakui pula / bahwa tidak semua orang tua / tumbuh sejak kecil / melaluipelatihan emosi // sehingga setelah menjadi orang tua / dan dianggap dewasa / orang